// Code derived from original work by Andrew Poelstra // Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Big unsigned integer types //! //! Implementation of a various large-but-fixed sized unsigned integer types. //! The functions here are designed to be fast. //! use standard::*; use from_json::*; use rustc_serialize::hex::ToHex; use serde; macro_rules! impl_map_from { ($thing:ident, $from:ty, $to:ty) => { impl From<$from> for $thing { fn from(value: $from) -> $thing { From::from(value as $to) } } } } macro_rules! overflowing { ($op: expr, $overflow: expr) => ( { let (overflow_x, overflow_overflow) = $op; $overflow |= overflow_overflow; overflow_x } ); ($op: expr) => ( { let (overflow_x, _overflow_overflow) = $op; overflow_x } ); } macro_rules! panic_on_overflow { ($name: expr) => { if $name { panic!("arithmetic operation overflow") } } } /// Large, fixed-length unsigned integer type. pub trait Uint: Sized + Default + FromStr + From + FromJson + fmt::Debug + fmt::Display + PartialOrd + Ord + PartialEq + Eq + Hash { /// Size of this type. const SIZE: usize; /// Returns new instance equalling zero. fn zero() -> Self; /// Returns new instance equalling one. fn one() -> Self; /// Error type for converting from a decimal string. type FromDecStrErr; /// Convert from a decimal string. fn from_dec_str(value: &str) -> Result; /// Conversion to u32 fn low_u32(&self) -> u32; /// Conversion to u64 fn low_u64(&self) -> u64; /// Conversion to u32 with overflow checking fn as_u32(&self) -> u32; /// Conversion to u64 with overflow checking fn as_u64(&self) -> u64; /// Return the least number of bits needed to represent the number fn bits(&self) -> usize; /// Return if specific bit is set fn bit(&self, index: usize) -> bool; /// Return single byte fn byte(&self, index: usize) -> u8; /// Get this Uint as slice of bytes fn to_bytes(&self, bytes: &mut[u8]); /// Create `Uint(10**n)` fn exp10(n: usize) -> Self; /// Return eponentation `self**other`. Panic on overflow. fn pow(self, other: Self) -> Self; /// Return wrapped eponentation `self**other` and flag if there was an overflow fn overflowing_pow(self, other: Self) -> (Self, bool); /// Add this `Uint` to other returning result and possible overflow fn overflowing_add(self, other: Self) -> (Self, bool); /// Subtract another `Uint` from this returning result and possible overflow fn overflowing_sub(self, other: Self) -> (Self, bool); /// Multiple this `Uint` with other returning result and possible overflow fn overflowing_mul(self, other: Self) -> (Self, bool); /// Divide this `Uint` by other returning result and possible overflow fn overflowing_div(self, other: Self) -> (Self, bool); /// Returns reminder of division of this `Uint` by other and possible overflow fn overflowing_rem(self, other: Self) -> (Self, bool); /// Returns negation of this `Uint` and overflow (always true) fn overflowing_neg(self) -> (Self, bool); /// Shifts this `Uint` and returns overflow fn overflowing_shl(self, shift: u32) -> (Self, bool); } macro_rules! construct_uint { ($name:ident, $n_words:expr) => ( /// Little-endian large integer type #[derive(Copy, Clone, Eq, PartialEq)] pub struct $name(pub [u64; $n_words]); impl Uint for $name { const SIZE: usize = $n_words * 8; type FromDecStrErr = FromHexError; /// TODO: optimize, throw appropriate err fn from_dec_str(value: &str) -> Result { Ok(value.bytes() .map(|b| b - 48) .fold($name::from(0u64), | acc, c | // fast multiplication by 10 // (acc << 3) + (acc << 1) => acc * 10 (acc << 3) + (acc << 1) + $name::from(c) )) } #[inline] fn low_u32(&self) -> u32 { let &$name(ref arr) = self; arr[0] as u32 } #[inline] fn low_u64(&self) -> u64 { let &$name(ref arr) = self; arr[0] } /// Conversion to u32 with overflow checking #[inline] fn as_u32(&self) -> u32 { let &$name(ref arr) = self; if (arr[0] & (0xffffffffu64 << 32)) != 0 { panic!