// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! PLP Protocol Version 1 implementation. //! //! This uses a "Provider" to answer requests. use ethcore::transaction::UnverifiedTransaction; use io::TimerToken; use network::{HostInfo, NetworkProtocolHandler, NetworkContext, PeerId}; use rlp::{RlpStream, UntrustedRlp}; use util::hash::H256; use util::{DBValue, Mutex, RwLock, U256}; use time::{Duration, SteadyTime}; use std::collections::{HashMap, HashSet}; use std::fmt; use std::sync::Arc; use std::sync::atomic::{AtomicUsize, Ordering}; use std::ops::{BitOr, BitAnd, Not}; use provider::Provider; use request::{Request, NetworkRequests as Requests, Response}; use self::request_credits::{Credits, FlowParams}; use self::context::{Ctx, TickCtx}; use self::error::Punishment; use self::load_timer::{LoadDistribution, NullStore}; use self::request_set::RequestSet; use self::id_guard::IdGuard; mod context; mod error; mod load_timer; mod status; mod request_set; #[cfg(test)] mod tests; pub mod request_credits; pub use self::context::{BasicContext, EventContext, IoContext}; pub use self::error::Error; pub use self::load_timer::{SampleStore, FileStore}; pub use self::status::{Status, Capabilities, Announcement}; const TIMEOUT: TimerToken = 0; const TIMEOUT_INTERVAL_MS: u64 = 1000; const TICK_TIMEOUT: TimerToken = 1; const TICK_TIMEOUT_INTERVAL_MS: u64 = 5000; const PROPAGATE_TIMEOUT: TimerToken = 2; const PROPAGATE_TIMEOUT_INTERVAL_MS: u64 = 5000; const RECALCULATE_COSTS_TIMEOUT: TimerToken = 3; const RECALCULATE_COSTS_INTERVAL_MS: u64 = 60 * 60 * 1000; // minimum interval between updates. const UPDATE_INTERVAL_MS: i64 = 5000; /// Supported protocol versions. pub const PROTOCOL_VERSIONS: &'static [u8] = &[1]; /// Max protocol version. pub const MAX_PROTOCOL_VERSION: u8 = 1; /// Packet count for PIP. pub const PACKET_COUNT: u8 = 9; // packet ID definitions. mod packet { // the status packet. pub const STATUS: u8 = 0x00; // announcement of new block hashes or capabilities. pub const ANNOUNCE: u8 = 0x01; // request and response. pub const REQUEST: u8 = 0x02; pub const RESPONSE: u8 = 0x03; // request credits update and acknowledgement. pub const UPDATE_CREDITS: u8 = 0x04; pub const ACKNOWLEDGE_UPDATE: u8 = 0x05; // relay transactions to peers. pub const SEND_TRANSACTIONS: u8 = 0x06; // request and respond with epoch transition proof pub const REQUEST_EPOCH_PROOF: u8 = 0x07; pub const EPOCH_PROOF: u8 = 0x08; } // timeouts for different kinds of requests. all values are in milliseconds. mod timeout { pub const HANDSHAKE: i64 = 2500; pub const ACKNOWLEDGE_UPDATE: i64 = 5000; pub const BASE: i64 = 1500; // base timeout for packet. // timeouts per request within packet. pub const HEADERS: i64 = 250; // per header? pub const TRANSACTION_INDEX: i64 = 100; pub const BODY: i64 = 50; pub const RECEIPT: i64 = 50; pub const PROOF: i64 = 100; // state proof pub const CONTRACT_CODE: i64 = 100; pub const HEADER_PROOF: i64 = 100; pub const TRANSACTION_PROOF: i64 = 1000; // per gas? } /// A request id. #[cfg(not(test))] #[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd, Hash)] pub struct ReqId(usize); #[cfg(test)] #[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd, Hash)] pub struct ReqId(pub usize); impl fmt::Display for ReqId { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Request #{}", self.0) } } // A pending peer: one we've sent our status to but // may not have received one for. struct PendingPeer { sent_head: H256, last_update: SteadyTime, } /// Relevant data to each peer. Not accessible publicly, only `pub` due to /// limitations of the privacy system. pub struct Peer { local_credits: Credits, // their credits relative to us status: Status, capabilities: Capabilities, remote_flow: Option<(Credits, FlowParams)>, sent_head: H256, // last chain head we've given them. last_update: SteadyTime, pending_requests: RequestSet, failed_requests: