// taken from Rust Bitcoin Library (https://github.com/apoelstra/rust-bitcoin) // original author: Andrew Poelstra // Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Big unsigned integer types ///! ///! Implementation of a various large-but-fixed sized unsigned integer types. ///! The functions here are designed to be fast. ///! use std::fmt; use std::cmp::*; use std::ops::*; use std::str::FromStr; use std::hash::{Hash, Hasher}; use rustc_serialize::hex::{FromHex, FromHexError}; pub trait FromDecStr: Sized { type Err; fn from_dec_str(value: &str) -> Result; } macro_rules! impl_map_from { ($thing:ident, $from:ty, $to:ty) => { impl From<$from> for $thing { fn from(value: $from) -> $thing { From::from(value as $to) } } } } macro_rules! construct_uint { ($name:ident, $n_words:expr) => ( /// Little-endian large integer type #[derive(Copy, Clone, Eq, PartialEq)] pub struct $name(pub [u64; $n_words]); impl $name { /// Conversion to u32 #[inline] pub fn low_u32(&self) -> u32 { let &$name(ref arr) = self; arr[0] as u32 } /// Conversion to u64 #[inline] pub fn low_u64(&self) -> u64 { let &$name(ref arr) = self; arr[0] } /// Conversion to u32 with overflow checking #[inline] pub fn as_u32(&self) -> u32 { let &$name(ref arr) = self; if (arr[0] & (0xffffffffu64 << 32)) != 0 { panic!("Intger overflow when casting U256") } self.as_u64() as u32 } /// Conversion to u64 with overflow checking #[inline] pub fn as_u64(&self) -> u64 { let &$name(ref arr) = self; for i in 1..$n_words { if arr[i] != 0 { panic!("Intger overflow when casting U256") } } arr[0] } /// Return the least number of bits needed to represent the number #[inline] pub fn bits(&self) -> usize { let &$name(ref arr) = self; for i in 1..$n_words { if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as usize; } } 0x40 - arr[0].leading_zeros() as usize } #[inline] pub fn bit(&self, index: usize) -> bool { let &$name(ref arr) = self; arr[index / 64] & (1 << (index % 64)) != 0 } #[inline] pub fn byte(&self, index: usize) -> u8 { let &$name(ref arr) = self; (arr[index / 8] >> ((index % 8)) * 8) as u8 } pub fn to_bytes(&self, bytes: &mut[u8]) { assert!($n_words * 8 == bytes.len()); let &$name(ref arr) = self; for i in 0..bytes.len() { let rev = bytes.len() - 1 - i; let pos = rev / 8; bytes[i] = (arr[pos] >> ((rev % 8) * 8)) as u8; } } #[inline] pub fn exp10(n: usize) -> $name { match n { 0 => $name::from(1u64), _ => $name::exp10(n - 1) * $name::from(10u64) } } #[inline] pub fn zero() -> $name { From::from(0u64) } #[inline] pub fn one() -> $name { From::from(1u64) } /// Multiplication by u32 fn mul_u32(self, other: u32) -> $name { let $name(ref arr) = self; let mut carry = [0u64; $n_words]; let mut ret = [0u64; $n_words]; for i in 0..$n_words { let upper = other as u64 * (arr[i] >> 32); let lower = other as u64 * (arr[i] & 0xFFFFFFFF); if i < 3 { carry[i + 1] += upper >> 32; } ret[i] = lower + (upper << 32); } $name(ret) + $name(carry) } } impl From for $name { fn from(value: u64) -> $name { let mut ret = [0; $n_words]; ret[0] = value; $name(ret) } } impl_map_from!($name, u8, u64); impl_map_from!($name, u16, u64); impl_map_from!($name, u32, u64); impl_map_from!($name, usize, u64); impl From for $name { fn from(value: i64) -> $name { match value >= 0 { true => From::from(value as u64), false => { panic!("Unsigned integer can't be created from negative value"); } } } } impl_map_from!($name, i8, i64); impl_map_from!($name, i16, i64); impl_map_from!($name, i32, i64); impl_map_from!($name, isize, i64); impl<'a> From<&'a [u8]> for $name { fn from(bytes: &[u8]) -> $name { assert!($n_words * 8 >= bytes.len()); let mut ret = [0; $n_words]; for i in 0..bytes.len() { let rev = bytes.len() - 1 - i; let pos = rev / 8; ret[pos] += (bytes[i] as u64) << (rev % 8) * 8; } $name(ret) } } impl FromStr for $name { type Err = FromHexError; fn from_str(value: &str) -> Result<$name, Self::Err> { let bytes: Vec = match value.len() % 2 == 0 { true => try!