// Copyright 2015, 2016 Ethcore (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! General hash types, a fixed-size raw-data type used as the output of hash functions. use standard::*; use math::log2; use error::UtilError; use rand::Rng; use rand::os::OsRng; use bytes::{BytesConvertable,Populatable}; use from_json::*; use bigint::uint::{Uint, U256}; use rustc_serialize::hex::ToHex; use serde; /// Trait for a fixed-size byte array to be used as the output of hash functions. /// /// Note: types implementing `FixedHash` must be also `BytesConvertable`. pub trait FixedHash: Sized + BytesConvertable + Populatable + FromStr + Default { /// Create a new, zero-initialised, instance. fn new() -> Self; /// Synonym for `new()`. Prefer to new as it's more readable. fn zero() -> Self; /// Create a new, cryptographically random, instance. fn random() -> Self; /// Assign self have a cryptographically random value. fn randomize(&mut self); /// Get the size of this object in bytes. fn len() -> usize; /// Convert a slice of bytes of length `len()` to an instance of this type. fn from_slice(src: &[u8]) -> Self; /// Assign self to be of the same value as a slice of bytes of length `len()`. fn clone_from_slice(&mut self, src: &[u8]) -> usize; /// Copy the data of this object into some mutable slice of length `len()`. fn copy_to(&self, dest: &mut [u8]); /// When interpreting self as a bloom output, augment (bit-wise OR) with the a bloomed version of `b`. fn shift_bloomed<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash; /// Same as `shift_bloomed` except that `self` is consumed and a new value returned. fn with_bloomed(mut self, b: &T) -> Self where T: FixedHash { self.shift_bloomed(b); self } /// Bloom the current value using the bloom parameter `m`. fn bloom_part(&self, m: usize) -> T where T: FixedHash; /// Check to see whether this hash, interpreted as a bloom, contains the value `b` when bloomed. fn contains_bloomed(&self, b: &T) -> bool where T: FixedHash; /// Returns `true` if all bits set in `b` are also set in `self`. fn contains<'a>(&'a self, b: &'a Self) -> bool; /// Returns `true` if no bits are set. fn is_zero(&self) -> bool; /// Returns the lowest 8 bytes interpreted as a BigEndian integer. fn low_u64(&self) -> u64; } /// Return `s` without the `0x` at the beginning of it, if any. pub fn clean_0x(s: &str) -> &str { if s.len() >= 2 && &s[0..2] == "0x" { &s[2..] } else { s } } macro_rules! impl_hash { ($from: ident, $size: expr) => { #[derive(Eq)] #[repr(C)] /// Unformatted binary data of fixed length. pub struct $from (pub [u8; $size]); impl From<[u8; $size]> for $from { fn from(bytes: [u8; $size]) -> Self { $from(bytes) } } impl Deref for $from { type Target = [u8]; #[inline] fn deref(&self) -> &[u8] { &self.0 } } impl AsRef<[u8]> for $from { #[inline] fn as_ref(&self) -> &[u8] { &self.0 } } impl DerefMut for $from { #[inline] fn deref_mut(&mut self) -> &mut [u8] { &mut self.0 } } impl FixedHash for $from { fn new() -> $from { $from([0; $size]) } fn zero() -> $from { $from([0; $size]) } fn random() -> $from { let mut hash = $from::new(); hash.randomize(); hash } fn randomize(&mut self) { let mut rng = OsRng::new().unwrap(); rng.fill_bytes(&mut self.0); } fn len() -> usize { $size } // TODO: remove once slice::clone_from_slice is stable #[inline] fn clone_from_slice(&mut self, src: &[u8]) -> usize { let min = ::std::cmp::min($size, src.len()); let dst = &mut self.deref_mut()[.. min]; let src = &src[.. min]; for i in 0..min { dst[i] = src[i]; } min } fn from_slice(src: &[u8]) -> Self { let mut r = Self::new(); r.clone_from_slice(src); r } fn copy_to(&self, dest: &mut[u8]) { let min = ::std::cmp::min($size, dest.len()); dest[..min].copy_from_slice(&self.0[..min]); } fn shift_bloomed<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash { let bp: Self = b.bloom_part($size); let new_self = &bp | self; self.0 = new_self.0; self } fn bloom_part(&self, m: usize) -> T where T: FixedHash { // numbers of bits // TODO: move it to some constant let p = 3; let bloom_bits = m * 8; let mask = bloom_bits - 1; let bloom_bytes = (log2(bloom_bits) + 7) / 8; // must be a power of 2 assert_eq!