Vec, propagated_transactions: HashSet, skip_update: bool, local_flow: Arc, awaiting_acknowledge: Option<(SteadyTime, Arc)>, } /// Whether or not a peer was kept by a handler #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum PeerStatus { /// The peer was kept Kept, /// The peer was not kept Unkept, } impl Not for PeerStatus { type Output = Self; fn not(self) -> Self { use self::PeerStatus::*; match self { Kept => Unkept, Unkept => Kept, } } } impl BitAnd for PeerStatus { type Output = Self; fn bitand(self, other: Self) -> Self { use self::PeerStatus::*; match (self, other) { (Kept, Kept) => Kept, _ => Unkept, } } } impl BitOr for PeerStatus { type Output = Self; fn bitor(self, other: Self) -> Self { use self::PeerStatus::*; match (self, other) { (_, Kept) | (Kept, _) => Kept, _ => Unkept, } } } /// A light protocol event handler. /// /// Each handler function takes a context which describes the relevant peer /// and gives references to the IO layer and protocol structure so new messages /// can be dispatched immediately. /// /// Request responses are not guaranteed to be complete or valid, but passed IDs will be correct. /// Response handlers are not given a copy of the original request; it is assumed /// that relevant data will be stored by interested handlers. pub trait Handler: Send + Sync { /// Called when a peer connects. fn on_connect( &self, _ctx: &EventContext, _status: &Status, _capabilities: &Capabilities ) -> PeerStatus { PeerStatus::Kept } /// Called when a peer disconnects, with a list of unfulfilled request IDs as /// of yet. fn on_disconnect(&self, _ctx: &EventContext, _unfulfilled: &[ReqId]) { } /// Called when a peer makes an announcement. fn on_announcement(&self, _ctx: &EventContext, _announcement: &Announcement) { } /// Called when a peer requests relay of some transactions. fn on_transactions(&self, _ctx: &EventContext, _relay: &[UnverifiedTransaction]) { } /// Called when a peer responds to requests. /// Responses not guaranteed to contain valid data and are not yet checked against /// the requests they correspond to. fn on_responses(&self, _ctx: &EventContext, _req_id: ReqId, _responses: &[Response]) { } /// Called when a peer responds with a transaction proof. Each proof is a vector of state items. fn on_transaction_proof(&self, _ctx: &EventContext, _req_id: ReqId, _state_items: &[DBValue]) { } /// Called to "tick" the handler periodically. fn tick(&self, _ctx: &BasicContext) { } /// Called on abort. This signals to handlers that they should clean up /// and ignore peers. // TODO: coreresponding `on_activate`? fn on_abort(&self) { } } /// Configuration. pub struct Config { /// How many stored seconds of credits peers should be able to accumulate. pub max_stored_seconds: u64, /// How much of the total load capacity each peer should be allowed to take. pub load_share: f64, } impl Default for Config { fn default() -> Self { const LOAD_SHARE: f64 = 1.0 / 25.0; const MAX_ACCUMULATED: u64 = 60 * 5; // only charge for 5 minutes. Config { max_stored_seconds: MAX_ACCUMULATED, load_share: LOAD_SHARE, } } } /// Protocol initialization parameters. pub struct Params { /// Network id. pub network_id: u64, /// Config. pub config: Config, /// Initial capabilities. pub capabilities: Capabilities, /// The sample store (`None` if data shouldn't persist between runs). pub sample_store: Option>, } /// Type alias for convenience. pub type PeerMap = HashMap>; mod id_guard { use network::PeerId; use util::RwLockReadGuard; use super::{PeerMap, ReqId}; // Guards success or failure of given request. // On drop, inserts the req_id into the "failed requests" // set for the peer unless defused. In separate module to enforce correct usage. pub struct IdGuard<'a> { peers: RwLockReadGuard<'a, PeerMap>, peer_id: PeerId, req_id: ReqId, active: bool, } impl<'a> IdGuard<'a> { /// Create a new `IdGuard`, which will prevent access of the inner