// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see .
//! `JournalDB` over in-memory overlay
use std::collections::HashMap;
use std::collections::hash_map::Entry;
use std::io;
use std::sync::Arc;
use bytes::Bytes;
use ethereum_types::H256;
use hashdb::*;
use heapsize::HeapSizeOf;
use keccak_hasher::KeccakHasher;
use kvdb::{KeyValueDB, DBTransaction, DBValue};
use memorydb::*;
use parking_lot::RwLock;
use fastmap::H256FastMap;
use rlp::{Rlp, RlpStream, encode, decode, DecoderError, Decodable, Encodable};
use super::{DB_PREFIX_LEN, LATEST_ERA_KEY, JournalDB, error_negatively_reference_hash};
use util::DatabaseKey;
/// Implementation of the `JournalDB` trait for a disk-backed database with a memory overlay
/// and, possibly, latent-removal semantics.
///
/// Like `OverlayDB`, there is a memory overlay; `commit()` must be called in order to
/// write operations out to disk. Unlike `OverlayDB`, `remove()` operations do not take effect
/// immediately. Rather some age (based on a linear but arbitrary metric) must pass before
/// the removals actually take effect.
///
/// There are two memory overlays:
/// - Transaction overlay contains current transaction data. It is merged with with history
/// overlay on each `commit()`
/// - History overlay contains all data inserted during the history period. When the node
/// in the overlay becomes ancient it is written to disk on `commit()`
///
/// There is also a journal maintained in memory and on the disk as well which lists insertions
/// and removals for each commit during the history period. This is used to track
/// data nodes that go out of history scope and must be written to disk.
///
/// Commit workflow:
/// 1. Create a new journal record from the transaction overlay.
/// 2. Insert each node from the transaction overlay into the History overlay increasing reference
/// count if it is already there. Note that the reference counting is managed by `MemoryDB`
/// 3. Clear the transaction overlay.
/// 4. For a canonical journal record that becomes ancient inserts its insertions into the disk DB
/// 5. For each journal record that goes out of the history scope (becomes ancient) remove its
/// insertions from the history overlay, decreasing the reference counter and removing entry if
/// if reaches zero.
/// 6. For a canonical journal record that becomes ancient delete its removals from the disk only if
/// the removed key is not present in the history overlay.
/// 7. Delete ancient record from memory and disk.
pub struct OverlayRecentDB {
transaction_overlay: MemoryDB,
backing: Arc,
journal_overlay: Arc>,
column: Option,
}
struct DatabaseValue {
id: H256,
inserts: Vec<(H256, DBValue)>,
deletes: Vec,
}
impl Decodable for DatabaseValue {
fn decode(rlp: &Rlp) -> Result {
let id = rlp.val_at(0)?;
let inserts = rlp.at(1)?.iter().map(|r| {
let k = r.val_at(0)?;
let v = DBValue::from_slice(r.at(1)?.data()?);
Ok((k, v))
}).collect::, _>>()?;
let deletes = rlp.list_at(2)?;
let value = DatabaseValue {
id,
inserts,
deletes,
};
Ok(value)
}
}
struct DatabaseValueRef<'a> {
id: &'a H256,
inserts: &'a [(H256, DBValue)],
deletes: &'a [H256],
}
impl<'a> Encodable for DatabaseValueRef<'a> {
fn rlp_append(&self, s: &mut RlpStream) {
s.begin_list(3);
s.append(self.id);
s.begin_list(self.inserts.len());
for kv in self.inserts {
s.begin_list(2);
s.append(&kv.0);
s.append(&&*kv.1);
}
s.append_list(self.deletes);
}
}
#[derive(PartialEq)]
struct JournalOverlay {
backing_overlay: MemoryDB, // Nodes added in the history period
pending_overlay: H256FastMap, // Nodes being transfered from backing_overlay to backing db
journal: HashMap>,
latest_era: Option,
earliest_era: Option,
cumulative_size: usize, // cumulative size of all entries.