(m & (m - 1), 0); // out of range assert!(p * bloom_bytes <= $size); // return type let mut ret = T::new(); // 'ptr' to out slice let mut ptr = 0; // set p number of bits, // p is equal 3 according to yellowpaper for _ in 0..p { let mut index = 0 as usize; for _ in 0..bloom_bytes { index = (index << 8) | self.0[ptr] as usize; ptr += 1; } index &= mask; ret.as_slice_mut()[m - 1 - index / 8] |= 1 << (index % 8); } ret } fn contains_bloomed(&self, b: &T) -> bool where T: FixedHash { let bp: Self = b.bloom_part($size); self.contains(&bp) } fn contains<'a>(&'a self, b: &'a Self) -> bool { &(b & self) == b } fn is_zero(&self) -> bool { self.eq(&Self::new()) } fn low_u64(&self) -> u64 { let mut ret = 0u64; for i in 0..min($size, 8) { ret |= (self.0[$size - 1 - i] as u64) << (i * 8); } ret } } impl FromStr for $from { type Err = UtilError; fn from_str(s: &str) -> Result<$from, UtilError> { let a = try!(s.from_hex()); if a.len() != $size { return Err(UtilError::BadSize); } let mut ret = $from([0;$size]); for i in 0..$size { ret.0[i] = a[i]; } Ok(ret) } } impl serde::Serialize for $from { fn serialize(&self, serializer: &mut S) -> Result<(), S::Error> where S: serde::Serializer { let mut hex = "0x".to_owned(); hex.push_str(self.to_hex().as_ref()); serializer.serialize_str(hex.as_ref()) } } impl serde::Deserialize for $from { fn deserialize(deserializer: &mut D) -> Result<$from, D::Error> where D: serde::Deserializer { struct HashVisitor; impl serde::de::Visitor for HashVisitor { type Value = $from; fn visit_str(&mut self, value: &str) -> Result where E: serde::Error { // 0x + len if value.len() != 2 + $size * 2 { return Err(serde::Error::custom("Invalid length.")); } value[2..].from_hex().map(|ref v| $from::from_slice(v)).map_err(|_| serde::Error::custom("Invalid hex value.")) } fn visit_string(&mut self, value: String) -> Result where E: serde::Error { self.visit_str(value.as_ref()) } } deserializer.deserialize(HashVisitor) } } impl FromJson for $from { fn from_json(json: &Json) -> Self { match *json { Json::String(ref s) => { match s.len() % 2 { 0 => FromStr::from_str(clean_0x(s)).unwrap(), _ => FromStr::from_str(&("0".to_owned() + &(clean_0x(s).to_owned()))[..]).unwrap() } }, _ => Default::default(), } } } impl fmt::Debug for $from { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { for i in &self.0[..] { try!(write!(f, "{:02x}", i)); } Ok(()) } } impl fmt::Display for $from { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { for i in &self.0[0..2] { try!(write!(f, "{:02x}", i)); } try!(write!(f, "…")); for i in &self.0[$size - 2..$size] { try!(write!(f, "{:02x}", i)); } Ok(()) } } impl Copy for $from {} #[cfg_attr(feature="dev", allow(expl_impl_clone_on_copy))] impl Clone for $from { fn clone(&self) -> $from { let mut ret = $from::new(); ret.0.copy_from_slice(&self.0); ret } } impl PartialEq for $from { fn eq(&self, other: &Self) -> bool { for i in 0..$size { if self.0[i] != other.0[i] { return false; } } true } } impl Ord for $from { fn cmp(&self, other: &Self) -> Ordering { for i in 0..