ReqId /// (for forming responses, triggering handlers) until defused pub fn new(peers: RwLockReadGuard<'a, PeerMap>, peer_id: PeerId, req_id: ReqId) -> Self { IdGuard { peers: peers, peer_id: peer_id, req_id: req_id, active: true, } } /// Defuse the guard, signalling that the request has been successfully decoded. pub fn defuse(mut self) -> ReqId { // can't use the mem::forget trick here since we need the // read guard to drop. self.active = false; self.req_id } } impl<'a> Drop for IdGuard<'a> { fn drop(&mut self) { if !self.active { return } if let Some(p) = self.peers.get(&self.peer_id) { p.lock().failed_requests.push(self.req_id); } } } } /// This is an implementation of the light ethereum network protocol, abstracted /// over a `Provider` of data and a p2p network. /// /// This is simply designed for request-response purposes. Higher level uses /// of the protocol, such as synchronization, will function as wrappers around /// this system. // // LOCK ORDER: // Locks must be acquired in the order declared, and when holding a read lock // on the peers, only one peer may be held at a time. pub struct LightProtocol { provider: Arc, config: Config, genesis_hash: H256, network_id: u64, pending_peers: RwLock>, peers: RwLock, capabilities: RwLock, flow_params: RwLock>, handlers: Vec>, req_id: AtomicUsize, sample_store: Box, load_distribution: LoadDistribution, } impl LightProtocol { /// Create a new instance of the protocol manager. pub fn new(provider: Arc, params: Params) -> Self { debug!(target: "pip", "Initializing light protocol handler"); let genesis_hash = provider.chain_info().genesis_hash; let sample_store = params.sample_store.unwrap_or_else(|| Box::new(NullStore)); let load_distribution = LoadDistribution::load(&*sample_store); let flow_params = FlowParams::from_request_times( |kind| load_distribution.expected_time_ns(kind), params.config.load_share, params.config.max_stored_seconds, ); LightProtocol { provider: provider, config: params.config, genesis_hash: genesis_hash, network_id: params.network_id, pending_peers: RwLock::new(HashMap::new()), peers: RwLock::new(HashMap::new()), capabilities: RwLock::new(params.capabilities), flow_params: RwLock::new(Arc::new(flow_params)), handlers: Vec::new(), req_id: AtomicUsize::new(0), sample_store: sample_store, load_distribution: load_distribution, } } /// Attempt to get peer status. pub fn peer_status(&self, peer: &PeerId) -> Option { self.peers.read().get(&peer) .map(|peer| peer.lock().status.clone()) } /// Get number of (connected, active) peers. pub fn peer_count(&self) -> (usize, usize) { let num_pending = self.pending_peers.read().len(); let peers = self.peers.read(); ( num_pending + peers.len(), peers.values().filter(|p| !p.lock().pending_requests.is_empty()).count(), ) } /// Make a request to a peer. /// /// Fails on: nonexistent peer, network error, peer not server, /// insufficient credits. Does not check capabilities before sending. /// On success, returns a request id which can later be coordinated /// with an event. pub fn request_from(&self, io: &IoContext, peer_id: &PeerId, requests: Requests) -> Result { let peers = self.peers.read(); let peer = match peers.get(peer_id) { Some(peer) => peer, None => return Err(Error::UnknownPeer), }; let mut peer = peer.lock(); let peer = &mut *peer; match peer.remote_flow { None => Err(Error::NotServer), Some((ref mut creds, ref params)) => { // apply recharge to credits if there's no pending requests. if peer.pending_requests.is_empty() { params.recharge(creds); } // compute and deduct cost. let pre_creds = creds.current(); let cost = params.compute_cost_multi(requests.requests()); creds.deduct_cost(cost)?; trace!