}
#[derive(PartialEq)]
struct JournalEntry {
id: H256,
insertions: Vec,
deletions: Vec,
}
impl HeapSizeOf for JournalEntry {
fn heap_size_of_children(&self) -> usize {
self.insertions.heap_size_of_children() + self.deletions.heap_size_of_children()
}
}
impl Clone for OverlayRecentDB {
fn clone(&self) -> OverlayRecentDB {
OverlayRecentDB {
transaction_overlay: self.transaction_overlay.clone(),
backing: self.backing.clone(),
journal_overlay: self.journal_overlay.clone(),
column: self.column.clone(),
}
}
}
impl OverlayRecentDB {
/// Create a new instance.
pub fn new(backing: Arc, col: Option) -> OverlayRecentDB {
let journal_overlay = Arc::new(RwLock::new(OverlayRecentDB::read_overlay(&*backing, col)));
OverlayRecentDB {
transaction_overlay: MemoryDB::new(),
backing: backing,
journal_overlay: journal_overlay,
column: col,
}
}
#[cfg(test)]
fn can_reconstruct_refs(&self) -> bool {
let reconstructed = Self::read_overlay(&*self.backing, self.column);
let journal_overlay = self.journal_overlay.read();
journal_overlay.backing_overlay == reconstructed.backing_overlay &&
journal_overlay.pending_overlay == reconstructed.pending_overlay &&
journal_overlay.journal == reconstructed.journal &&
journal_overlay.latest_era == reconstructed.latest_era &&
journal_overlay.cumulative_size == reconstructed.cumulative_size
}
fn payload(&self, key: &H256) -> Option {
self.backing.get(self.column, key).expect("Low-level database error. Some issue with your hard disk?")
}
fn read_overlay(db: &KeyValueDB, col: Option) -> JournalOverlay {
let mut journal = HashMap::new();
let mut overlay = MemoryDB::new();
let mut count = 0;
let mut latest_era = None;
let mut earliest_era = None;
let mut cumulative_size = 0;
if let Some(val) = db.get(col, &LATEST_ERA_KEY).expect("Low-level database error.") {
let mut era = decode::(&val).expect("decoding db value failed");
latest_era = Some(era);
loop {
let mut db_key = DatabaseKey {
era,
index: 0usize,
};
while let Some(rlp_data) = db.get(col, &encode(&db_key)).expect("Low-level database error.") {
trace!("read_overlay: era={}, index={}", era, db_key.index);
let value = decode::(&rlp_data).expect(&format!("read_overlay: Error decoding DatabaseValue era={}, index{}", era, db_key.index));
count += value.inserts.len();
let mut inserted_keys = Vec::new();
for (k, v) in value.inserts {
let short_key = to_short_key(&k);
if !overlay.contains(&short_key) {
cumulative_size += v.len();
}
overlay.emplace(short_key, v);
inserted_keys.push(k);
}
journal.entry(era).or_insert_with(Vec::new).push(JournalEntry {
id: value.id,
insertions: inserted_keys,
deletions: value.deletes,
});
db_key.index += 1;
earliest_era = Some(era);
};
if db_key.index == 0 || era == 0 {
break;
}
era -= 1;
}
}
trace!("Recovered {} overlay entries, {} journal entries", count, journal.len());
JournalOverlay {
backing_overlay: overlay,
pending_overlay: HashMap::default(),
journal: journal,
latest_era: latest_era,
earliest_era: earliest_era,
cumulative_size: cumulative_size,
}
}
}
#[inline]
fn to_short_key(key: &H256) -> H256 {
let mut k = H256::new();
k[0..DB_PREFIX_LEN].copy_from_slice(&key[0..DB_PREFIX_LEN]);
k
}
impl JournalDB for OverlayRecentDB {
fn boxed_clone(&self) -> Box {
Box::new(self.clone())
}
fn mem_used(&self) -> usize {
let mut mem = self.transaction_overlay.mem_used();
let overlay = self.journal_overlay.read();
mem += overlay.backing_overlay.mem_used();
mem += overlay.pending_overlay.heap_size_of_children();
mem += overlay.journal.heap_size_of_children();
mem
}
fn journal_size(&self) -> usize {
self.journal_overlay.read().cumulative_size
}
fn is_empty(&self) -> bool {
self.backing.get(self.column, &LATEST_ERA_KEY).expect("Low level database error").is_none()
}
fn backing(&self) -> &Arc {
&self.backing
}
fn latest_era(&self) -> Option { self.journal_overlay.read().latest_era }
fn earliest_era(&self) -> Option { self.journal_overlay.read().earliest_era }