("Integer overflow when casting U256") } self.as_u64() as u32 } /// Conversion to u64 with overflow checking #[inline] fn as_u64(&self) -> u64 { let &$name(ref arr) = self; for i in 1..$n_words { if arr[i] != 0 { panic!("Integer overflow when casting U256") } } arr[0] } /// Return the least number of bits needed to represent the number #[inline] fn bits(&self) -> usize { let &$name(ref arr) = self; for i in 1..$n_words { if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as usize; } } 0x40 - arr[0].leading_zeros() as usize } #[inline] fn bit(&self, index: usize) -> bool { let &$name(ref arr) = self; arr[index / 64] & (1 << (index % 64)) != 0 } #[inline] fn byte(&self, index: usize) -> u8 { let &$name(ref arr) = self; (arr[index / 8] >> (((index % 8)) * 8)) as u8 } fn to_bytes(&self, bytes: &mut[u8]) { assert!($n_words * 8 == bytes.len()); let &$name(ref arr) = self; for i in 0..bytes.len() { let rev = bytes.len() - 1 - i; let pos = rev / 8; bytes[i] = (arr[pos] >> ((rev % 8) * 8)) as u8; } } #[inline] fn exp10(n: usize) -> Self { match n { 0 => Self::from(1u64), _ => Self::exp10(n - 1) * Self::from(10u64) } } #[inline] fn zero() -> Self { From::from(0u64) } #[inline] fn one() -> Self { From::from(1u64) } /// Fast exponentation by squaring /// https://en.wikipedia.org/wiki/Exponentiation_by_squaring fn pow(self, expon: Self) -> Self { if expon == Self::zero() { return Self::one() } let is_even = |x : &Self| x.low_u64() & 1 == 0; let u_one = Self::one(); let u_two = Self::from(2); let mut y = u_one; let mut n = expon; let mut x = self; while n > u_one { if is_even(&n) { x = x * x; n = n / u_two; } else { y = x * y; x = x * x; n = (n - u_one) / u_two; } } x * y } /// Fast exponentation by squaring /// https://en.wikipedia.org/wiki/Exponentiation_by_squaring fn overflowing_pow(self, expon: Self) -> (Self, bool) { if expon == Self::zero() { return (Self::one(), false) } let is_even = |x : &Self| x.low_u64() & 1 == 0; let u_one = Self::one(); let u_two = Self::from(2); let mut y = u_one; let mut n = expon; let mut x = self; let mut overflow = false; while n > u_one { if is_even(&n) { x = overflowing!(x.overflowing_mul(x), overflow); n = n / u_two; } else { y = overflowing!(x.overflowing_mul(y), overflow); x = overflowing!(x.overflowing_mul(x), overflow); n = (n - u_one) / u_two; } } let res = overflowing!(x.overflowing_mul(y), overflow); (res, overflow) } fn overflowing_add(self, other: $name) -> ($name, bool) { let $name(ref me) = self; let $name(ref you) = other; let mut ret = [0u64; $n_words]; let mut carry = [0u64; $n_words]; let mut b_carry = false; let mut overflow = false; for i in 0..$n_words { ret[i] = me[i].wrapping_add(you[i]); if ret[i] < me[i] { if i < $n_words - 1 { carry[i + 1] = 1; b_carry = true; } else { overflow = true; } } } if b_carry { let ret = overflowing!($name(ret).overflowing_add($name(carry)), overflow); (ret, overflow) } else { ($name(ret), overflow) } } fn overflowing_sub(self, other: $name) -> ($name, bool) { let res = overflowing!((!other).overflowing_add(From::from(1u64))); let res = overflowing!(self.overflowing_add(res)); (res, self < other) } fn overflowing_mul(self, other: $name) -> ($name, bool) { let mut res = $name::from(0u64); let mut overflow = false; // TODO: be more efficient about this for i in 0..(2 * $n_words) { let v = overflowing!(self.overflowing_mul_u32((other >> (32 * i)).low_u32()), overflow); let res2 = overflowing!(v.overflowing_shl(32 * i as u32), overflow); res = overflowing!(res.overflowing_add(res2), overflow); } (res, overflow) } fn overflowing_div(self, other: $name) -> ($name, bool) { (self / other, false) } fn overflowing_rem(self, other: $name) -> ($name, bool) { (self % other, false) } fn overflowing_neg(self) -> ($name, bool) { (!self, true) } fn overflowing_shl(self, shift32: u32) -> ($name, bool) { let $name(ref original) = self; let mut ret = [0u64; $n_words]; let shift = shift32 as usize; let word_shift = shift / 64; let bit_shift = shift % 64; for i in 0..