// Copyright 2015-2017 Parity Technologies // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! General hash types, a fixed-size raw-data type used as the output of hash functions. use std::{ops, fmt, cmp, str}; use std::cmp::{min, Ordering}; use std::ops::{Deref, DerefMut, BitXor, BitAnd, BitOr, IndexMut, Index}; use std::hash::{Hash, Hasher, BuildHasherDefault}; use std::collections::{HashMap, HashSet}; use rand::{Rand, Rng}; use rand::os::OsRng; use rustc_hex::{FromHex, FromHexError}; use plain_hasher::PlainHasher; use bigint::U256; use libc::{c_void, memcmp}; /// Return `s` without the `0x` at the beginning of it, if any. pub fn clean_0x(s: &str) -> &str { if s.starts_with("0x") { &s[2..] } else { s } } macro_rules! impl_hash { ($from: ident, $size: expr) => { #[repr(C)] /// Unformatted binary data of fixed length. pub struct $from (pub [u8; $size]); impl From<[u8; $size]> for $from { fn from(bytes: [u8; $size]) -> Self { $from(bytes) } } impl From<$from> for [u8; $size] { fn from(s: $from) -> Self { s.0 } } impl Deref for $from { type Target = [u8]; #[inline] fn deref(&self) -> &[u8] { &self.0 } } impl AsRef<[u8]> for $from { #[inline] fn as_ref(&self) -> &[u8] { &self.0 } } impl DerefMut for $from { #[inline] fn deref_mut(&mut self) -> &mut [u8] { &mut self.0 } } impl $from { /// Create a new, zero-initialised, instance. pub fn new() -> $from { $from([0; $size]) } /// Synonym for `new()`. Prefer to new as it's more readable. pub fn zero() -> $from { $from([0; $size]) } /// Create a new, cryptographically random, instance. pub fn random() -> $from { let mut hash = $from::new(); hash.randomize(); hash } /// Assign self have a cryptographically random value. pub fn randomize(&mut self) { let mut rng = OsRng::new().unwrap(); *self= $from::rand(&mut rng); } /// Get the size of this object in bytes. pub fn len() -> usize { $size } #[inline] /// Assign self to be of the same value as a slice of bytes of length `len()`. pub fn clone_from_slice(&mut self, src: &[u8]) -> usize { let min = cmp::min($size, src.len()); self.0[..min].copy_from_slice(&src[..min]); min } /// Convert a slice of bytes of length `len()` to an instance of this type. pub fn from_slice(src: &[u8]) -> Self { let mut r = Self::new(); r.clone_from_slice(src); r } /// Copy the data of this object into some mutable slice of length `len()`. pub fn copy_to(&self, dest: &mut[u8]) { let min = cmp::min($size, dest.len()); dest[..min].copy_from_slice(&self.0[..min]); } /// Returns `true` if all bits set in `b` are also set in `self`. pub fn contains<'a>(&'a self, b: &'a Self) -> bool { &(b & self) == b } /// Returns `true` if no bits are set. pub fn is_zero(&self) -> bool { self.eq(&Self::new()) } /// Returns the lowest 8 bytes interpreted as a BigEndian integer. pub fn low_u64(&self) -> u64 { let mut ret = 0u64; for i in 0..min($size, 8) { ret |= (self.0[$size - 1 - i] as u64) << (i * 8); } ret } } impl str::FromStr for $from { type Err = FromHexError; fn from_str(s: &str) -> Result<$from, FromHexError> { let a = s.from_hex()?; if a.len() != $size { return Err(FromHexError::InvalidHexLength); } let mut ret = [0;$size]; ret.copy_from_slice(&a); Ok($from(ret)) } } impl fmt::Debug for $from { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { for i in &self.0[..] { write!(f, "{:02x}", i)?; } Ok(()) } } impl fmt::Display for $from { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { for i in &self.0[0..2] { write!