fn state(&self, key: &H256) -> Option {
let journal_overlay = self.journal_overlay.read();
let key = to_short_key(key);
journal_overlay.backing_overlay.get(&key).map(|v| v.into_vec())
.or_else(|| journal_overlay.pending_overlay.get(&key).map(|d| d.clone().into_vec()))
.or_else(|| self.backing.get_by_prefix(self.column, &key[0..DB_PREFIX_LEN]).map(|b| b.into_vec()))
}
fn journal_under(&mut self, batch: &mut DBTransaction, now: u64, id: &H256) -> io::Result {
trace!(target: "journaldb", "entry: #{} ({})", now, id);
let mut journal_overlay = self.journal_overlay.write();
// flush previous changes
journal_overlay.pending_overlay.clear();
let mut tx = self.transaction_overlay.drain();
let inserted_keys: Vec<_> = tx.iter().filter_map(|(k, &(_, c))| if c > 0 { Some(k.clone()) } else { None }).collect();
let removed_keys: Vec<_> = tx.iter().filter_map(|(k, &(_, c))| if c < 0 { Some(k.clone()) } else { None }).collect();
let ops = inserted_keys.len() + removed_keys.len();
// Increase counter for each inserted key no matter if the block is canonical or not.
let insertions: Vec<_> = tx.drain().filter_map(|(k, (v, c))| if c > 0 { Some((k, v)) } else { None }).collect();
let encoded_value = {
let value_ref = DatabaseValueRef {
id,
inserts: &insertions,
deletes: &removed_keys,
};
encode(&value_ref)
};
for (k, v) in insertions {
let short_key = to_short_key(&k);
if !journal_overlay.backing_overlay.contains(&short_key) {
journal_overlay.cumulative_size += v.len();
}
journal_overlay.backing_overlay.emplace(short_key, v);
}
let index = journal_overlay.journal.get(&now).map_or(0, |j| j.len());
let db_key = DatabaseKey {
era: now,
index,
};
batch.put_vec(self.column, &encode(&db_key), encoded_value.to_vec());
if journal_overlay.latest_era.map_or(true, |e| now > e) {
trace!(target: "journaldb", "Set latest era to {}", now);
batch.put_vec(self.column, &LATEST_ERA_KEY, encode(&now).to_vec());
journal_overlay.latest_era = Some(now);
}
if journal_overlay.earliest_era.map_or(true, |e| e > now) {
trace!(target: "journaldb", "Set earliest era to {}", now);
journal_overlay.earliest_era = Some(now);
}
journal_overlay.journal.entry(now).or_insert_with(Vec::new).push(JournalEntry { id: id.clone(), insertions: inserted_keys, deletions: removed_keys });
Ok(ops as u32)
}
fn mark_canonical(&mut self, batch: &mut DBTransaction, end_era: u64, canon_id: &H256) -> io::Result {
trace!(target: "journaldb", "canonical: #{} ({})", end_era, canon_id);
let mut journal_overlay = self.journal_overlay.write();
let journal_overlay = &mut *journal_overlay;
let mut ops = 0;
// apply old commits' details
if let Some(ref mut records) = journal_overlay.journal.get_mut(&end_era) {
let mut canon_insertions: Vec<(H256, DBValue)> = Vec::new();
let mut canon_deletions: Vec = Vec::new();
let mut overlay_deletions: Vec = Vec::new();
let mut index = 0usize;
for mut journal in records.drain(..) {
//delete the record from the db
let db_key = DatabaseKey {
era: end_era,
index,
};
batch.delete(self.column, &encode(&db_key));
trace!(target: "journaldb", "Delete journal for time #{}.{}: {}, (canon was {}): +{} -{} entries", end_era, index, journal.id, canon_id, journal.insertions.len(), journal.deletions.len());
{
if *canon_id == journal.id {
for h in &journal.insertions {
if let Some((d, rc)) = journal_overlay.backing_overlay.raw(&to_short_key(h)) {
if rc > 0 {
canon_insertions.push((h.clone(), d)); //TODO: optimize this to avoid data copy
}
}
}
canon_deletions = journal.deletions;
}
overlay_deletions.append(&mut journal.insertions);
}
index += 1;
}
ops += canon_insertions.len();
ops += canon_deletions.len();
// apply canon inserts first
for (k, v) in canon_insertions {
batch.put(self.column, &k, &v);
journal_overlay.pending_overlay.insert(to_short_key(&k), v);
}
// update the overlay
for k in overlay_deletions {