$size { if self.0[i] > other.0[i] { return Ordering::Greater; } else if self.0[i] < other.0[i] { return Ordering::Less; } } Ordering::Equal } } impl PartialOrd for $from { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Hash for $from { fn hash(&self, state: &mut H) where H: Hasher { state.write(&self.0); state.finish(); } } impl Index for $from { type Output = u8; fn index(&self, index: usize) -> &u8 { &self.0[index] } } impl IndexMut for $from { fn index_mut(&mut self, index: usize) -> &mut u8 { &mut self.0[index] } } impl Index> for $from { type Output = [u8]; fn index(&self, index: ops::Range) -> &[u8] { &self.0[index] } } impl IndexMut> for $from { fn index_mut(&mut self, index: ops::Range) -> &mut [u8] { &mut self.0[index] } } impl Index for $from { type Output = [u8]; fn index(&self, _index: ops::RangeFull) -> &[u8] { &self.0 } } impl IndexMut for $from { fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [u8] { &mut self.0 } } /// `BitOr` on references impl<'a> BitOr for &'a $from { type Output = $from; fn bitor(self, rhs: Self) -> Self::Output { let mut ret: $from = $from::default(); for i in 0..$size { ret.0[i] = self.0[i] | rhs.0[i]; } ret } } /// Moving `BitOr` impl BitOr for $from { type Output = $from; fn bitor(self, rhs: Self) -> Self::Output { &self | &rhs } } /// `BitAnd` on references impl <'a> BitAnd for &'a $from { type Output = $from; fn bitand(self, rhs: Self) -> Self::Output { let mut ret: $from = $from::default(); for i in 0..$size { ret.0[i] = self.0[i] & rhs.0[i]; } ret } } /// Moving `BitAnd` impl BitAnd for $from { type Output = $from; fn bitand(self, rhs: Self) -> Self::Output { &self & &rhs } } /// `BitXor` on references impl <'a> BitXor for &'a $from { type Output = $from; fn bitxor(self, rhs: Self) -> Self::Output { let mut ret: $from = $from::default(); for i in 0..$size { ret.0[i] = self.0[i] ^ rhs.0[i]; } ret } } /// Moving `BitXor` impl BitXor for $from { type Output = $from; fn bitxor(self, rhs: Self) -> Self::Output { &self ^ &rhs } } impl $from { /// Get a hex representation. pub fn hex(&self) -> String { format!("{:?}", self) } /// Construct new instance equal to the bloomed value of `b`. pub fn from_bloomed(b: &T) -> Self where T: FixedHash { b.bloom_part($size) } } impl Default for $from { fn default() -> Self { $from::new() } } impl From for $from { fn from(mut value: u64) -> $from { let mut ret = $from::new(); for i in 0..8 { if i < $size { ret.0[$size - i - 1] = (value & 0xff) as u8; value >>= 8; } } ret } } impl<'a> From<&'a str> for $from { fn from(s: &'a str) -> $from { use std::str::FromStr; if s.len() % 2 == 1 { $from::from_str(&("0".to_owned() + &(clean_0x(s).to_owned()))[..]).unwrap_or_else(|_| $from::new()) } else { $from::from_str(clean_0x(s)).unwrap_or_else(|_| $from::new()) } } } } } impl From for H256 { fn from(value: U256) -> H256 { let mut ret = H256::new(); value.to_raw_bytes(&mut ret); ret } } impl<'a> From<&'a U256> for H256 { fn from(value: &'a U256) -> H256 { let mut ret: H256 = H256::new(); value.to_raw_bytes(&mut ret); ret } } impl From for U256 { fn from(value: H256) -> U256 { U256::from(value.bytes()) } } impl<'a> From<&'a H256> for U256 { fn from(value: &'a H256) -> U256 { U256::from(value.bytes()) } } impl From for Address { fn from(value: H256) -> Address { let mut ret = Address::new(); ret.0.copy_from_slice(&value[12..32]); ret } } impl From for H64 { fn from(value: H256) -> H64 { let mut ret = H64::new(); ret.0.copy_from_slice(&value[20..28]); ret } } /* impl<'a> From<&'a H256> for Address { fn from(value: &'a H256) -> Address { let mut ret = Address::new(); ret.0.copy_from_slice(&value[12..32]); ret } } } */ impl From