(target: "pip", "requesting from peer {}. Cost: {}; Available: {}", peer_id, cost, pre_creds); let req_id = ReqId(self.req_id.fetch_add(1, Ordering::SeqCst)); io.send(*peer_id, packet::REQUEST, { let mut stream = RlpStream::new_list(2); stream.append(&req_id.0).append_list(&requests.requests()); stream.out() }); // begin timeout. peer.pending_requests.insert(req_id, requests, cost, SteadyTime::now()); Ok(req_id) } } } /// Make an announcement of new chain head and capabilities to all peers. /// The announcement is expected to be valid. pub fn make_announcement(&self, io: &IoContext, mut announcement: Announcement) { let mut reorgs_map = HashMap::new(); let now = SteadyTime::now(); // update stored capabilities self.capabilities.write().update_from(&announcement); // calculate reorg info and send packets for (peer_id, peer_info) in self.peers.read().iter() { let mut peer_info = peer_info.lock(); // TODO: "urgent" announcements like new blocks? // the timer approach will skip 1 (possibly 2) in rare occasions. if peer_info.sent_head == announcement.head_hash || peer_info.status.head_num >= announcement.head_num || now - peer_info.last_update < Duration::milliseconds(UPDATE_INTERVAL_MS) { continue } peer_info.last_update = now; let reorg_depth = reorgs_map.entry(peer_info.sent_head) .or_insert_with(|| { match self.provider.reorg_depth(&announcement.head_hash, &peer_info.sent_head) { Some(depth) => depth, None => { // both values will always originate locally -- this means something // has gone really wrong debug!(target: "pip", "couldn't compute reorganization depth between {:?} and {:?}", &announcement.head_hash, &peer_info.sent_head); 0 } } }); peer_info.sent_head = announcement.head_hash; announcement.reorg_depth = *reorg_depth; io.send(*peer_id, packet::ANNOUNCE, status::write_announcement(&announcement)); } } /// Add an event handler. /// /// These are intended to be added when the protocol structure /// is initialized as a means of customizing its behavior, /// and dispatching requests immediately upon events. pub fn add_handler(&mut self, handler: Arc) { self.handlers.push(handler); } /// Signal to handlers that network activity is being aborted /// and clear peer data. pub fn abort(&self) { for handler in &self.handlers { handler.on_abort(); } // acquire in order and hold. let mut pending_peers = self.pending_peers.write(); let mut peers = self.peers.write(); pending_peers.clear(); peers.clear(); } // Does the common pre-verification of responses before the response itself // is actually decoded: // - check whether peer exists // - check whether request was made // - check whether request kinds match fn pre_verify_response(&self, peer: &PeerId, raw: &UntrustedRlp) -> Result { let req_id = ReqId(raw.val_at(0)?); let cur_credits: U256 = raw.val_at(1)?; trace!(target: "pip", "pre-verifying response for {} from peer {}", req_id, peer); let peers = self.peers.read(); let res = match peers.get(peer) { Some(peer_info) => { let mut peer_info = peer_info.lock(); let peer_info: &mut Peer = &mut *peer_info; let req_info = peer_info.pending_requests.remove(&req_id, SteadyTime::now()); let last_batched = peer_info.pending_requests.is_empty(); let flow_info = peer_info.remote_flow.as_mut(); match (req_info, flow_info) { (Some(_), Some(flow_info)) => { let &mut (ref mut c, ref mut flow) = flow_info; // only update if the cumulative cost of the request set is zero. // and this response wasn't from before request costs were updated. if !peer_info.skip_update && last_batched { let actual_credits = ::std::cmp::min(cur_credits, *flow.limit()); c.update_to(actual_credits); } if last_batched { peer_info.skip_update = false } Ok(()) } (None, _) => Err(Error::UnsolicitedResponse), (_, None) => Err(Error::NotServer), // really should be impossible. } } None => Err(Error::UnknownPeer), // probably only occurs in a race of some kind. }; res.map(|_| IdGuard::new(peers, *peer, req_id)) } /// Handle a packet using the given io context. /// Packet data is _untrusted_, which means that invalid data won't lead to /// issues. pub fn handle_packet(&self, io: &IoContext, peer: &PeerId, packet_id: u8, data: &[u8]) { let rlp = UntrustedRlp::new(data); trace!