if let Some(val) = journal_overlay.backing_overlay.remove_and_purge(&to_short_key(&k)) {
journal_overlay.cumulative_size -= val.len();
}
}
// apply canon deletions
for k in canon_deletions {
if !journal_overlay.backing_overlay.contains(&to_short_key(&k)) {
batch.delete(self.column, &k);
}
}
}
journal_overlay.journal.remove(&end_era);
if !journal_overlay.journal.is_empty() {
trace!(target: "journaldb", "Set earliest_era to {}", end_era + 1);
journal_overlay.earliest_era = Some(end_era + 1);
}
Ok(ops as u32)
}
fn flush(&self) {
self.journal_overlay.write().pending_overlay.clear();
}
fn inject(&mut self, batch: &mut DBTransaction) -> io::Result {
let mut ops = 0;
for (key, (value, rc)) in self.transaction_overlay.drain() {
if rc != 0 { ops += 1 }
match rc {
0 => {}
_ if rc > 0 => {
batch.put(self.column, &key, &value)
}
-1 => {
if cfg!(debug_assertions) && self.backing.get(self.column, &key)?.is_none() {
return Err(error_negatively_reference_hash(&key));
}
batch.delete(self.column, &key)
}
_ => panic!("Attempted to inject invalid state ({})", rc),
}
}
Ok(ops)
}
fn consolidate(&mut self, with: MemoryDB) {
self.transaction_overlay.consolidate(with);
}
}
impl HashDB for OverlayRecentDB {
fn keys(&self) -> HashMap {
let mut ret: HashMap = self.backing.iter(self.column)
.map(|(key, _)| (H256::from_slice(&*key), 1))
.collect();
for (key, refs) in self.transaction_overlay.keys() {
match ret.entry(key) {
Entry::Occupied(mut entry) => {
*entry.get_mut() += refs;
},
Entry::Vacant(entry) => {
entry.insert(refs);
}
}
}
ret
}
fn get(&self, key: &H256) -> Option {
if let Some((d, rc)) = self.transaction_overlay.raw(key) {
if rc > 0 {
return Some(d)
}
}
let v = {
let journal_overlay = self.journal_overlay.read();
let key = to_short_key(key);
journal_overlay.backing_overlay.get(&key)
.or_else(|| journal_overlay.pending_overlay.get(&key).cloned())
};
v.or_else(|| self.payload(key))
}
fn contains(&self, key: &H256) -> bool {
self.get(key).is_some()
}
fn insert(&mut self, value: &[u8]) -> H256 {
self.transaction_overlay.insert(value)
}
fn emplace(&mut self, key: H256, value: DBValue) {
self.transaction_overlay.emplace(key, value);
}
fn remove(&mut self, key: &H256) {
self.transaction_overlay.remove(key);
}
}
#[cfg(test)]
mod tests {
use keccak::keccak;
use super::*;
use hashdb::HashDB;
use ethcore_logger::init_log;
use {kvdb_memorydb, JournalDB};
fn new_db() -> OverlayRecentDB {
let backing = Arc::new(kvdb_memorydb::create(0));
OverlayRecentDB::new(backing, None)
}
#[test]
fn insert_same_in_fork() {
// history is 1
let mut jdb = new_db();
let x = jdb.insert(b"X");
jdb.commit_batch(1, &keccak(b"1"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(2, &keccak(b"2"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(3, &keccak(b"1002a"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(4, &keccak(b"1003a"), Some((2, keccak(b"2")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&x);
jdb.commit_batch(3, &keccak(b"1002b"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
let x = jdb.insert(b"X");
jdb.commit_batch(4, &keccak(b"1003b"), Some((2, keccak(b"2")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(5, &keccak(b"1004a"), Some((3, keccak(b"1002a")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(6, &keccak(b"1005a"), Some((4, keccak(b"1003a")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&x));
}
#[test]
fn long_history() {
// history is 3
let mut jdb = new_db();
let h = jdb.insert(b"foo");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&h));
jdb.remove(&h);
jdb.commit_batch(1, &keccak(b"1"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&h));
jdb.commit_batch(2, &keccak(b"2"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&h));
jdb.commit_batch(3, &keccak(b"3"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&h));
jdb.commit_batch(4, &keccak(b"4"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(!jdb.contains(&h));
