// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see .
//! Manages local node data: pending local transactions, sync security level
use std::io;
use std::sync::Arc;
use std::time::Duration;
use common_types::{
BlockNumber,
transaction::{
SignedTransaction, PendingTransaction, UnverifiedTransaction,
Condition as TransactionCondition
}
};
use ethcore_io::{IoHandler, TimerToken, IoContext};
use kvdb::KeyValueDB;
use log::{debug, trace, warn};
use rlp::Rlp;
use serde_derive::{Serialize, Deserialize};
use serde_json;
const LOCAL_TRANSACTIONS_KEY: &'static [u8] = &*b"LOCAL_TXS";
const UPDATE_TIMER: TimerToken = 0;
const UPDATE_TIMEOUT: Duration = Duration::from_secs(15 * 60); // once every 15 minutes.
#[derive(Serialize, Deserialize)]
enum Condition {
Number(BlockNumber),
Timestamp(u64),
}
impl From for Condition {
fn from(cond: TransactionCondition) -> Self {
match cond {
TransactionCondition::Number(num) => Condition::Number(num),
TransactionCondition::Timestamp(tm) => Condition::Timestamp(tm),
}
}
}
impl Into for Condition {
fn into(self) -> TransactionCondition {
match self {
Condition::Number(num) => TransactionCondition::Number(num),
Condition::Timestamp(tm) => TransactionCondition::Timestamp(tm),
}
}
}
#[derive(Serialize, Deserialize)]
struct TransactionEntry {
rlp_bytes: Vec,
condition: Option,
}
impl TransactionEntry {
fn into_pending(self) -> Option {
let tx: UnverifiedTransaction = match Rlp::new(&self.rlp_bytes).as_val() {
Err(e) => {
warn!(target: "local_store", "Invalid persistent transaction stored: {}", e);
return None
}
Ok(tx) => tx,
};
let hash = tx.hash();
match SignedTransaction::new(tx) {
Ok(tx) => Some(PendingTransaction::new(tx, self.condition.map(Into::into))),
Err(_) => {
warn!(target: "local_store", "Bad signature on persistent transaction: {}", hash);
return None
}
}
}
}
impl From for TransactionEntry {
fn from(pending: PendingTransaction) -> Self {
TransactionEntry {
rlp_bytes: ::rlp::encode(&pending.transaction),
condition: pending.condition.map(Into::into),
}
}
}
/// Something which can provide information about the local node.
pub trait NodeInfo: Send + Sync {
/// Get all pending transactions of local origin.
fn pending_transactions(&self) -> Vec;
}
/// Create a new local data store, given a database, a column to write to, and a node.
/// Attempts to read data out of the store, and move it into the node.
pub fn create(db: Arc, col: Option, node: T) -> LocalDataStore {
LocalDataStore {
db: db,
col: col,
node: node,
}
}
/// Manages local node data.
///
/// In specific, this will be used to store things like unpropagated local transactions
/// and the node security level.
pub struct LocalDataStore {
db: Arc,
col: Option,
node: T,
}
impl LocalDataStore {
/// Attempt to read pending transactions out of the local store.
pub fn pending_transactions(&self) -> io::Result> {
if let Some(val) = self.db.get(self.col, LOCAL_TRANSACTIONS_KEY)? {
let local_txs: Vec<_> = serde_json::from_slice::>(&val)?
.into_iter()
.filter_map(TransactionEntry::into_pending)
.collect();
Ok(local_txs)
} else {
Ok(Vec::new())
}
}
/// Update the entries in the database.
pub fn update(&self) -> io::Result<()> {
trace!(target: "local_store", "Updating local store entries.");
let local_entries: Vec = self.node.pending_transactions()
.into_iter()
.map(Into::into)
.collect();
self.write_txs(&local_entries)
}
/// Clear data in this column.
pub fn clear(&self) -> io::Result<()> {
trace!(target: "local_store", "Clearing local store entries.");
self.write_txs(&[])
}
// helper for writing a vector of transaction entries to disk.
