// Copyright 2015-2017 Parity Technologies (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Light client header chain. //! //! Unlike a full node's `BlockChain` this doesn't store much in the database. //! It stores candidates for the last 2048-4096 blocks as well as CHT roots for //! historical blocks all the way to the genesis. //! //! This is separate from the `BlockChain` for two reasons: //! - It stores only headers (and a pruned subset of them) //! - To allow for flexibility in the database layout once that's incorporated. use std::collections::BTreeMap; use std::sync::Arc; use cht; use ethcore::block_status::BlockStatus; use ethcore::error::BlockError; use ethcore::encoded; use ethcore::header::Header; use ethcore::ids::BlockId; use rlp::{Encodable, Decodable, DecoderError, RlpStream, Rlp, UntrustedRlp}; use util::{H256, U256, HeapSizeOf, RwLock}; use util::kvdb::{DBTransaction, KeyValueDB}; use smallvec::SmallVec; /// Store at least this many candidate headers at all times. /// Also functions as the delay for computing CHTs as they aren't /// relevant to any blocks we've got in memory. const HISTORY: u64 = 2048; /// The best block key. Maps to an RLP list: [best_era, last_era] const CURRENT_KEY: &'static [u8] = &*b"best_and_latest"; /// Information about a block. #[derive(Debug, Clone)] pub struct BlockDescriptor { /// The block's hash pub hash: H256, /// The block's number pub number: u64, /// The block's total difficulty. pub total_difficulty: U256, } // candidate block description. struct Candidate { hash: H256, parent_hash: H256, total_difficulty: U256, } struct Entry { candidates: SmallVec<[Candidate; 3]>, // 3 arbitrarily chosen canonical_hash: H256, } impl HeapSizeOf for Entry { fn heap_size_of_children(&self) -> usize { match self.candidates.spilled() { false => 0, true => self.candidates.capacity() * ::std::mem::size_of::(), } } } impl Encodable for Entry { fn rlp_append(&self, s: &mut RlpStream) { s.begin_list(self.candidates.len()); for candidate in &self.candidates { s.begin_list(3) .append(&candidate.hash) .append(&candidate.parent_hash) .append(&candidate.total_difficulty); } } } impl Decodable for Entry { fn decode(rlp: &UntrustedRlp) -> Result { let mut candidates = SmallVec::<[Candidate; 3]>::new(); for item in rlp.iter() { candidates.push(Candidate { hash: item.val_at(0)?, parent_hash: item.val_at(1)?, total_difficulty: item.val_at(2)?, }) } if candidates.is_empty() { return Err(DecoderError::Custom("Empty candidates vector submitted.")) } // rely on the invariant that the canonical entry is always first. let canon_hash = candidates[0].hash; Ok(Entry { candidates: candidates, canonical_hash: canon_hash, }) } } fn cht_key(number: u64) -> String { format!("{:08x}_canonical", number) } fn era_key(number: u64) -> String { format!("candidates_{}", number) } /// Pending changes from `insert` to be applied after the database write has finished. pub struct PendingChanges { best_block: Option, // new best block. } /// Header chain. See module docs for more details. pub struct HeaderChain { genesis_header: encoded::Header, // special-case the genesis. candidates: RwLock>, best_block: RwLock, db: Arc, col: Option, } impl HeaderChain { /// Create a new header chain given this genesis block and database to read from. pub fn new(db: Arc, col: Option, genesis: &[u8]) -> Result { use ethcore::views::HeaderView; let chain = if let Some(current) = db.get(col, CURRENT_KEY)? { let (best_number, highest_number) = { let rlp = Rlp::new(¤t); (rlp.val_at(0), rlp.val_at(1)) }; let mut cur_number = highest_number; let mut candidates = BTreeMap::new(); // load all era entries and referenced headers within them. while let Some(entry) = db.get(col, era_key(cur_number).as_bytes())? { let entry: Entry = ::rlp::decode(&entry); trace!