(value.from_hex()), false => try!(("0".to_string() + value).from_hex()) }; let bytes_ref: &[u8] = &bytes; Ok(From::from(bytes_ref)) } } impl Add<$name> for $name { type Output = $name; fn add(self, other: $name) -> $name { let $name(ref me) = self; let $name(ref you) = other; let mut ret = [0u64; $n_words]; let mut carry = [0u64; $n_words]; let mut b_carry = false; for i in 0..$n_words { ret[i] = me[i].wrapping_add(you[i]); if i < $n_words - 1 && ret[i] < me[i] { carry[i + 1] = 1; b_carry = true; } } if b_carry { $name(ret) + $name(carry) } else { $name(ret) } } } impl Sub<$name> for $name { type Output = $name; #[inline] fn sub(self, other: $name) -> $name { self + !other + From::from(1u64) } } impl Mul<$name> for $name { type Output = $name; fn mul(self, other: $name) -> $name { let mut res = $name::from(0u64); // TODO: be more efficient about this for i in 0..(2 * $n_words) { res = res + (self.mul_u32((other >> (32 * i)).low_u32()) << (32 * i)); } res } } impl Div<$name> for $name { type Output = $name; fn div(self, other: $name) -> $name { let mut sub_copy = self; let mut shift_copy = other; let mut ret = [0u64; $n_words]; let my_bits = self.bits(); let your_bits = other.bits(); // Check for division by 0 assert!(your_bits != 0); // Early return in case we are dividing by a larger number than us if my_bits < your_bits { return $name(ret); } // Bitwise long division let mut shift = my_bits - your_bits; shift_copy = shift_copy << shift; loop { if sub_copy >= shift_copy { ret[shift / 64] |= 1 << (shift % 64); sub_copy = sub_copy - shift_copy; } shift_copy = shift_copy >> 1; if shift == 0 { break; } shift -= 1; } $name(ret) } } impl Rem<$name> for $name { type Output = $name; fn rem(self, other: $name) -> $name { let times = self / other; self - (times * other) } } impl BitAnd<$name> for $name { type Output = $name; #[inline] fn bitand(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] & arr2[i]; } $name(ret) } } impl BitXor<$name> for $name { type Output = $name; #[inline] fn bitxor(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] ^ arr2[i]; } $name(ret) } } impl BitOr<$name> for $name { type Output = $name; #[inline] fn bitor(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] | arr2[i]; } $name(ret) } } impl Not for $name { type Output = $name; #[inline] fn not(self) -> $name { let $name(ref arr) = self; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = !arr[i]; } $name(ret) } } impl Shl for $name { type Output = $name; fn shl(self, shift: usize) -> $name { let $name(ref original) = self; let mut ret = [0u64; $n_words]; let word_shift = shift / 64; let bit_shift = shift % 64; for i in 0..$n_words { // Shift if bit_shift < 64 && i + word_shift < $n_words { ret[i + word_shift] += original[i] << bit_shift; } // Carry if bit_shift > 0 && i + word_shift + 1 < $n_words { ret[i + word_shift + 1] += original[i] >> (64 - bit_shift); } } $name(ret) } } impl Shr for $name { type Output = $name; fn shr(self, shift: usize) -> $name { let $name(ref original) = self; let mut ret = [0u64; $n_words]; let word_shift = shift / 64; let bit_shift = shift % 64; for i in word_shift..$n_words { // Shift ret[i - word_shift] += original[i] >> bit_shift; // Carry if bit_shift > 0 && i < $n_words - 1 { ret[i - word_shift] += original[i + 1] << (64 - bit_shift); } } $name(ret) } } impl Ord for $name { fn cmp(&self, other: &$name) -> Ordering { let &$name(ref me) = self; let &$name(ref you) = other; for i in 0..$n_words { if me[$n_words - 1 - i] < you[$n_words - 1 - i] { return Ordering::Less; } if me[$n_words - 1 - i] > you[$n_words - 1 - i] { return Ordering::Greater; } } Ordering::Equal } } impl PartialOrd for $name { fn partial_cmp(&self, other: &$name) -> Option { Some(self.cmp(other)) } } impl fmt::Debug for $name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let &$name(ref data) = self; try!(write!