// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
//! Reference-counted memory-based `HashDB` implementation.
use hash::*;
use bytes::*;
use rlp::*;
use sha3::*;
use hashdb::*;
use heapsize::*;
use std::mem;
use std::collections::HashMap;
const STATIC_NULL_RLP: (&'static [u8], i32) = (&[0x80; 1], 1);
use std::collections::hash_map::Entry;
/// Reference-counted memory-based `HashDB` implementation.
///
/// Use `new()` to create a new database. Insert items with `insert()`, remove items
/// with `remove()`, check for existence with `containce()` and lookup a hash to derive
/// the data with `get()`. Clear with `clear()` and purge the portions of the data
/// that have no references with `purge()`.
///
/// # Example
/// ```rust
/// extern crate ethcore_util;
/// use ethcore_util::hashdb::*;
/// use ethcore_util::memorydb::*;
/// fn main() {
/// let mut m = MemoryDB::new();
/// let d = "Hello world!".as_bytes();
///
/// let k = m.insert(d);
/// assert!(m.contains(&k));
/// assert_eq!(m.get(&k).unwrap(), d);
///
/// m.insert(d);
/// assert!(m.contains(&k));
///
/// m.remove(&k);
/// assert!(m.contains(&k));
///
/// m.remove(&k);
/// assert!(!m.contains(&k));
///
/// m.remove(&k);
/// assert!(!m.contains(&k));
///
/// m.insert(d);
/// assert!(!m.contains(&k));
/// m.insert(d);
/// assert!(m.contains(&k));
/// assert_eq!(m.get(&k).unwrap(), d);
///
/// m.remove(&k);
/// assert!(!m.contains(&k));
/// }
/// ```
#[derive(Default, Clone, PartialEq)]
pub struct MemoryDB {
data: H256FastMap<(Bytes, i32)>,
aux: HashMap,
}
impl MemoryDB {
/// Create a new instance of the memory DB.
pub fn new() -> MemoryDB {
MemoryDB {
data: H256FastMap::default(),
aux: HashMap::new(),
}
}
/// Clear all data from the database.
///
/// # Examples
/// ```rust
/// extern crate ethcore_util;
/// use ethcore_util::hashdb::*;
/// use ethcore_util::memorydb::*;
/// fn main() {
/// let mut m = MemoryDB::new();
/// let hello_bytes = "Hello world!".as_bytes();
/// let hash = m.insert(hello_bytes);
/// assert!(m.contains(&hash));
/// m.clear();
/// assert!(!m.contains(&hash));
/// }
/// ```
pub fn clear(&mut self) {
self.data.clear();
}
/// Purge all zero-referenced data from the database.
pub fn purge(&mut self) {
let empties: Vec<_> = self.data.iter()
.filter(|&(_, &(_, rc))| rc == 0)
.map(|(k, _)| k.clone())
.collect();
for empty in empties { self.data.remove(&empty); }
}
/// Return the internal map of hashes to data, clearing the current state.
pub fn drain(&mut self) -> H256FastMap<(Bytes, i32)> {
mem::replace(&mut self.data, H256FastMap::default())
}
/// Return the internal map of auxiliary data, clearing the current state.
pub fn drain_aux(&mut self) -> HashMap {
mem::replace(&mut self.aux, HashMap::new())
}
/// Grab the raw information associated with a key. Returns None if the key
/// doesn't exist.
///
/// Even when Some is returned, the data is only guaranteed to be useful
/// when the refs > 0.
pub fn raw(&self, key: &H256) -> Option<(&[u8], i32)> {
if key == &SHA3_NULL_RLP {
return Some(STATIC_NULL_RLP.clone());
}
self.data.get(key).map(|&(ref val, rc)| (&val[..], rc))
}
/// Denote than an existing value has the given key. Used when a key gets removed without
/// a prior insert and thus has a negative reference with no value.
///
/// May safely be called even if the key's value is known, in which case it will be a no-op.
pub fn denote(&self, key: &H256, value: Bytes) -> (&[u8], i32) {
if self.raw(key) == None {
unsafe {
let p = &self.data as *const H256FastMap<(Bytes, i32)> as *mut H256FastMap<(Bytes, i32)>;
(*p).insert(key.clone(), (value, 0));
}
}
self.raw(key).unwrap()
}
/// Returns the size of allocated heap memory
pub fn mem_used(&self) -> usize {
self.data.heap_size_of_children()
+ self.aux.heap_size_of_children()
}
/// Remove an element and delete it from storage if reference count reaches zero.
pub fn remove_and_purge(&mut self, key: &H256) {
if key == &SHA3_NULL_RLP {
return;
}
match self.data.entry(key.clone()) {
Entry::Occupied(mut entry) =>
if entry.get().1 == 1 {
entry.remove();
} else {
entry.get_mut().1 -= 1;
},
Entry::Vacant(entry) => {
entry.insert((Bytes::new(), -1));
}
}
}
/// Consolidate all the entries of `other` into `self`.