(target: "chain", "loaded header chain entry for era {} with {} candidates", cur_number, entry.candidates.len()); candidates.insert(cur_number, entry); cur_number -= 1; } // fill best block block descriptor. let best_block = { let era = match candidates.get(&best_number) { Some(era) => era, None => return Err(format!("Database corrupt: highest block referenced but no data.")), }; let best = &era.candidates[0]; BlockDescriptor { hash: best.hash, number: best_number, total_difficulty: best.total_difficulty, } }; HeaderChain { genesis_header: encoded::Header::new(genesis.to_owned()), best_block: RwLock::new(best_block), candidates: RwLock::new(candidates), db: db, col: col, } } else { let g_view = HeaderView::new(genesis); HeaderChain { genesis_header: encoded::Header::new(genesis.to_owned()), best_block: RwLock::new(BlockDescriptor { hash: g_view.hash(), number: 0, total_difficulty: g_view.difficulty(), }), candidates: RwLock::new(BTreeMap::new()), db: db, col: col, } }; Ok(chain) } /// Insert a pre-verified header. /// /// This blindly trusts that the data given to it is sensible. /// Returns a set of pending changes to be applied with `apply_pending` /// before the next call to insert and after the transaction has been written. pub fn insert(&self, transaction: &mut DBTransaction, header: Header) -> Result { let hash = header.hash(); let number = header.number(); let parent_hash = *header.parent_hash(); let mut pending = PendingChanges { best_block: None, }; // hold candidates the whole time to guard import order. let mut candidates = self.candidates.write(); // find parent details. let parent_td = if number == 1 { self.genesis_header.difficulty() } else { candidates.get(&(number - 1)) .and_then(|entry| entry.candidates.iter().find(|c| c.hash == parent_hash)) .map(|c| c.total_difficulty) .ok_or_else(|| BlockError::UnknownParent(parent_hash))? }; let total_difficulty = parent_td + *header.difficulty(); // insert headers and candidates entries and write era to disk. { let cur_era = candidates.entry(number) .or_insert_with(|| Entry { candidates: SmallVec::new(), canonical_hash: hash }); cur_era.candidates.push(Candidate { hash: hash, parent_hash: parent_hash, total_difficulty: total_difficulty, }); // fix ordering of era before writing. if total_difficulty > cur_era.candidates[0].total_difficulty { let cur_pos = cur_era.candidates.len() - 1; cur_era.candidates.swap(cur_pos, 0); cur_era.canonical_hash = hash; } transaction.put(self.col, era_key(number).as_bytes(), &::rlp::encode(&*cur_era)) } let raw = ::rlp::encode(&header); transaction.put(self.col, &hash[..], &*raw); let (best_num, is_new_best) = { let cur_best = self.best_block.read(); if cur_best.total_difficulty < total_difficulty { (number, true) } else { (cur_best.number, false) } }; // reorganize ancestors so canonical entries are first in their // respective candidates vectors. if is_new_best { let mut canon_hash = hash; for (&height, entry) in candidates.iter_mut().rev().skip_while(|&(height, _)| *height > number) { if height != number && entry.canonical_hash == canon_hash { break; } trace!(target: "chain", "Setting new canonical block {} for block height {}", canon_hash, height); let canon_pos = entry.candidates.iter().position(|x| x.hash == canon_hash) .expect("blocks are only inserted if parent is present; or this is the block we just added; qed"); // move the new canonical entry to the front and set the // era's canonical hash. entry.candidates.swap(0, canon_pos); entry.canonical_hash = canon_hash; // what about reorgs > cht::SIZE + HISTORY? // resetting to the last block of a given CHT should be possible. canon_hash = entry.candidates[0].parent_hash; // write altered era to disk if height != number { let rlp_era = ::rlp::encode(&*entry); transaction.put(self.col, era_key(height).as_bytes(), &rlp_era); } } trace!