(f, "0x")); for ch in data.iter().rev() { try!(write!(f, "{:02x}", ch)); } Ok(()) } } impl fmt::Display for $name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let &$name(ref data) = self; try!(write!(f, "0x")); for ch in data.iter().rev() { try!(write!(f, "{:02x}", ch)); } Ok(()) } } impl Hash for $name { fn hash(&self, state: &mut H) where H: Hasher { unsafe { state.write(::std::slice::from_raw_parts(self.0.as_ptr() as *mut u8, self.0.len() * 8)); } state.finish(); } } impl FromDecStr for $name { type Err = FromHexError; /// TODO: optimize, throw appropriate err fn from_dec_str(value: &str) -> Result { Ok(value.bytes() .map(|b| b - 48) .fold($name::from(0u64), | acc, c | // fast multiplication by 10 // (acc << 3) + (acc << 1) => acc * 10 (acc << 3) + (acc << 1) + $name::from(c) )) } } ); } construct_uint!(U256, 4); construct_uint!(U128, 2); impl From for U256 { fn from(value: U128) -> U256 { let U128(ref arr) = value; let mut ret = [0; 4]; ret[0] = arr[0]; ret[1] = arr[1]; U256(ret) } } impl From for u64 { fn from(value: U256) -> u64 { value.as_u64() } } impl From for u32 { fn from(value: U256) -> u32 { value.as_u32() } } pub const ZERO_U256: U256 = U256([0x00u64; 4]); pub const ONE_U256: U256 = U256([0x01u64, 0x00u64, 0x00u64, 0x00u64]); pub const BAD_U256: U256 = U256([0xffffffffffffffffu64; 4]); #[cfg(test)] mod tests { use uint::U256; use uint::FromDecStr; use std::str::FromStr; #[test] pub fn uint256_from() { let e = U256([10, 0, 0, 0]); // test unsigned initialization let ua = U256::from(10u8); let ub = U256::from(10u16); let uc = U256::from(10u32); let ud = U256::from(10u64); assert_eq!(e, ua); assert_eq!(e, ub); assert_eq!(e, uc); assert_eq!(e, ud); // test initialization from bytes let va = U256::from(&[10u8][..]); assert_eq!(e, va); // more tests for initialization from bytes assert_eq!(U256([0x1010, 0, 0, 0]), U256::from(&[0x10u8, 0x10][..])); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from(&[0, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from(&[1, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from(&[ 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0x09, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x77, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..])); assert_eq!(U256([0x00192437100019fa, 0x243710, 0, 0]), U256::from(&[ 0x24u8, 0x37, 0x10, 0, 0x19, 0x24, 0x37, 0x10, 0, 0x19, 0xfa][..])); // test initializtion from string let sa = U256::from_str("0a").unwrap(); assert_eq!(e, sa); assert_eq!(U256([0x1010, 0, 0, 0]), U256::from_str("1010").unwrap()); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap()); assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap()); assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from_str("0000000012f0").unwrap()); assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from_str("0100000000000012f0").unwrap()); assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from_str("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0").unwrap()); } #[test] pub fn uint256_to() { let hex = "8090a0b0c0d0e0f00910203040506077583a2cf8264910e1436bda32571012f0"; let uint = U256::from_str(hex).unwrap(); let mut bytes = [0u8; 32]; uint.to_bytes(&mut bytes); let uint2 = U256::from(&bytes[..]); assert_eq!(uint, uint2); } #[test] pub fn uint256_bits_test() { assert_eq!(U256::from(0u64).bits(), 0); assert_eq!(U256::from(255u64).bits(), 8); assert_eq!(U256::from(256u64).bits(), 9); assert_eq!(U256::from(300u64).bits(), 9); assert_eq!(U256::from(60000u64).bits(), 16); assert_eq!(U256::from(70000u64).bits(), 17); //// Try to read the following lines out loud quickly let mut shl = U256::from(70000u64); shl = shl << 100; assert_eq!(shl.bits(), 117); shl = shl << 100; assert_eq!(shl.bits(), 217); shl = shl << 100; assert_eq!(shl.bits(), 0); //// Bit set check //// 01010 assert!(!U256::from(10u8).bit(0)); assert!(U256::from(10u8).bit(1)); assert!(!U256::from(10u8).bit(2)); assert!