$n_words { // Shift if i + word_shift < $n_words { ret[i + word_shift] += original[i] << bit_shift; } // Carry if bit_shift > 0 && i + word_shift + 1 < $n_words { ret[i + word_shift + 1] += original[i] >> (64 - bit_shift); } } // Detecting overflow let last = $n_words - word_shift - if bit_shift > 0 { 1 } else { 0 }; let overflow = if bit_shift > 0 { (original[last] >> (64 - bit_shift)) > 0 } else if word_shift > 0 { original[last] > 0 } else { false }; for i in last+1..$n_words-1 { if original[i] > 0 { return ($name(ret), true); } } ($name(ret), overflow) } } impl $name { /// Multiplication by u32 fn mul_u32(self, other: u32) -> Self { let $name(ref arr) = self; let mut carry = [0u64; $n_words]; let mut ret = [0u64; $n_words]; for i in 0..$n_words { let upper = other as u64 * (arr[i] >> 32); let lower = other as u64 * (arr[i] & 0xFFFFFFFF); ret[i] = lower.wrapping_add(upper << 32); if i < $n_words - 1 { carry[i + 1] = upper >> 32; if ret[i] < lower { carry[i + 1] += 1; } } } $name(ret) + $name(carry) } /// Overflowing multiplication by u32 fn overflowing_mul_u32(self, other: u32) -> (Self, bool) { let $name(ref arr) = self; let mut carry = [0u64; $n_words]; let mut ret = [0u64; $n_words]; let mut overflow = false; for i in 0..$n_words { let upper = other as u64 * (arr[i] >> 32); let lower = other as u64 * (arr[i] & 0xFFFFFFFF); ret[i] = lower.wrapping_add(upper << 32); if i < $n_words - 1 { carry[i + 1] = upper >> 32; if ret[i] < lower { carry[i + 1] += 1; } } else if (upper >> 32) > 0 || ret[i] < lower { overflow = true } } let result = overflowing!( $name(ret).overflowing_add($name(carry)), overflow ); (result, overflow) } } impl Default for $name { fn default() -> Self { $name::zero() } } impl serde::Serialize for $name { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer { let mut hex = "0x".to_owned(); let mut bytes = [0u8; 8 * $n_words]; self.to_bytes(&mut bytes); hex.push_str(bytes.to_hex().as_ref()); serializer.visit_str(hex.as_ref()) } } impl From for $name { fn from(value: u64) -> $name { let mut ret = [0; $n_words]; ret[0] = value; $name(ret) } } impl FromJson for $name { fn from_json(json: &Json) -> Self { match *json { Json::String(ref s) => { if s.len() >= 2 && &s[0..2] == "0x" { FromStr::from_str(&s[2..]).unwrap_or_else(|_| Default::default()) } else { Uint::from_dec_str(s).unwrap_or_else(|_| Default::default()) } }, Json::U64(u) => From::from(u), Json::I64(i) => From::from(i as u64), _ => Uint::zero(), } } } impl_map_from!($name, u8, u64); impl_map_from!($name, u16, u64); impl_map_from!($name, u32, u64); impl_map_from!($name, usize, u64); impl From for $name { fn from(value: i64) -> $name { match value >= 0 { true => From::from(value as u64), false => { panic!("Unsigned integer can't be created from negative value"); } } } } impl_map_from!($name, i8, i64); impl_map_from!($name, i16, i64); impl_map_from!($name, i32, i64); impl_map_from!($name, isize, i64); impl<'a> From<&'a [u8]> for $name { fn from(bytes: &[u8]) -> $name { assert!($n_words * 8 >= bytes.len()); let mut ret = [0; $n_words]; for i in 0..bytes.len() { let rev = bytes.len() - 1 - i; let pos = rev / 8; ret[pos] += (bytes[i] as u64) << ((rev % 8) * 8); } $name(ret) } } impl FromStr for $name { type Err = FromHexError; fn from_str(value: &str) -> Result<$name, Self::Err> { let bytes: Vec = match value.len() % 2 == 0 { true => try!(value.from_hex()), false => try!(("0".to_owned() + value).from_hex()) }; let bytes_ref: &[u8] = &bytes; Ok(From::from(bytes_ref)) } } impl Add<$name> for $name { type Output = $name; fn add(self, other: $name) -> $name { let $name(ref me) = self; let $name(ref you) = other; let mut ret = [0u64; $n_words]; let mut carry = [0u64; $n_words]; let mut b_carry = false; for i in 0..