}
#[test]
fn complex() {
// history is 1
let mut jdb = new_db();
let foo = jdb.insert(b"foo");
let bar = jdb.insert(b"bar");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(jdb.contains(&bar));
jdb.remove(&foo);
jdb.remove(&bar);
let baz = jdb.insert(b"baz");
jdb.commit_batch(1, &keccak(b"1"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(jdb.contains(&bar));
assert!(jdb.contains(&baz));
let foo = jdb.insert(b"foo");
jdb.remove(&baz);
jdb.commit_batch(2, &keccak(b"2"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(!jdb.contains(&bar));
assert!(jdb.contains(&baz));
jdb.remove(&foo);
jdb.commit_batch(3, &keccak(b"3"), Some((2, keccak(b"2")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(!jdb.contains(&bar));
assert!(!jdb.contains(&baz));
jdb.commit_batch(4, &keccak(b"4"), Some((3, keccak(b"3")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(!jdb.contains(&foo));
assert!(!jdb.contains(&bar));
assert!(!jdb.contains(&baz));
}
#[test]
fn fork() {
// history is 1
let mut jdb = new_db();
let foo = jdb.insert(b"foo");
let bar = jdb.insert(b"bar");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(jdb.contains(&bar));
jdb.remove(&foo);
let baz = jdb.insert(b"baz");
jdb.commit_batch(1, &keccak(b"1a"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&bar);
jdb.commit_batch(1, &keccak(b"1b"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(jdb.contains(&bar));
assert!(jdb.contains(&baz));
jdb.commit_batch(2, &keccak(b"2b"), Some((1, keccak(b"1b")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(!jdb.contains(&baz));
assert!(!jdb.contains(&bar));
}
#[test]
fn overwrite() {
// history is 1
let mut jdb = new_db();
let foo = jdb.insert(b"foo");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
jdb.remove(&foo);
jdb.commit_batch(1, &keccak(b"1"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
assert!(jdb.contains(&foo));
jdb.commit_batch(2, &keccak(b"2"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
jdb.commit_batch(3, &keccak(b"2"), Some((0, keccak(b"2")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
}
#[test]
fn fork_same_key_one() {
let mut jdb = new_db();
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
let foo = jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1a"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1b"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1c"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
jdb.commit_batch(2, &keccak(b"2a"), Some((1, keccak(b"1a")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
}
#[test]
fn fork_same_key_other() {
let mut jdb = new_db();
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
let foo = jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1a"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1b"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1c"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
jdb.commit_batch(2, &keccak(b"2b"), Some((1, keccak(b"1b")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
}
#[test]
fn fork_ins_del_ins() {
let mut jdb = new_db();
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
let foo = jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(2, &keccak(b"2a"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(2, &keccak(b"2b"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(3, &keccak(b"3a"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(3, &keccak(b"3b"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(4, &keccak(b"4a"), Some((2, keccak(b"2a")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(5, &keccak(b"5a"), Some((3, keccak(b"3a")))).unwrap();
assert!(jdb.can_reconstruct_refs());
}
#[test]
fn reopen() {
let shared_db = Arc::new(kvdb_memorydb::create(0));
let bar = H256::random();
let foo = {
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
// history is 1
let foo = jdb.insert(b"foo");