(U256::from(10u8).bit(3)); assert!(!U256::from(10u8).bit(4)); //// byte check assert_eq!(U256::from(10u8).byte(0), 10); assert_eq!(U256::from(0xffu64).byte(0), 0xff); assert_eq!(U256::from(0xffu64).byte(1), 0); assert_eq!(U256::from(0x01ffu64).byte(0), 0xff); assert_eq!(U256::from(0x01ffu64).byte(1), 0x1); assert_eq!(U256([0u64, 0xfc, 0, 0]).byte(8), 0xfc); assert_eq!(U256([0u64, 0, 0, u64::max_value()]).byte(31), 0xff); assert_eq!(U256([0u64, 0, 0, (u64::max_value() >> 8) + 1]).byte(31), 0x01); } #[test] pub fn uint256_comp_test() { let small = U256([10u64, 0, 0, 0]); let big = U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let bigger = U256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let biggest = U256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]); assert!(small < big); assert!(big < bigger); assert!(bigger < biggest); assert!(bigger <= biggest); assert!(biggest <= biggest); assert!(bigger >= big); assert!(bigger >= small); assert!(small <= small); } #[test] pub fn uint256_arithmetic_test() { let init = U256::from(0xDEADBEEFDEADBEEFu64); let copy = init; let add = init + copy; assert_eq!(add, U256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0])); // Bitshifts let shl = add << 88; assert_eq!(shl, U256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0])); let shr = shl >> 40; assert_eq!(shr, U256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Increment let incr = shr + U256::from(1u64); assert_eq!(incr, U256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Subtraction let sub = incr - init; assert_eq!(sub, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); // Multiplication let mult = sub.mul_u32(300); assert_eq!(mult, U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0])); // Division assert_eq!(U256::from(105u8) / U256::from(5u8), U256::from(21u8)); let div = mult / U256::from(300u16); assert_eq!(div, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); //// TODO: bit inversion } #[test] pub fn uint256_extreme_bitshift_test() { //// Shifting a u64 by 64 bits gives an undefined value, so make sure that //// we're doing the Right Thing here let init = U256::from(0xDEADBEEFDEADBEEFu64); assert_eq!(init << 64, U256([0, 0xDEADBEEFDEADBEEF, 0, 0])); let add = (init << 64) + init; assert_eq!(add, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add << 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 64, U256([0xDEADBEEFDEADBEEF, 0, 0, 0])); assert_eq!(add << 64, U256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0])); } #[test] pub fn uint256_exp10() { assert_eq!(U256::exp10(0), U256::from(1u64)); println!("\none: {:?}", U256::from(1u64)); println!("ten: {:?}", U256::from(10u64)); assert_eq!(U256::from(2u64) * U256::from(10u64), U256::from(20u64)); assert_eq!(U256::exp10(1), U256::from(10u64)); assert_eq!(U256::exp10(2), U256::from(100u64)); assert_eq!(U256::exp10(5), U256::from(100000u64)); } #[test] pub fn uint256_mul32() { assert_eq!(U256::from(0u64).mul_u32(2), U256::from(0u64)); assert_eq!(U256::from(1u64).mul_u32(2), U256::from(2u64)); assert_eq!(U256::from(10u64).mul_u32(2), U256::from(20u64)); assert_eq!(U256::from(10u64).mul_u32(5), U256::from(50u64)); assert_eq!(U256::from(1000u64).mul_u32(50), U256::from(50000u64)); } #[test] pub fn uint256_mul() { assert_eq!(U256::from(1u64) * U256::from(10u64), U256::from(10u64)); } #[test] fn uint256_div() { assert_eq!(U256::from(10u64) / U256::from(1u64), U256::from(10u64)); assert_eq!(U256::from(10u64) / U256::from(2u64), U256::from(5u64)); assert_eq!(U256::from(10u64) / U256::from(3u64), U256::from(3u64)); } #[test] fn uint256_rem() { assert_eq!(U256::from(10u64) % U256::from(1u64), U256::from(0u64)); assert_eq!(U256::from(10u64) % U256::from(3u64), U256::from(1u64)); } #[test] fn uint256_from_dec_str() { assert_eq!(U256::from_dec_str("10").unwrap(), U256::from(10u64)); assert_eq!(U256::from_dec_str("1024").unwrap(), U256::from(1024u64)); } }