(target: "chain", "New best block: ({}, {}), TD {}", number, hash, total_difficulty); pending.best_block = Some(BlockDescriptor { hash: hash, number: number, total_difficulty: total_difficulty, }); // produce next CHT root if it's time. let earliest_era = *candidates.keys().next().expect("at least one era just created; qed"); if earliest_era + HISTORY + cht::SIZE <= number { let cht_num = cht::block_to_cht_number(earliest_era) .expect("fails only for number == 0; genesis never imported; qed"); let cht_root = { let mut i = earliest_era; // iterable function which removes the candidates as it goes // along. this will only be called until the CHT is complete. let iter = || { let era_entry = candidates.remove(&i) .expect("all eras are sequential with no gaps; qed"); transaction.delete(self.col, era_key(i).as_bytes()); i += 1; for ancient in &era_entry.candidates { transaction.delete(self.col, &ancient.hash); } let canon = &era_entry.candidates[0]; (canon.hash, canon.total_difficulty) }; cht::compute_root(cht_num, ::itertools::repeat_call(iter)) .expect("fails only when too few items; this is checked; qed") }; // write the CHT root to the database. debug!(target: "chain", "Produced CHT {} root: {:?}", cht_num, cht_root); transaction.put(self.col, cht_key(cht_num).as_bytes(), &::rlp::encode(&cht_root)); } } // write the best and latest eras to the database. { let latest_num = *candidates.iter().rev().next().expect("at least one era just inserted; qed").0; let mut stream = RlpStream::new_list(2); stream.append(&best_num).append(&latest_num); transaction.put(self.col, CURRENT_KEY, &stream.out()) } Ok(pending) } /// Apply pending changes from a previous `insert` operation. /// Must be done before the next `insert` call. pub fn apply_pending(&self, pending: PendingChanges) { if let Some(best_block) = pending.best_block { *self.best_block.write() = best_block; } } /// Get a block header. In the case of query by number, only canonical blocks /// will be returned. pub fn block_header(&self, id: BlockId) -> Option { let load_from_db = |hash: H256| { match self.db.get(self.col, &hash) { Ok(val) => val.map(|x| x.to_vec()).map(encoded::Header::new), Err(e) => { warn!(target: "chain", "Failed to read from database: {}", e); None } } }; match id { BlockId::Earliest | BlockId::Number(0) => Some(self.genesis_header.clone()), BlockId::Hash(hash) => load_from_db(hash), BlockId::Number(num) => { if self.best_block.read().number < num { return None } self.candidates.read().get(&num).map(|entry| entry.canonical_hash) .and_then(load_from_db) } BlockId::Latest | BlockId::Pending => { // hold candidates hear to prevent deletion of the header // as we read it. let _candidates = self.candidates.read(); let hash = { let best = self.best_block.read(); if best.number == 0 { return Some(self.genesis_header.clone()) } best.hash }; load_from_db(hash) } } } /// Get the best block's header. pub fn best_header(&self) -> encoded::Header { self.block_header(BlockId::Latest).expect("Header for best block always stored; qed") } /// Get an iterator over a block and its ancestry. pub fn ancestry_iter(&self, start: BlockId) -> AncestryIter { AncestryIter { next: self.block_header(start), chain: self, } } /// Get the nth CHT root, if it's been computed. /// /// CHT root 0 is from block `1..2048`. /// CHT root 1 is from block `2049..4096` /// and so on. /// /// This is because it's assumed that the genesis hash is known, /// so including it within a CHT would be redundant. pub fn cht_root(&self, n: usize) -> Option { match self.db.get(self.col, cht_key(n as u64).as_bytes()) { Ok(val) => val.map(|x| ::rlp::decode(&x)), Err(e) => { warn!