$n_words { if i < $n_words - 1 { ret[i] = me[i].wrapping_add(you[i]); if ret[i] < me[i] { carry[i + 1] = 1; b_carry = true; } } else { ret[i] = me[i] + you[i]; } } if b_carry { $name(ret) + $name(carry) } else { $name(ret) } } } impl Sub<$name> for $name { type Output = $name; #[inline] fn sub(self, other: $name) -> $name { panic_on_overflow!(self < other); let res = overflowing!((!other).overflowing_add(From::from(1u64))); overflowing!(self.overflowing_add(res)) } } impl Mul<$name> for $name { type Output = $name; fn mul(self, other: $name) -> $name { let mut res = $name::from(0u64); // TODO: be more efficient about this for i in 0..(2 * $n_words) { let v = self.mul_u32((other >> (32 * i)).low_u32()); let (r, overflow) = v.overflowing_shl(32 * i as u32); panic_on_overflow!(overflow); res = res + r; } res } } impl Div<$name> for $name { type Output = $name; fn div(self, other: $name) -> $name { let mut sub_copy = self; let mut shift_copy = other; let mut ret = [0u64; $n_words]; let my_bits = self.bits(); let your_bits = other.bits(); // Check for division by 0 assert!(your_bits != 0); // Early return in case we are dividing by a larger number than us if my_bits < your_bits { return $name(ret); } // Bitwise long division let mut shift = my_bits - your_bits; shift_copy = shift_copy << shift; loop { if sub_copy >= shift_copy { ret[shift / 64] |= 1 << (shift % 64); sub_copy = overflowing!(sub_copy.overflowing_sub(shift_copy)); } shift_copy = shift_copy >> 1; if shift == 0 { break; } shift -= 1; } $name(ret) } } impl Rem<$name> for $name { type Output = $name; fn rem(self, other: $name) -> $name { let times = self / other; self - (times * other) } } // TODO: optimise and traitify. impl<'a> AddAssign<&'a $name> for $name { fn add_assign(&mut self, other: &'a Self) { *self = self.add(*other); } } impl<'a> SubAssign<&'a $name> for $name { fn sub_assign(&mut self, other: &'a Self) { *self = self.sub(*other); } } impl<'a> MulAssign<&'a $name> for $name { fn mul_assign(&mut self, other: &'a Self) { *self = self.mul(*other); } } impl<'a> DivAssign<&'a $name> for $name { fn div_assign(&mut self, other: &'a Self) { *self = self.div(*other); } } impl<'a> RemAssign<&'a $name> for $name { fn rem_assign(&mut self, other: &'a Self) { *self = self.rem(*other); } } impl AddAssign<$name> for $name { fn add_assign(&mut self, other: Self) { *self = self.add(other); } } impl SubAssign<$name> for $name { fn sub_assign(&mut self, other: Self) { *self = self.sub(other); } } impl MulAssign<$name> for $name { fn mul_assign(&mut self, other: Self) { *self = self.mul(other); } } impl DivAssign<$name> for $name { fn div_assign(&mut self, other: Self) { *self = self.div(other); } } impl RemAssign<$name> for $name { fn rem_assign(&mut self, other: Self) { *self = self.rem(other); } } impl BitAnd<$name> for $name { type Output = $name; #[inline] fn bitand(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] & arr2[i]; } $name(ret) } } impl BitXor<$name> for $name { type Output = $name; #[inline] fn bitxor(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] ^ arr2[i]; } $name(ret) } } impl BitOr<$name> for $name { type Output = $name; #[inline] fn bitor(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] | arr2[i]; } $name(ret) } } impl Not for $name { type Output = $name; #[inline] fn not(self) -> $name { let $name(ref arr) = self; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = !arr[i]; } $name(ret) } } impl Shl for $name { type Output = $name; fn shl(self, shift: usize) -> $name { let $name(ref original) = self; let mut ret = [0u64; $n_words]; let word_shift = shift / 64; let bit_shift = shift % 64; for i in 0..$n_words { // Shift if i + word_shift < $n_words { ret[i + word_shift] += original[i] << bit_shift; } // Carry if bit_shift > 0 && i + word_shift + 1 < $n_words { ret[i + word_shift + 1] += original[i] >> (64 - bit_shift); } } $name(ret) } } impl Shr for $name { type Output = $name; fn shr(self, shift: usize) -> $name { let $name(ref original) = self; let mut ret = [0u64; $n_words]; let word_shift = shift / 64; let bit_shift = shift % 64; for i in word_shift..