(target: "pip", "Incoming packet {} from peer {}", packet_id, peer); // handle the packet let res = match packet_id { packet::STATUS => self.status(peer, io, rlp), packet::ANNOUNCE => self.announcement(peer, io, rlp), packet::REQUEST => self.request(peer, io, rlp), packet::RESPONSE => self.response(peer, io, rlp), packet::UPDATE_CREDITS => self.update_credits(peer, io, rlp), packet::ACKNOWLEDGE_UPDATE => self.acknowledge_update(peer, io, rlp), packet::SEND_TRANSACTIONS => self.relay_transactions(peer, io, rlp), packet::REQUEST_EPOCH_PROOF | packet::EPOCH_PROOF => { // ignore these for now, but leave them specified. debug!(target: "pip", "Ignoring request/response for epoch proof"); Ok(()) } other => { Err(Error::UnrecognizedPacket(other)) } }; if let Err(e) = res { punish(*peer, io, e); } } // check timeouts and punish peers. fn timeout_check(&self, io: &IoContext) { let now = SteadyTime::now(); // handshake timeout { let mut pending = self.pending_peers.write(); let slowpokes: Vec<_> = pending.iter() .filter(|&(_, ref peer)| { peer.last_update + Duration::milliseconds(timeout::HANDSHAKE) <= now }) .map(|(&p, _)| p) .collect(); for slowpoke in slowpokes { debug!(target: "pip", "Peer {} handshake timed out", slowpoke); pending.remove(&slowpoke); io.disconnect_peer(slowpoke); } } // request and update ack timeouts let ack_duration = Duration::milliseconds(timeout::ACKNOWLEDGE_UPDATE); { for (peer_id, peer) in self.peers.read().iter() { let peer = peer.lock(); if peer.pending_requests.check_timeout(now) { debug!(target: "pip", "Peer {} request timeout", peer_id); io.disconnect_peer(*peer_id); } if let Some((ref start, _)) = peer.awaiting_acknowledge { if *start + ack_duration <= now { debug!(target: "pip", "Peer {} update acknowledgement timeout", peer_id); io.disconnect_peer(*peer_id); } } } } } // propagate transactions to relay peers. // if we aren't on the mainnet, we just propagate to all relay peers fn propagate_transactions(&self, io: &IoContext) { if self.capabilities.read().tx_relay { return } let ready_transactions = self.provider.ready_transactions(); if ready_transactions.is_empty() { return } trace!(target: "pip", "propagate transactions: {} ready", ready_transactions.len()); let all_transaction_hashes: HashSet<_> = ready_transactions.iter().map(|tx| tx.hash()).collect(); let mut buf = Vec::new(); let peers = self.peers.read(); for (peer_id, peer_info) in peers.iter() { let mut peer_info = peer_info.lock(); if !peer_info.capabilities.tx_relay { continue } let prop_filter = &mut peer_info.propagated_transactions; *prop_filter = &*prop_filter & &all_transaction_hashes; // fill the buffer with all non-propagated transactions. let to_propagate = ready_transactions.iter() .filter(|tx| prop_filter.insert(tx.hash())) .map(|tx| &tx.transaction); buf.extend(to_propagate); // propagate to the given peer. if buf.is_empty() { continue } io.send(*peer_id, packet::SEND_TRANSACTIONS, { let mut stream = RlpStream::new_list(buf.len()); for pending_tx in buf.drain(..) { stream.append(pending_tx); } stream.out() }) } } /// called when a peer connects. pub fn on_connect(&self, peer: &PeerId, io: &IoContext) { let proto_version = match io.protocol_version(*peer).ok_or(Error::WrongNetwork) { Ok(pv) => pv, Err(e) => { punish(*peer, io, e); return } }; if PROTOCOL_VERSIONS.iter().find(|x| **x == proto_version).is_none() { punish(*peer, io, Error::UnsupportedProtocolVersion(proto_version)); return; } let chain_info = self.provider.chain_info(); let status = Status { head_td: chain_info.total_difficulty, head_hash: chain_info.best_block_hash, head_num: chain_info.best_block_number, genesis_hash: chain_info.genesis_hash, protocol_version: proto_version as u32, // match peer proto version network_id: self.network_id, last_head: None, }; let capabilities = self.capabilities.read().clone(); let local_flow = self.flow_params.read(); let status_packet = status::write_handshake(&status, &capabilities, Some(&**local_flow)); self.pending_peers.write().insert(*peer, PendingPeer { sent_head: chain_info.best_block_hash, last_update: SteadyTime::now(), }); trace!