(f, "{:02x}", i)?; } write!(f, "…")?; for i in &self.0[$size - 2..$size] { write!(f, "{:02x}", i)?; } Ok(()) } } impl Copy for $from {} #[cfg_attr(feature="dev", allow(expl_impl_clone_on_copy))] impl Clone for $from { fn clone(&self) -> $from { let mut ret = $from::new(); ret.0.copy_from_slice(&self.0); ret } } impl Eq for $from {} impl PartialEq for $from { fn eq(&self, other: &Self) -> bool { unsafe { memcmp(self.0.as_ptr() as *const c_void, other.0.as_ptr() as *const c_void, $size) == 0 } } } impl Ord for $from { fn cmp(&self, other: &Self) -> Ordering { let r = unsafe { memcmp(self.0.as_ptr() as *const c_void, other.0.as_ptr() as *const c_void, $size) }; if r < 0 { return Ordering::Less } if r > 0 { return Ordering::Greater } return Ordering::Equal; } } impl PartialOrd for $from { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Hash for $from { fn hash(&self, state: &mut H) where H: Hasher { state.write(&self.0); state.finish(); } } impl Index for $from { type Output = u8; fn index(&self, index: usize) -> &u8 { &self.0[index] } } impl IndexMut for $from { fn index_mut(&mut self, index: usize) -> &mut u8 { &mut self.0[index] } } impl Index> for $from { type Output = [u8]; fn index(&self, index: ops::Range) -> &[u8] { &self.0[index] } } impl IndexMut> for $from { fn index_mut(&mut self, index: ops::Range) -> &mut [u8] { &mut self.0[index] } } impl Index for $from { type Output = [u8]; fn index(&self, _index: ops::RangeFull) -> &[u8] { &self.0 } } impl IndexMut for $from { fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [u8] { &mut self.0 } } /// `BitOr` on references impl<'a> BitOr for &'a $from { type Output = $from; fn bitor(self, rhs: Self) -> Self::Output { let mut ret: $from = $from::default(); for i in 0..$size { ret.0[i] = self.0[i] | rhs.0[i]; } ret } } /// Moving `BitOr` impl BitOr for $from { type Output = $from; fn bitor(self, rhs: Self) -> Self::Output { &self | &rhs } } /// `BitAnd` on references impl <'a> BitAnd for &'a $from { type Output = $from; fn bitand(self, rhs: Self) -> Self::Output { let mut ret: $from = $from::default(); for i in 0..$size { ret.0[i] = self.0[i] & rhs.0[i]; } ret } } /// Moving `BitAnd` impl BitAnd for $from { type Output = $from; fn bitand(self, rhs: Self) -> Self::Output { &self & &rhs } } /// `BitXor` on references impl <'a> BitXor for &'a $from { type Output = $from; fn bitxor(self, rhs: Self) -> Self::Output { let mut ret: $from = $from::default(); for i in 0..$size { ret.0[i] = self.0[i] ^ rhs.0[i]; } ret } } /// Moving `BitXor` impl BitXor for $from { type Output = $from; fn bitxor(self, rhs: Self) -> Self::Output { &self ^ &rhs } } impl $from { /// Get a hex representation. pub fn hex(&self) -> String { format!("{:?}", self) } } impl Default for $from { fn default() -> Self { $from::new() } } impl From for $from { fn from(mut value: u64) -> $from { let mut ret = $from::new(); for i in 0..8 { if i < $size { ret.0[$size - i - 1] = (value & 0xff) as u8; value >>= 8; } } ret } } impl From<&'static str> for $from { fn from(s: &'static str) -> $from { let s = clean_0x(s); if s.len() % 2 == 1 { ("0".to_owned() + s).parse().unwrap() } else { s.parse().unwrap() } } } impl<'a> From<&'a [u8]> for $from { fn from(s: &'a [u8]) -> $from { $from::from_slice(s) } } impl Rand for $from { fn rand(r: &mut R) -> Self { let mut hash = $from::new(); r.fill_bytes(&mut hash.0); hash } } } } impl From for H256 { fn from(value: U256) -> H256 { let mut ret = H256::new(); value.to_big_endian(&mut ret); ret } } impl<'a> From<&'a U256> for H256 { fn from(value: &'a U256) -> H256 { let mut ret: H256 = H256::new(); value.to_big_endian(&mut ret); ret } } impl From for U256 { fn from(value: H256) -> U256 { U256::from(&value) } } impl<'a> From<&'a H256> for U256 { fn from(value: &'a H256) -> U256 { U256::from(value.as_ref() as &[u8]) } } impl From for H160 { fn from(value: H256) -> H160 { let mut ret = H160::new(); ret.0.copy_from_slice(&value[12..32]); ret } } impl From for H64 { fn from(value: H256) -> H64 { let mut ret = H64::new(); ret.0.copy_from_slice(&value[20..28]); ret } } impl From for H256 { fn from(value: H160) -> H256 { let mut ret = H256::new(); ret.0[12..32].copy_from_slice(&value); ret } } impl<'a> From<&'a H160> for H256 { fn from(value: &'a H160) -> H256 { let mut ret = H256::new(); ret.0[12..32].copy_from_slice(value); ret } } impl_hash!(H32, 4); impl_hash!(H64, 8); impl_hash!(H128, 16); impl_hash!(H160, 20); impl_hash!(H256, 32); impl_hash!(H264, 33); impl_hash!(H512, 64); impl_hash!(H520, 65); impl_hash!(H1024, 128); impl_hash!(H2048, 256); #[cfg(feature="heapsizeof")] known_heap_size!(0, H32, H64, H128, H160, H256, H264, H512, H520, H1024, H2048); // Specialized HashMap and HashSet /// Specialized version of `HashMap` with H256 keys and fast hashing function. pub type H256FastMap = HashMap>; /// Specialized version of `HashSet` with H256 keys and fast hashing function. pub type H256FastSet = HashSet>; #[cfg(test)] mod tests { use hash::*; use std::str::FromStr; #[test] fn hasher_alignment() { use std::mem::align_of; assert_eq!(align_of::(), align_of::()); } #[test] #[cfg_attr(feature="dev", allow(eq_op))] fn hash() { let h = H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]); assert_eq!(H64::from_str("0123456789abcdef").unwrap(), h); assert_eq!(format!("{}", h), "0123…cdef"); assert_eq!(format!("{:?}", h), "0123456789abcdef"); assert_eq!(h.hex(), "0123456789abcdef"); assert!(h == h); assert!(h != H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xee])); assert!(h != H64([0; 8])); } #[test] fn hash_bitor() { let a = H64([1; 8]); let b = H64([2; 8]); let c = H64([3; 8]); // borrow assert_eq!(&a | &b, c); // move assert_eq!(a | b, c); } #[test] fn from_and_to_address() { let address: H160 = "ef2d6d194084c2de36e0dabfce45d046b37d1106".into(); let h = H256::from(address.clone()); let a = H160::from(h); assert_eq!(address, a); } #[test] fn from_u64() { assert_eq!(H128::from(0x1234567890abcdef), H128::from_str("00000000000000001234567890abcdef").unwrap()); assert_eq!(H64::from(0x1234567890abcdef), H64::from_str("1234567890abcdef").unwrap()); assert_eq!(H32::from(0x1234567890abcdef), H32::from_str("90abcdef").unwrap()); } #[test] fn from_str() { assert_eq!(H64::from(0x1234567890abcdef), H64::from("0x1234567890abcdef")); assert_eq!(H64::from(0x1234567890abcdef), H64::from("1234567890abcdef")); assert_eq!(H64::from(0x234567890abcdef), H64::from("0x234567890abcdef")); } #[test] fn from_and_to_u256() { let u: U256 = 0x123456789abcdef0u64.into(); let h = H256::from(u); assert_eq!(H256::from(u), H256::from("000000000000000000000000000000000000000000000000123456789abcdef0")); let h_ref = H256::from(&u); assert_eq!(h, h_ref); let r_ref: U256 = From::from(&h); assert_eq!(r_ref, u); let r: U256 = From::from(h); assert_eq!(r, u); } }