$n_words { // Shift ret[i - word_shift] += original[i] >> bit_shift; // Carry if bit_shift > 0 && i < $n_words - 1 { ret[i - word_shift] += original[i + 1] << (64 - bit_shift); } } $name(ret) } } impl Ord for $name { fn cmp(&self, other: &$name) -> Ordering { let &$name(ref me) = self; let &$name(ref you) = other; for i in 0..$n_words { if me[$n_words - 1 - i] < you[$n_words - 1 - i] { return Ordering::Less; } if me[$n_words - 1 - i] > you[$n_words - 1 - i] { return Ordering::Greater; } } Ordering::Equal } } impl PartialOrd for $name { fn partial_cmp(&self, other: &$name) -> Option { Some(self.cmp(other)) } } impl fmt::Debug for $name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self, f) } } impl fmt::Display for $name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if *self == $name::zero() { return write!(f, "0"); } let mut s = String::new(); let mut current = *self; let ten = $name::from(10); while current != $name::zero() { s = format!("{}{}", (current % ten).low_u32(), s); current = current / ten; } write!(f, "{}", s) } } impl fmt::LowerHex for $name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let &$name(ref data) = self; try!(write!(f, "0x")); let mut latch = false; for ch in data.iter().rev() { for x in 0..16 { let nibble = (ch & (15u64 << ((15 - x) * 4) as u64)) >> (((15 - x) * 4) as u64); if !latch { latch = nibble != 0 } if latch { try!(write!(f, "{:x}", nibble)); } } } Ok(()) } } impl Hash for $name { fn hash(&self, state: &mut H) where H: Hasher { unsafe { state.write(::std::slice::from_raw_parts(self.0.as_ptr() as *mut u8, self.0.len() * 8)); } state.finish(); } } ); } construct_uint!(U512, 8); construct_uint!(U256, 4); construct_uint!(U128, 2); impl From for U512 { fn from(value: U256) -> U512 { let U256(ref arr) = value; let mut ret = [0; 8]; ret[0] = arr[0]; ret[1] = arr[1]; ret[2] = arr[2]; ret[3] = arr[3]; U512(ret) } } impl From for U256 { fn from(value: U512) -> U256 { let U512(ref arr) = value; if arr[4] | arr[5] | arr[6] | arr[7] != 0 { panic!("Overflow"); } let mut ret = [0; 4]; ret[0] = arr[0]; ret[1] = arr[1]; ret[2] = arr[2]; ret[3] = arr[3]; U256(ret) } } impl From for U128 { fn from(value: U256) -> U128 { let U256(ref arr) = value; if arr[2] | arr[3] != 0 { panic!("Overflow"); } let mut ret = [0; 2]; ret[0] = arr[0]; ret[1] = arr[1]; U128(ret) } } impl From for U128 { fn from(value: U512) -> U128 { let U512(ref arr) = value; if arr[2] | arr[3] | arr[4] | arr[5] | arr[6] | arr[7] != 0 { panic!("Overflow"); } let mut ret = [0; 2]; ret[0] = arr[0]; ret[1] = arr[1]; U128(ret) } } impl From for U512 { fn from(value: U128) -> U512 { let U128(ref arr) = value; let mut ret = [0; 8]; ret[0] = arr[0]; ret[1] = arr[1]; U512(ret) } } impl From for U256 { fn from(value: U128) -> U256 { let U128(ref arr) = value; let mut ret = [0; 4]; ret[0] = arr[0]; ret[1] = arr[1]; U256(ret) } } impl From for u64 { fn from(value: U256) -> u64 { value.as_u64() } } impl From for u32 { fn from(value: U256) -> u32 { value.as_u32() } } /// Constant value of `U256::zero()` that can be used for a reference saving an additional instance creation. pub const ZERO_U256: U256 = U256([0x00u64; 4]); /// Constant value of `U256::one()` that can be used for a reference saving an additional instance creation. pub const ONE_U256: U256 = U256([0x01u64, 0x00u64, 0x00u64, 0x00u64]); #[cfg(test)] mod tests { use uint::{Uint, U128, U256, U512}; use std::str::FromStr; #[test] pub fn assign_ops() { let x: U256 = x!(69); let y: U256 = x!(42); { let mut z = x; z += y; assert_eq!(z, x + y); } { let mut z = x; z -= y; assert_eq!(z, x - y); } { let mut z = x; z *= y; assert_eq!(z, x * y); } { let mut z = x; z /= y; assert_eq!