(target: "pip", "Sending status to peer {}", peer); io.send(*peer, packet::STATUS, status_packet); } /// called when a peer disconnects. pub fn on_disconnect(&self, peer: PeerId, io: &IoContext) { trace!(target: "pip", "Peer {} disconnecting", peer); self.pending_peers.write().remove(&peer); let unfulfilled = match self.peers.write().remove(&peer) { None => return, Some(peer_info) => { let peer_info = peer_info.into_inner(); let mut unfulfilled: Vec<_> = peer_info.pending_requests.collect_ids(); unfulfilled.extend(peer_info.failed_requests); unfulfilled } }; for handler in &self.handlers { handler.on_disconnect(&Ctx { peer: peer, io: io, proto: self, }, &unfulfilled) } } /// Execute the given closure with a basic context derived from the I/O context. pub fn with_context(&self, io: &IoContext, f: F) -> T where F: FnOnce(&BasicContext) -> T { f(&TickCtx { io: io, proto: self, }) } fn tick_handlers(&self, io: &IoContext) { for handler in &self.handlers { handler.tick(&TickCtx { io: io, proto: self, }) } } fn begin_new_cost_period(&self, io: &IoContext) { self.load_distribution.end_period(&*self.sample_store); let new_params = Arc::new(FlowParams::from_request_times( |kind| self.load_distribution.expected_time_ns(kind), self.config.load_share, self.config.max_stored_seconds, )); *self.flow_params.write() = new_params.clone(); let peers = self.peers.read(); let now = SteadyTime::now(); let packet_body = { let mut stream = RlpStream::new_list(3); stream.append(new_params.limit()) .append(new_params.recharge_rate()) .append(new_params.cost_table()); stream.out() }; for (peer_id, peer_info) in peers.iter() { let mut peer_info = peer_info.lock(); io.send(*peer_id, packet::UPDATE_CREDITS, packet_body.clone()); peer_info.awaiting_acknowledge = Some((now.clone(), new_params.clone())); } } } impl LightProtocol { // Handle status message from peer. fn status(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { let pending = match self.pending_peers.write().remove(peer) { Some(pending) => pending, None => { return Err(Error::UnexpectedHandshake); } }; let (status, capabilities, flow_params) = status::parse_handshake(data)?; trace!(target: "pip", "Connected peer with chain head {:?}", (status.head_hash, status.head_num)); if (status.network_id, status.genesis_hash) != (self.network_id, self.genesis_hash) { trace!(target: "pip", "peer {} wrong network: network_id is {} vs our {}, gh is {} vs our {}", peer, status.network_id, self.network_id, status.genesis_hash, self.genesis_hash); return Err(Error::WrongNetwork); } if Some(status.protocol_version as u8) != io.protocol_version(*peer) { return Err(Error::BadProtocolVersion); } let remote_flow = flow_params.map(|params| (params.create_credits(), params)); let local_flow = self.flow_params.read().clone(); self.peers.write().insert(*peer, Mutex::new(Peer { local_credits: local_flow.create_credits(), status: status.clone(), capabilities: capabilities.clone(), remote_flow: remote_flow, sent_head: pending.sent_head, last_update: pending.last_update, pending_requests: RequestSet::default(), failed_requests: Vec::new(), propagated_transactions: HashSet::new(), skip_update: false, local_flow: local_flow, awaiting_acknowledge: None, })); let any_kept = self.handlers.iter().map( |handler| handler.on_connect( &Ctx { peer: *peer, io: io, proto: self, }, &status, &capabilities ) ).fold(PeerStatus::Kept, PeerStatus::bitor); if any_kept == PeerStatus::Unkept { Err(Error::RejectedByHandlers) } else { Ok(()) } } // Handle an announcement. fn announcement(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { if !self.peers.read().contains_key(peer) { debug!