for H256 { fn from(value: Address) -> H256 { let mut ret = H256::new(); ret.0[12..32].copy_from_slice(&value); ret } } impl<'a> From<&'a Address> for H256 { fn from(value: &'a Address) -> H256 { let mut ret = H256::new(); ret.0[12..32].copy_from_slice(&value); ret } } /// Convert string `s` to an `H256`. Will panic if `s` is not 64 characters long or if any of /// those characters are not 0-9, a-z or A-Z. pub fn h256_from_hex(s: &str) -> H256 { use std::str::FromStr; H256::from_str(s).unwrap() } /// Convert `n` to an `H256`, setting the rightmost 8 bytes. pub fn h256_from_u64(n: u64) -> H256 { use bigint::uint::U256; H256::from(&U256::from(n)) } /// Convert string `s` to an `Address`. Will panic if `s` is not 40 characters long or if any of /// those characters are not 0-9, a-z or A-Z. pub fn address_from_hex(s: &str) -> Address { use std::str::FromStr; Address::from_str(s).unwrap() } /// Convert `n` to an `Address`, setting the rightmost 8 bytes. pub fn address_from_u64(n: u64) -> Address { let h256 = h256_from_u64(n); From::from(h256) } impl_hash!(H32, 4); impl_hash!(H64, 8); impl_hash!(H128, 16); impl_hash!(Address, 20); impl_hash!(H256, 32); impl_hash!(H264, 33); impl_hash!(H512, 64); impl_hash!(H520, 65); impl_hash!(H1024, 128); impl_hash!(H2048, 256); /// Constant address for point 0. Often used as a default. pub static ZERO_ADDRESS: Address = Address([0x00; 20]); /// Constant 256-bit datum for 0. Often used as a default. pub static ZERO_H256: H256 = H256([0x00; 32]); #[cfg(test)] mod tests { use hash::*; use bigint::uint::*; use std::str::FromStr; #[test] #[cfg_attr(feature="dev", allow(eq_op))] fn hash() { let h = H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]); assert_eq!(H64::from_str("0123456789abcdef").unwrap(), h); assert_eq!(format!("{}", h), "0123…cdef"); assert_eq!(format!("{:?}", h), "0123456789abcdef"); assert_eq!(h.hex(), "0123456789abcdef"); assert!(h == h); assert!(h != H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xee])); assert!(h != H64([0; 8])); } #[test] fn hash_bitor() { let a = H64([1; 8]); let b = H64([2; 8]); let c = H64([3; 8]); // borrow assert_eq!(&a | &b, c); // move assert_eq!(a | b, c); } #[test] fn shift_bloomed() { use sha3::Hashable; let bloom = H2048::from_str("00000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002020000000000000000000000000000000000000000000008000000001000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap(); let address = Address::from_str("ef2d6d194084c2de36e0dabfce45d046b37d1106").unwrap(); let topic = H256::from_str("02c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap(); let mut my_bloom = H2048::new(); assert!(!my_bloom.contains_bloomed(&address.sha3())); assert!(!my_bloom.contains_bloomed(&topic.sha3())); my_bloom.shift_bloomed(&address.sha3()); assert!(my_bloom.contains_bloomed(&address.sha3())); assert!(!my_bloom.contains_bloomed(&topic.sha3())); my_bloom.shift_bloomed(&topic.sha3()); assert_eq!(my_bloom, bloom); assert!(my_bloom.contains_bloomed(&address.sha3())); assert!(my_bloom.contains_bloomed(&topic.sha3())); } #[test] fn from_and_to_address() { let address = Address::from_str("ef2d6d194084c2de36e0dabfce45d046b37d1106").unwrap(); let h = H256::from(address.clone()); let a = Address::from(h); assert_eq!(address, a); } #[test] fn from_u64() { assert_eq!(H128::from(0x1234567890abcdef), H128::from_str("00000000000000001234567890abcdef").unwrap()); assert_eq!(H64::from(0x1234567890abcdef), H64::from_str("1234567890abcdef").unwrap()); assert_eq!(H32::from(0x1234567890abcdef), H32::from_str("90abcdef").unwrap()); } #[test] fn from_str() { assert_eq!(H64::from(0x1234567890abcdef), H64::from("0x1234567890abcdef")); assert_eq!(H64::from(0x1234567890abcdef), H64::from("1234567890abcdef")); assert_eq!(H64::from(0x234567890abcdef), H64::from("0x234567890abcdef")); // too short. assert_eq!(H64::from(0), H64::from("0x34567890abcdef")); } #[test] fn from_and_to_u256() { let u: U256 = 0x123456789abcdef0u64.into(); let h = H256::from(u); assert_eq!(H256::from(u), H256::from("000000000000000000000000000000000000000000000000123456789abcdef0")); let h_ref = H256::from(&u); assert_eq!(h, h_ref); let r_ref: U256 = From::from(&h); assert_eq!(r_ref, u); let r: U256 = From::from(h); assert_eq!(r, u); } }