(z, x / y); } { let mut z = x; z %= y; assert_eq!(z, x % y); } } #[test] pub fn uint256_from() { let e = U256([10, 0, 0, 0]); // test unsigned initialization let ua = U256::from(10u8); let ub = U256::from(10u16); let uc = U256::from(10u32); let ud = U256::from(10u64); assert_eq!(e, ua); assert_eq!(e, ub); assert_eq!(e, uc); assert_eq!(e, ud); // test initialization from bytes let va = U256::from(&[10u8][..]); assert_eq!(e, va); // more tests for initialization from bytes assert_eq!(U256([0x1010, 0, 0, 0]), U256::from(&[0x10u8, 0x10][..])); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from(&[0, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from(&[1, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from(&[ 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0x09, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x77, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x00192437100019fa, 0x243710, 0, 0]), U256::from(&[ 0x24u8, 0x37, 0x10, 0, 0x19, 0x24, 0x37, 0x10, 0, 0x19, 0xfa][..])); // test initializtion from string let sa = U256::from_str("0a").unwrap(); assert_eq!(e, sa); assert_eq!(U256([0x1010, 0, 0, 0]), U256::from_str("1010").unwrap()); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap()); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap()); assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from_str("0000000012f0").unwrap()); assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from_str("0100000000000012f0").unwrap()); assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from_str("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0").unwrap()); } #[test] pub fn uint256_to() { let hex = "8090a0b0c0d0e0f00910203040506077583a2cf8264910e1436bda32571012f0"; let uint = U256::from_str(hex).unwrap(); let mut bytes = [0u8; 32]; uint.to_bytes(&mut bytes); let uint2 = U256::from(&bytes[..]); assert_eq!(uint, uint2); } #[test] pub fn uint256_bits_test() { assert_eq!(U256::from(0u64).bits(), 0); assert_eq!(U256::from(255u64).bits(), 8); assert_eq!(U256::from(256u64).bits(), 9); assert_eq!(U256::from(300u64).bits(), 9); assert_eq!(U256::from(60000u64).bits(), 16); assert_eq!(U256::from(70000u64).bits(), 17); //// Try to read the following lines out loud quickly let mut shl = U256::from(70000u64); shl = shl << 100; assert_eq!(shl.bits(), 117); shl = shl << 100; assert_eq!(shl.bits(), 217); shl = shl << 100; assert_eq!(shl.bits(), 0); //// Bit set check //// 01010 assert!(!U256::from(10u8).bit(0)); assert!(U256::from(10u8).bit(1)); assert!(!U256::from(10u8).bit(2)); assert!(U256::from(10u8).bit(3)); assert!(!U256::from(10u8).bit(4)); //// byte check assert_eq!(U256::from(10u8).byte(0), 10); assert_eq!(U256::from(0xffu64).byte(0), 0xff); assert_eq!(U256::from(0xffu64).byte(1), 0); assert_eq!(U256::from(0x01ffu64).byte(0), 0xff); assert_eq!(U256::from(0x01ffu64).byte(1), 0x1); assert_eq!(U256([0u64, 0xfc, 0, 0]).byte(8), 0xfc); assert_eq!(U256([0u64, 0, 0, u64::max_value()]).byte(31), 0xff); assert_eq!(U256([0u64, 0, 0, (u64::max_value() >> 8) + 1]).byte(31), 0x01); } #[test] #[allow(eq_op)] pub fn uint256_comp_test() { let small = U256([10u64, 0, 0, 0]); let big = U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let bigger = U256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let biggest = U256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]); assert!(small < big); assert!(big < bigger); assert!(bigger < biggest); assert!(bigger <= biggest); assert!(biggest <= biggest); assert!(bigger >= big); assert!(bigger >= small); assert!(small <= small); } #[test] pub fn uint256_arithmetic_test() { let init = U256::from(0xDEADBEEFDEADBEEFu64); let copy = init; let add = init + copy; assert_eq!(add, U256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0])); // Bitshifts let shl = add << 88; assert_eq!