(target: "chain", "Error reading from database: {}", e); None } } } /// Get the genesis hash. pub fn genesis_hash(&self) -> H256 { ::util::Hashable::sha3(&self.genesis_header) } /// Get the best block's data. pub fn best_block(&self) -> BlockDescriptor { self.best_block.read().clone() } /// If there is a gap between the genesis and the rest /// of the stored blocks, return the first post-gap block. pub fn first_block(&self) -> Option { let candidates = self.candidates.read(); match candidates.iter().next() { None | Some((&1, _)) => None, Some((&height, entry)) => Some(BlockDescriptor { number: height, hash: entry.canonical_hash, total_difficulty: entry.candidates.iter().find(|x| x.hash == entry.canonical_hash) .expect("entry always stores canonical candidate; qed").total_difficulty, }) } } /// Get block status. pub fn status(&self, hash: &H256) -> BlockStatus { match self.db.get(self.col, &*hash).ok().map_or(false, |x| x.is_some()) { true => BlockStatus::InChain, false => BlockStatus::Unknown, } } } impl HeapSizeOf for HeaderChain { fn heap_size_of_children(&self) -> usize { self.candidates.read().heap_size_of_children() } } /// Iterator over a block's ancestry. pub struct AncestryIter<'a> { next: Option, chain: &'a HeaderChain, } impl<'a> Iterator for AncestryIter<'a> { type Item = encoded::Header; fn next(&mut self) -> Option { let next = self.next.take(); if let Some(p_hash) = next.as_ref().map(|hdr| hdr.parent_hash()) { self.next = self.chain.block_header(BlockId::Hash(p_hash)); } next } } #[cfg(test)] mod tests { use super::HeaderChain; use std::sync::Arc; use ethcore::ids::BlockId; use ethcore::header::Header; use ethcore::spec::Spec; fn make_db() -> Arc<::util::KeyValueDB> { Arc::new(::util::kvdb::in_memory(0)) } #[test] fn basic_chain() { let spec = Spec::new_test(); let genesis_header = spec.genesis_header(); let db = make_db(); let chain = HeaderChain::new(db.clone(), None, &::rlp::encode(&genesis_header)).unwrap(); let mut parent_hash = genesis_header.hash(); let mut rolling_timestamp = genesis_header.timestamp(); for i in 1..10000 { let mut header = Header::new(); header.set_parent_hash(parent_hash); header.set_number(i); header.set_timestamp(rolling_timestamp); header.set_difficulty(*genesis_header.difficulty() * i.into()); parent_hash = header.hash(); let mut tx = db.transaction(); let pending = chain.insert(&mut tx, header).unwrap(); db.write(tx).unwrap(); chain.apply_pending(pending); rolling_timestamp += 10; } assert!(chain.block_header(BlockId::Number(10)).is_none()); assert!(chain.block_header(BlockId::Number(9000)).is_some()); assert!(chain.cht_root(2).is_some()); assert!(chain.cht_root(3).is_none()); } #[test] fn reorganize() { let spec = Spec::new_test(); let genesis_header = spec.genesis_header(); let db = make_db(); let chain = HeaderChain::new(db.clone(), None, &::rlp::encode(&genesis_header)).unwrap(); let mut parent_hash = genesis_header.hash(); let mut rolling_timestamp = genesis_header.timestamp(); for i in 1..6 { let mut header = Header::new(); header.set_parent_hash(parent_hash); header.set_number(i); header.set_timestamp(rolling_timestamp); header.set_difficulty(*genesis_header.difficulty() * i.into()); parent_hash = header.hash(); let mut tx = db.transaction(); let pending = chain.insert(&mut tx, header).unwrap(); db.write(tx).unwrap(); chain.apply_pending(pending); rolling_timestamp += 10; } { let mut rolling_timestamp = rolling_timestamp; let mut parent_hash = parent_hash; for i in 6..16 { let mut header = Header::new(); header.set_parent_hash(parent_hash); header.set_number(i); header.set_timestamp(rolling_timestamp); header.set_difficulty(*genesis_header.difficulty() * i.into()); parent_hash = header.hash(); let mut tx = db.transaction(); let pending = chain.insert(&mut tx, header).unwrap(); db.write(tx).unwrap(); chain.apply_pending(pending); rolling_timestamp += 10; } } assert_eq!