jdb.emplace(bar.clone(), DBValue::from_slice(b"bar"));
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
foo
};
{
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
jdb.remove(&foo);
jdb.commit_batch(1, &keccak(b"1"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
}
{
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
assert!(jdb.contains(&foo));
assert!(jdb.contains(&bar));
jdb.commit_batch(2, &keccak(b"2"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(!jdb.contains(&foo));
}
}
#[test]
fn insert_delete_insert_delete_insert_expunge() {
init_log();
let mut jdb = new_db();
// history is 4
let foo = jdb.insert(b"foo");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(1, &keccak(b"1"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(2, &keccak(b"2"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(3, &keccak(b"3"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(4, &keccak(b"4"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
// expunge foo
jdb.commit_batch(5, &keccak(b"5"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
}
#[test]
fn forked_insert_delete_insert_delete_insert_expunge() {
init_log();
let mut jdb = new_db();
// history is 4
let foo = jdb.insert(b"foo");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(1, &keccak(b"1a"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(1, &keccak(b"1b"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(2, &keccak(b"2a"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(2, &keccak(b"2b"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(3, &keccak(b"3a"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.commit_batch(3, &keccak(b"3b"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(4, &keccak(b"4a"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(4, &keccak(b"4b"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
// expunge foo
jdb.commit_batch(5, &keccak(b"5"), Some((1, keccak(b"1a")))).unwrap();
assert!(jdb.can_reconstruct_refs());
}
#[test]
fn broken_assert() {
let mut jdb = new_db();
let foo = jdb.insert(b"foo");
jdb.commit_batch(1, &keccak(b"1"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
// foo is ancient history.
jdb.remove(&foo);
jdb.commit_batch(2, &keccak(b"2"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.commit_batch(3, &keccak(b"3"), Some((2, keccak(b"2")))).unwrap(); // BROKEN
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
jdb.remove(&foo);
jdb.commit_batch(4, &keccak(b"4"), Some((3, keccak(b"3")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(5, &keccak(b"5"), Some((4, keccak(b"4")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(!jdb.contains(&foo));
}
#[test]
fn reopen_test() {
let mut jdb = new_db();
// history is 4
let foo = jdb.insert(b"foo");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(1, &keccak(b"1"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(2, &keccak(b"2"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(3, &keccak(b"3"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(4, &keccak(b"4"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
// foo is ancient history.
jdb.insert(b"foo");
let bar = jdb.insert(b"bar");
jdb.commit_batch(5, &keccak(b"5"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
jdb.remove(&bar);
jdb.commit_batch(6, &keccak(b"6"), Some((2, keccak(b"2")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.insert(b"foo");
jdb.insert(b"bar");
jdb.commit_batch(7, &keccak(b"7"), Some((3, keccak(b"3")))).unwrap();
assert!(jdb.can_reconstruct_refs());
}
#[test]
fn reopen_remove_three() {
init_log();
let shared_db = Arc::new(kvdb_memorydb::create(0));
let foo = keccak(b"foo");
{
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
// history is 1
jdb.insert(b"foo");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(1, &keccak(b"1"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
// foo is ancient history.