(shl, U256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0])); let shr = shl >> 40; assert_eq!(shr, U256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Increment let incr = shr + U256::from(1u64); assert_eq!(incr, U256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Subtraction let sub = overflowing!(incr.overflowing_sub(init)); assert_eq!(sub, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); // Multiplication let mult = sub.mul_u32(300); assert_eq!(mult, U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0])); // Division assert_eq!(U256::from(105u8) / U256::from(5u8), U256::from(21u8)); let div = mult / U256::from(300u16); assert_eq!(div, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); //// TODO: bit inversion } #[test] pub fn uint256_extreme_bitshift_test() { //// Shifting a u64 by 64 bits gives an undefined value, so make sure that //// we're doing the Right Thing here let init = U256::from(0xDEADBEEFDEADBEEFu64); assert_eq!(init << 64, U256([0, 0xDEADBEEFDEADBEEF, 0, 0])); let add = (init << 64) + init; assert_eq!(add, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add << 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 64, U256([0xDEADBEEFDEADBEEF, 0, 0, 0])); assert_eq!(add << 64, U256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0])); } #[test] pub fn uint256_exp10() { assert_eq!(U256::exp10(0), U256::from(1u64)); println!("\none: {:?}", U256::from(1u64)); println!("ten: {:?}", U256::from(10u64)); assert_eq!(U256::from(2u64) * U256::from(10u64), U256::from(20u64)); assert_eq!(U256::exp10(1), U256::from(10u64)); assert_eq!(U256::exp10(2), U256::from(100u64)); assert_eq!(U256::exp10(5), U256::from(100000u64)); } #[test] pub fn uint256_mul32() { assert_eq!(U256::from(0u64).mul_u32(2), U256::from(0u64)); assert_eq!(U256::from(1u64).mul_u32(2), U256::from(2u64)); assert_eq!(U256::from(10u64).mul_u32(2), U256::from(20u64)); assert_eq!(U256::from(10u64).mul_u32(5), U256::from(50u64)); assert_eq!(U256::from(1000u64).mul_u32(50), U256::from(50000u64)); } #[test] fn uint256_pow () { assert_eq!(U256::from(10).pow(U256::from(0)), U256::from(1)); assert_eq!(U256::from(10).pow(U256::from(1)), U256::from(10)); assert_eq!(U256::from(10).pow(U256::from(2)), U256::from(100)); assert_eq!(U256::from(10).pow(U256::from(3)), U256::from(1000)); assert_eq!(U256::from(10).pow(U256::from(20)), U256::exp10(20)); } #[test] #[should_panic] fn uint256_pow_overflow_panic () { U256::from(2).pow(U256::from(0x100)); } #[test] fn uint256_overflowing_pow () { // assert_eq!( // U256::from(2).overflowing_pow(U256::from(0xff)), // (U256::from_str("8000000000000000000000000000000000000000000000000000000000000000").unwrap(), false) // ); assert_eq!( U256::from(2).overflowing_pow(U256::from(0x100)), (U256::zero(), true) ); } #[test] pub fn uint256_mul1() { assert_eq!(U256::from(1u64) * U256::from(10u64), U256::from(10u64)); } #[test] pub fn uint256_overflowing_mul() { assert_eq!( U256::from_str("100000000000000000000000000000000").unwrap().overflowing_mul( U256::from_str("100000000000000000000000000000000").unwrap() ), (U256::zero(), true) ); } #[test] pub fn uint128_add() { assert_eq!( U128::from_str("fffffffffffffffff").unwrap() + U128::from_str("fffffffffffffffff").unwrap(), U128::from_str("1ffffffffffffffffe").unwrap() ); } #[test] pub fn uint128_add_overflow() { assert_eq!( U128::from_str("ffffffffffffffffffffffffffffffff").unwrap() .overflowing_add( U128::from_str("ffffffffffffffffffffffffffffffff").unwrap() ), (U128::from_str("fffffffffffffffffffffffffffffffe").unwrap(), true) ); } #[test] #[should_panic] // overflows panic only in debug builds. Running this test with `--release` flag, always fails #[ignore] pub fn uint128_add_overflow_panic() { U128::from_str("ffffffffffffffffffffffffffffffff").unwrap() + U128::from_str("ffffffffffffffffffffffffffffffff").unwrap(); } #[test] pub fn uint128_mul() { assert_eq!