pub fn consolidate(&mut self, mut other: Self) {
for (key, (value, rc)) in other.drain() {
match self.data.entry(key) {
Entry::Occupied(mut entry) => {
if entry.get().1 < 0 {
entry.get_mut().0 = value;
}
entry.get_mut().1 += rc;
}
Entry::Vacant(entry) => {
entry.insert((value, rc));
}
}
}
}
}
static NULL_RLP_STATIC: [u8; 1] = [0x80; 1];
impl HashDB for MemoryDB {
fn get(&self, key: &H256) -> Option<&[u8]> {
if key == &SHA3_NULL_RLP {
return Some(&NULL_RLP_STATIC);
}
match self.data.get(key) {
Some(&(ref d, rc)) if rc > 0 => Some(d),
_ => None
}
}
fn keys(&self) -> HashMap {
self.data.iter().filter_map(|(k, v)| if v.1 != 0 {Some((k.clone(), v.1))} else {None}).collect()
}
fn contains(&self, key: &H256) -> bool {
if key == &SHA3_NULL_RLP {
return true;
}
match self.data.get(key) {
Some(&(_, x)) if x > 0 => true,
_ => false
}
}
fn insert(&mut self, value: &[u8]) -> H256 {
if value == &NULL_RLP {
return SHA3_NULL_RLP.clone();
}
let key = value.sha3();
if match self.data.get_mut(&key) {
Some(&mut (ref mut old_value, ref mut rc @ -0x80000000i32 ... 0)) => {
*old_value = value.into();
*rc += 1;
false
},
Some(&mut (_, ref mut x)) => { *x += 1; false } ,
None => true,
}{ // ... None falls through into...
self.data.insert(key.clone(), (value.into(), 1));
}
key
}
fn emplace(&mut self, key: H256, value: Bytes) {
if value == &NULL_RLP {
return;
}
match self.data.get_mut(&key) {
Some(&mut (ref mut old_value, ref mut rc @ -0x80000000i32 ... 0)) => {
*old_value = value;
*rc += 1;
return;
},
Some(&mut (_, ref mut x)) => { *x += 1; return; } ,
None => {},
}
// ... None falls through into...
self.data.insert(key, (value, 1));
}
fn remove(&mut self, key: &H256) {
if key == &SHA3_NULL_RLP {
return;
}
if match self.data.get_mut(key) {
Some(&mut (_, ref mut x)) => { *x -= 1; false }
None => true
}{ // ... None falls through into...
self.data.insert(key.clone(), (Bytes::new(), -1));
}
}
fn insert_aux(&mut self, hash: Vec, value: Vec) {
self.aux.insert(hash, value);
}
fn get_aux(&self, hash: &[u8]) -> Option> {
self.aux.get(hash).cloned()
}
fn remove_aux(&mut self, hash: &[u8]) {
self.aux.remove(hash);
}
}
#[test]
fn memorydb_denote() {
let mut m = MemoryDB::new();
let hello_bytes = b"Hello world!";
let hash = m.insert(hello_bytes);
assert_eq!(m.get(&hash).unwrap(), b"Hello world!");
for _ in 0..1000 {
let r = H256::random();
let k = r.sha3();
let (v, rc) = m.denote(&k, r.to_vec());
assert_eq!(v, &*r);
assert_eq!(rc, 0);
}
assert_eq!(m.get(&hash).unwrap(), b"Hello world!");
}
#[test]
fn memorydb_remove_and_purge() {
let hello_bytes = b"Hello world!";
let hello_key = hello_bytes.sha3();
let mut m = MemoryDB::new();
m.remove(&hello_key);
assert_eq!(m.raw(&hello_key).unwrap().1, -1);
m.purge();
assert_eq!(m.raw(&hello_key).unwrap().1, -1);
m.insert(hello_bytes);
assert_eq!(m.raw(&hello_key).unwrap().1, 0);
m.purge();
assert_eq!(m.raw(&hello_key), None);
let mut m = MemoryDB::new();
m.remove_and_purge(&hello_key);
assert_eq!(m.raw(&hello_key).unwrap().1, -1);
m.insert(hello_bytes);
m.insert(hello_bytes);
assert_eq!(m.raw(&hello_key).unwrap().1, 1);
m.remove_and_purge(&hello_key);
assert_eq!(m.raw(&hello_key), None);
}
#[test]
fn consolidate() {
let mut main = MemoryDB::new();
let mut other = MemoryDB::new();
let remove_key = other.insert(b"doggo");
main.remove(&remove_key);
let insert_key = other.insert(b"arf");
main.emplace(insert_key, b"arf".to_vec());
main.consolidate(other);
let overlay = main.drain();
assert_eq!(overlay.get(&remove_key).unwrap(), &(b"doggo".to_vec(), 0));
assert_eq!(overlay.get(&insert_key).unwrap(), &(b"arf".to_vec(), 2));
}