jdb.remove(&foo);
jdb.commit_batch(2, &keccak(b"2"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
jdb.insert(b"foo");
jdb.commit_batch(3, &keccak(b"3"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
// incantation to reopen the db
}; {
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
jdb.remove(&foo);
jdb.commit_batch(4, &keccak(b"4"), Some((2, keccak(b"2")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
// incantation to reopen the db
}; {
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
jdb.commit_batch(5, &keccak(b"5"), Some((3, keccak(b"3")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
// incantation to reopen the db
}; {
let mut jdb = OverlayRecentDB::new(shared_db, None);
jdb.commit_batch(6, &keccak(b"6"), Some((4, keccak(b"4")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(!jdb.contains(&foo));
}
}
#[test]
fn reopen_fork() {
let shared_db = Arc::new(kvdb_memorydb::create(0));
let (foo, bar, baz) = {
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
// history is 1
let foo = jdb.insert(b"foo");
let bar = jdb.insert(b"bar");
jdb.commit_batch(0, &keccak(b"0"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&foo);
let baz = jdb.insert(b"baz");
jdb.commit_batch(1, &keccak(b"1a"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&bar);
jdb.commit_batch(1, &keccak(b"1b"), Some((0, keccak(b"0")))).unwrap();
assert!(jdb.can_reconstruct_refs());
(foo, bar, baz)
};
{
let mut jdb = OverlayRecentDB::new(shared_db, None);
jdb.commit_batch(2, &keccak(b"2b"), Some((1, keccak(b"1b")))).unwrap();
assert!(jdb.can_reconstruct_refs());
assert!(jdb.contains(&foo));
assert!(!jdb.contains(&baz));
assert!(!jdb.contains(&bar));
}
}
#[test]
fn insert_older_era() {
let mut jdb = new_db();
let foo = jdb.insert(b"foo");
jdb.commit_batch(0, &keccak(b"0a"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
let bar = jdb.insert(b"bar");
jdb.commit_batch(1, &keccak(b"1"), Some((0, keccak(b"0a")))).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.remove(&bar);
jdb.commit_batch(0, &keccak(b"0b"), None).unwrap();
assert!(jdb.can_reconstruct_refs());
jdb.commit_batch(2, &keccak(b"2"), Some((1, keccak(b"1")))).unwrap();
assert!(jdb.contains(&foo));
assert!(jdb.contains(&bar));
}
#[test]
fn inject() {
let mut jdb = new_db();
let key = jdb.insert(b"dog");
jdb.inject_batch().unwrap();
assert_eq!(jdb.get(&key).unwrap(), DBValue::from_slice(b"dog"));
jdb.remove(&key);
jdb.inject_batch().unwrap();
assert!(jdb.get(&key).is_none());
}
#[test]
fn earliest_era() {
let shared_db = Arc::new(kvdb_memorydb::create(0));
// empty DB
let mut jdb = OverlayRecentDB::new(shared_db.clone(), None);
assert!(jdb.earliest_era().is_none());
// single journalled era.
let _key = jdb.insert(b"hello!");
let mut batch = jdb.backing().transaction();
jdb.journal_under(&mut batch, 0, &keccak(b"0")).unwrap();
jdb.backing().write_buffered(batch);
assert_eq!(jdb.earliest_era(), Some(0));
// second journalled era.
let mut batch = jdb.backing().transaction();
jdb.journal_under(&mut batch, 1, &keccak(b"1")).unwrap();
jdb.backing().write_buffered(batch);
assert_eq!(jdb.earliest_era(), Some(0));
// single journalled era.
let mut batch = jdb.backing().transaction();
jdb.mark_canonical(&mut batch, 0, &keccak(b"0")).unwrap();
jdb.backing().write_buffered(batch);
assert_eq!(jdb.earliest_era(), Some(1));
// no journalled eras.
let mut batch = jdb.backing().transaction();
jdb.mark_canonical(&mut batch, 1, &keccak(b"1")).unwrap();
jdb.backing().write_buffered(batch);
assert_eq!(jdb.earliest_era(), Some(1));
// reconstructed: no journal entries.
drop(jdb);
let jdb = OverlayRecentDB::new(shared_db, None);
assert_eq!(jdb.earliest_era(), None);
}
}