( U128::from_str("fffffffff").unwrap() * U128::from_str("fffffffff").unwrap(), U128::from_str("ffffffffe000000001").unwrap()); } #[test] pub fn uint512_mul() { assert_eq!( U512::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() * U512::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap(), U512::from_str("3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000000000000000000000000000000000000000000000000001").unwrap() ); } #[test] pub fn uint256_mul_overflow() { assert_eq!( U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() .overflowing_mul( U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() ), (U256::from_str("1").unwrap(), true) ); } #[test] #[should_panic] pub fn uint256_mul_overflow_panic() { U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() * U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap(); } #[test] pub fn uint256_sub_overflow() { assert_eq!( U256::from_str("0").unwrap() .overflowing_sub( U256::from_str("1").unwrap() ), (U256::from_str("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap(), true) ); } #[test] #[should_panic] pub fn uint256_sub_overflow_panic() { U256::from_str("0").unwrap() - U256::from_str("1").unwrap(); } #[test] pub fn uint256_shl_overflow() { assert_eq!( U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() .overflowing_shl(4), (U256::from_str("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0").unwrap(), true) ); } #[test] pub fn uint256_shl_overflow_words() { assert_eq!( U256::from_str("0000000000000001ffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() .overflowing_shl(64), (U256::from_str("ffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000").unwrap(), true) ); assert_eq!( U256::from_str("0000000000000000ffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() .overflowing_shl(64), (U256::from_str("ffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000").unwrap(), false) ); } #[test] pub fn uint256_shl_overflow_words2() { assert_eq!( U256::from_str("00000000000000000000000000000001ffffffffffffffffffffffffffffffff").unwrap() .overflowing_shl(128), (U256::from_str("ffffffffffffffffffffffffffffffff00000000000000000000000000000000").unwrap(), true) ); assert_eq!( U256::from_str("00000000000000000000000000000000ffffffffffffffffffffffffffffffff").unwrap() .overflowing_shl(128), (U256::from_str("ffffffffffffffffffffffffffffffff00000000000000000000000000000000").unwrap(), false) ); assert_eq!( U256::from_str("00000000000000000000000000000000ffffffffffffffffffffffffffffffff").unwrap() .overflowing_shl(129), (U256::from_str("fffffffffffffffffffffffffffffffe00000000000000000000000000000000").unwrap(), true) ); } #[test] pub fn uint256_shl_overflow2() { assert_eq!( U256::from_str("0fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() .overflowing_shl(4), (U256::from_str("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0").unwrap(), false) ); } #[test] pub fn uint256_mul() { assert_eq!( U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap() * U256::from_str("2").unwrap(), U256::from_str("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe").unwrap() ); } #[test] fn uint256_div() { assert_eq!(U256::from(10u64) / U256::from(1u64), U256::from(10u64)); assert_eq!(U256::from(10u64) / U256::from(2u64), U256::from(5u64)); assert_eq!(U256::from(10u64) / U256::from(3u64), U256::from(3u64)); } #[test] fn uint256_rem() { assert_eq!(U256::from(10u64) % U256::from(1u64), U256::from(0u64)); assert_eq!(U256::from(10u64) % U256::from(3u64), U256::from(1u64)); } #[test] fn uint256_from_dec_str() { assert_eq!(U256::from_dec_str("10").unwrap(), U256::from(10u64)); assert_eq!(U256::from_dec_str("1024").unwrap(), U256::from(1024u64)); } #[test] fn display_uint() { let s = "12345678987654321023456789"; assert_eq!(format!("{}", U256::from_dec_str(s).unwrap()), s); } #[test] fn display_uint_zero() { assert_eq!(format!("{}", U256::from(0)), "0"); } }