(chain.best_block().number, 15); { let mut rolling_timestamp = rolling_timestamp; let mut parent_hash = parent_hash; // import a shorter chain which has better TD. for i in 6..13 { let mut header = Header::new(); header.set_parent_hash(parent_hash); header.set_number(i); header.set_timestamp(rolling_timestamp); header.set_difficulty(*genesis_header.difficulty() * (i * i).into()); parent_hash = header.hash(); let mut tx = db.transaction(); let pending = chain.insert(&mut tx, header).unwrap(); db.write(tx).unwrap(); chain.apply_pending(pending); rolling_timestamp += 11; } } let (mut num, mut canon_hash) = (chain.best_block().number, chain.best_block().hash); assert_eq!(num, 12); while num > 0 { let header = chain.block_header(BlockId::Number(num)).unwrap(); assert_eq!(header.hash(), canon_hash); canon_hash = header.parent_hash(); num -= 1; } } #[test] fn earliest_is_latest() { let spec = Spec::new_test(); let genesis_header = spec.genesis_header(); let db = make_db(); let chain = HeaderChain::new(db.clone(), None, &::rlp::encode(&genesis_header)).unwrap(); assert!(chain.block_header(BlockId::Earliest).is_some()); assert!(chain.block_header(BlockId::Latest).is_some()); assert!(chain.block_header(BlockId::Pending).is_some()); } #[test] fn restore_from_db() { let spec = Spec::new_test(); let genesis_header = spec.genesis_header(); let db = make_db(); { let chain = HeaderChain::new(db.clone(), None, &::rlp::encode(&genesis_header)).unwrap(); let mut parent_hash = genesis_header.hash(); let mut rolling_timestamp = genesis_header.timestamp(); for i in 1..10000 { let mut header = Header::new(); header.set_parent_hash(parent_hash); header.set_number(i); header.set_timestamp(rolling_timestamp); header.set_difficulty(*genesis_header.difficulty() * i.into()); parent_hash = header.hash(); let mut tx = db.transaction(); let pending = chain.insert(&mut tx, header).unwrap(); db.write(tx).unwrap(); chain.apply_pending(pending); rolling_timestamp += 10; } } let chain = HeaderChain::new(db.clone(), None, &::rlp::encode(&genesis_header)).unwrap(); assert!(chain.block_header(BlockId::Number(10)).is_none()); assert!(chain.block_header(BlockId::Number(9000)).is_some()); assert!(chain.cht_root(2).is_some()); assert!(chain.cht_root(3).is_none()); assert_eq!(chain.block_header(BlockId::Latest).unwrap().number(), 9999); } #[test] fn restore_higher_non_canonical() { let spec = Spec::new_test(); let genesis_header = spec.genesis_header(); let db = make_db(); { let chain = HeaderChain::new(db.clone(), None, &::rlp::encode(&genesis_header)).unwrap(); let mut parent_hash = genesis_header.hash(); let mut rolling_timestamp = genesis_header.timestamp(); // push 100 low-difficulty blocks. for i in 1..101 { let mut header = Header::new(); header.set_parent_hash(parent_hash); header.set_number(i); header.set_timestamp(rolling_timestamp); header.set_difficulty(*genesis_header.difficulty() * i.into()); parent_hash = header.hash(); let mut tx = db.transaction(); let pending = chain.insert(&mut tx, header).unwrap(); db.write(tx).unwrap(); chain.apply_pending(pending); rolling_timestamp += 10; } // push fewer high-difficulty blocks. for i in 1..11 { let mut header = Header::new(); header.set_parent_hash(parent_hash); header.set_number(i); header.set_timestamp(rolling_timestamp); header.set_difficulty(*genesis_header.difficulty() * i.into() * 1000.into()); parent_hash = header.hash(); let mut tx = db.transaction(); let pending = chain.insert(&mut tx, header).unwrap(); db.write(tx).unwrap(); chain.apply_pending(pending); rolling_timestamp += 10; } assert_eq!(chain.block_header(BlockId::Latest).unwrap().number(), 10); } // after restoration, non-canonical eras should still be loaded. let chain = HeaderChain::new(db.clone(), None, &::rlp::encode(&genesis_header)).unwrap(); assert_eq!(chain.block_header(BlockId::Latest).unwrap().number(), 10); assert!(chain.candidates.read().get(&100).is_some()) } }