fn write_txs(&self, txs: &[TransactionEntry]) -> io::Result<()> {
let mut batch = self.db.transaction();
let local_json = serde_json::to_value(txs)?;
let json_str = format!("{}", local_json);
batch.put_vec(self.col, LOCAL_TRANSACTIONS_KEY, json_str.into_bytes());
self.db.write(batch)
}
}
impl IoHandler for LocalDataStore {
fn initialize(&self, io: &IoContext) {
if let Err(e) = io.register_timer(UPDATE_TIMER, UPDATE_TIMEOUT) {
warn!(target: "local_store", "Error registering local store update timer: {}", e);
}
}
fn timeout(&self, _io: &IoContext, timer: TimerToken) {
if let UPDATE_TIMER = timer {
if let Err(e) = self.update() {
debug!(target: "local_store", "Error updating local store: {}", e);
}
}
}
}
impl Drop for LocalDataStore {
fn drop(&mut self) {
debug!(target: "local_store", "Updating node data store on shutdown.");
let _ = self.update();
}
}
#[cfg(test)]
mod tests {
use super::NodeInfo;
use std::sync::Arc;
use common_types::transaction::{Transaction, Condition, PendingTransaction};
use ethkey::{Brain, Generator};
// we want to test: round-trip of good transactions.
// failure to roundtrip bad transactions (but that it doesn't panic)
struct Dummy(Vec);
impl NodeInfo for Dummy {
fn pending_transactions(&self) -> Vec { self.0.clone() }
}
#[test]
fn twice_empty() {
let db = Arc::new(::kvdb_memorydb::create(0));
{
let store = super::create(db.clone(), None, Dummy(vec![]));
assert_eq!(store.pending_transactions().unwrap(), vec![])
}
{
let store = super::create(db.clone(), None, Dummy(vec![]));
assert_eq!(store.pending_transactions().unwrap(), vec![])
}
}
#[test]
fn with_condition() {
let keypair = Brain::new("abcd".into()).generate().unwrap();
let transactions: Vec<_> = (0..10u64).map(|nonce| {
let mut tx = Transaction::default();
tx.nonce = nonce.into();
let signed = tx.sign(keypair.secret(), None);
let condition = match nonce {
5 => Some(Condition::Number(100_000)),
_ => None,
};
PendingTransaction::new(signed, condition)
}).collect();
let db = Arc::new(::kvdb_memorydb::create(0));
{
// nothing written yet, will write pending.
let store = super::create(db.clone(), None, Dummy(transactions.clone()));
assert_eq!(store.pending_transactions().unwrap(), vec![])
}
{
// pending written, will write nothing.
let store = super::create(db.clone(), None, Dummy(vec![]));
assert_eq!(store.pending_transactions().unwrap(), transactions)
}
{
// pending removed, will write nothing.
let store = super::create(db.clone(), None, Dummy(vec![]));
assert_eq!(store.pending_transactions().unwrap(), vec![])
}
}
#[test]
fn skips_bad_transactions() {
let keypair = Brain::new("abcd".into()).generate().unwrap();
let mut transactions: Vec<_> = (0..10u64).map(|nonce| {
let mut tx = Transaction::default();
tx.nonce = nonce.into();
let signed = tx.sign(keypair.secret(), None);
PendingTransaction::new(signed, None)
}).collect();
transactions.push({
let mut tx = Transaction::default();
tx.nonce = 10.into();
let signed = tx.fake_sign(Default::default());
PendingTransaction::new(signed, None)
});
let db = Arc::new(::kvdb_memorydb::create(0));
{
// nothing written, will write bad.
let store = super::create(db.clone(), None, Dummy(transactions.clone()));
assert_eq!(store.pending_transactions().unwrap(), vec![])
}
{
// try to load transactions. The last transaction, which is invalid, will be skipped.
let store = super::create(db.clone(), None, Dummy(vec![]));
let loaded = store.pending_transactions().unwrap();
transactions.pop();
assert_eq!(loaded, transactions);
}
}
}