(target: "pip", "Ignoring announcement from unknown peer"); return Ok(()) } let announcement = status::parse_announcement(data)?; // scope to ensure locks are dropped before moving into handler-space. { let peers = self.peers.read(); let peer_info = match peers.get(peer) { Some(info) => info, None => return Ok(()), }; let mut peer_info = peer_info.lock(); // update status. { // TODO: punish peer if they've moved backwards. let status = &mut peer_info.status; let last_head = status.head_hash; status.head_hash = announcement.head_hash; status.head_td = announcement.head_td; status.head_num = announcement.head_num; status.last_head = Some((last_head, announcement.reorg_depth)); } // update capabilities. peer_info.capabilities.update_from(&announcement); } for handler in &self.handlers { handler.on_announcement(&Ctx { peer: *peer, io: io, proto: self, }, &announcement); } Ok(()) } // Receive requests from a peer. fn request(&self, peer_id: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { // the maximum amount of requests we'll fill in a single packet. const MAX_REQUESTS: usize = 256; use ::request::RequestBuilder; use ::request::CompleteRequest; let peers = self.peers.read(); let peer = match peers.get(peer_id) { Some(peer) => peer, None => { debug!(target: "pip", "Ignoring request from unknown peer"); return Ok(()) } }; let mut peer = peer.lock(); let peer: &mut Peer = &mut *peer; let req_id: u64 = raw.val_at(0)?; let mut request_builder = RequestBuilder::default(); trace!(target: "pip", "Received requests (id: {}) from peer {}", req_id, peer_id); // deserialize requests, check costs and request validity. peer.local_flow.recharge(&mut peer.local_credits); peer.local_credits.deduct_cost(peer.local_flow.base_cost())?; for request_rlp in raw.at(1)?.iter().take(MAX_REQUESTS) { let request: Request = request_rlp.as_val()?; let cost = peer.local_flow.compute_cost(&request); peer.local_credits.deduct_cost(cost)?; request_builder.push(request).map_err(|_| Error::BadBackReference)?; } let requests = request_builder.build(); let num_requests = requests.requests().len(); trace!(target: "pip", "Beginning to respond to requests (id: {}) from peer {}", req_id, peer_id); // respond to all requests until one fails. let responses = requests.respond_to_all(|complete_req| { let _timer = self.load_distribution.begin_timer(&complete_req); match complete_req { CompleteRequest::Headers(req) => self.provider.block_headers(req).map(Response::Headers), CompleteRequest::HeaderProof(req) => self.provider.header_proof(req).map(Response::HeaderProof), CompleteRequest::TransactionIndex(_) => None, // don't answer these yet, but leave them in protocol. CompleteRequest::Body(req) => self.provider.block_body(req).map(Response::Body), CompleteRequest::Receipts(req) => self.provider.block_receipts(req).map(Response::Receipts), CompleteRequest::Account(req) => self.provider.account_proof(req).map(Response::Account), CompleteRequest::Storage(req) => self.provider.storage_proof(req).map(Response::Storage), CompleteRequest::Code(req) => self.provider.contract_code(req).map(Response::Code), CompleteRequest::Execution(req) => self.provider.transaction_proof(req).map(Response::Execution), } }); trace!(target: "pip", "Responded to {}/{} requests in packet {}", responses.len(), num_requests, req_id); trace!(target: "pip", "Peer {} has {} credits remaining.", peer_id, peer.local_credits.current()); io.respond(packet::RESPONSE, { let mut stream = RlpStream::new_list(3); let cur_credits = peer.local_credits.current(); stream.append(&req_id).append(&cur_credits).append_list(&responses); stream.out() }); Ok(()) } // handle a packet with responses. fn response(&self, peer: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let (req_id, responses) = { let id_guard = self.pre_verify_response(peer, &raw)?; let responses: Vec = raw.list_at(2)?; (id_guard.defuse(), responses) }; for handler in &self.handlers { handler.on_responses(&Ctx { io: io, proto: self, peer: *peer, }, req_id, &responses); } Ok(()) } // handle an update of request credits parameters. fn update_credits(&self, peer_id: &PeerId, io: &IoContext, raw: UntrustedRlp) -> Result<(), Error> { let peers = self.peers.read(); let peer = peers.get(peer_id).ok_or(Error::UnknownPeer)?; let mut peer = peer.lock(); trace!(target: "pip", "Received an update to request credit params from peer {}", peer_id); { let &mut (ref mut credits, ref mut old_params) = peer.remote_flow.as_mut().ok_or(Error::NotServer)?; old_params.recharge(credits); let new_params = FlowParams::new( raw.val_at(0)?, // limit raw.val_at(2)?, // cost table raw.val_at(1)?, // recharge. ); // preserve ratio of current : limit when updating params. credits.maintain_ratio(*old_params.limit(), *new_params.limit()); *old_params = new_params; } // set flag to true when there is an in-flight request // corresponding to old flow params. if !peer.pending_requests.is_empty() { peer.skip_update = true; } // let peer know we've acknowledged the update. io.respond(packet::ACKNOWLEDGE_UPDATE, Vec::new()); Ok(()) } // handle an acknowledgement of request credits update. fn acknowledge_update(&self, peer_id: &PeerId, _io: &IoContext, _raw: UntrustedRlp) -> Result<(), Error> { let peers = self.peers.read(); let peer = peers.get(peer_id).ok_or(Error::UnknownPeer)?; let mut peer = peer.lock(); trace!(target: "pip", "Received an acknowledgement for new request credit params from peer {}", peer_id); let (_, new_params) = match peer.awaiting_acknowledge.take() { Some(x) => x, None => return Err(Error::UnsolicitedResponse), }; let old_limit = *peer.local_flow.limit(); peer.local_credits.maintain_ratio(old_limit, *new_params.limit()); peer.local_flow = new_params; Ok(()) } // Receive a set of transactions to relay. fn relay_transactions(&self, peer: &PeerId, io: &IoContext, data: UntrustedRlp) -> Result<(), Error> { const MAX_TRANSACTIONS: usize = 256; let txs: Vec<_> = data.iter() .take(MAX_TRANSACTIONS) .map(|x| x.as_val::()) .collect::>()?; debug!(target: "pip", "Received {} transactions to relay from peer {}", txs.len(), peer); for handler in &self.handlers { handler.on_transactions(&Ctx { peer: *peer, io: io, proto: self, }, &txs); } Ok(()) } } // if something went wrong, figure out how much to punish the peer. fn punish(peer: PeerId, io: &IoContext, e: Error) { match e.punishment() { Punishment::None => {} Punishment::Disconnect => { debug!(target: "pip", "Disconnecting peer {}: {}", peer, e); io.disconnect_peer(peer) } Punishment::Disable => { debug!(target: "pip", "Disabling peer {}: {}", peer, e); io.disable_peer(peer) } } } impl NetworkProtocolHandler for LightProtocol { fn initialize(&self, io: &NetworkContext, _host_info: &HostInfo) { io.register_timer(TIMEOUT, TIMEOUT_INTERVAL_MS) .expect("Error registering sync timer."); io.register_timer(TICK_TIMEOUT, TICK_TIMEOUT_INTERVAL_MS) .expect("Error registering sync timer."); io.register_timer(PROPAGATE_TIMEOUT, PROPAGATE_TIMEOUT_INTERVAL_MS) .expect("Error registering sync timer."); io.register_timer(RECALCULATE_COSTS_TIMEOUT, RECALCULATE_COSTS_INTERVAL_MS) .expect("Error registering request timer interval token."); } fn read(&self, io: &NetworkContext, peer: &PeerId, packet_id: u8, data: &[u8]) { self.handle_packet(io, peer, packet_id, data); } fn connected(&self, io: &NetworkContext, peer: &PeerId) { self.on_connect(peer, io); } fn disconnected(&self, io: &NetworkContext, peer: &PeerId) { self.on_disconnect(*peer, io); } fn timeout(&self, io: &NetworkContext, timer: TimerToken) { match timer { TIMEOUT => self.timeout_check(io), TICK_TIMEOUT => self.tick_handlers(io), PROPAGATE_TIMEOUT => self.propagate_transactions(io), RECALCULATE_COSTS_TIMEOUT => self.begin_new_cost_period(io), _ => warn!(target: "pip", "received timeout on unknown token {}", timer), } } }