use memorydb::*; use sha3::*; use hashdb::*; use hash::*; use nibbleslice::*; use bytes::*; use rlp::*; use log::*; pub const NULL_RLP: [u8; 1] = [0x80; 1]; pub const SHA3_NULL_RLP: H256 = H256( [0x56, 0xe8, 0x1f, 0x17, 0x1b, 0xcc, 0x55, 0xa6, 0xff, 0x83, 0x45, 0xe6, 0x92, 0xc0, 0xf8, 0x6e, 0x5b, 0x48, 0xe0, 0x1b, 0x99, 0x6c, 0xad, 0xc0, 0x01, 0x62, 0x2f, 0xb5, 0xe3, 0x63, 0xb4, 0x21] ); /*lazy_static! { pub static ref NULL_RLP: Bytes = { let mut r = RlpStream::new(); r.append(&""); r.out().unwrap() }; pub static ref SHA3_NULL_RLP: H256 = { use sha3::Hashable; NULL_RLP.sha3() }; }*/ pub trait Trie { fn root(&self) -> &H256; fn is_empty(&self) -> bool { *self.root() == SHA3_NULL_RLP } // TODO: consider returning &[u8]... fn contains(&self, key: &[u8]) -> bool; fn at(&self, key: &[u8]) -> Option<&[u8]>; fn insert(&mut self, key: &[u8], value: &[u8]); fn remove(&mut self, key: &[u8]); } enum Operation { New(H256, Bytes), Delete(H256), } struct Diff (Vec); impl Diff { fn new() -> Diff { Diff(vec![]) } /// Given the RLP that encodes a node, append a reference to that node `out` and leave `diff` /// such that the reference is valid, once applied. fn new_node(&mut self, rlp: Bytes, out: &mut RlpStream) { if (rlp.len() >= 32) { let rlp_sha3 = rlp.sha3(); out.append(&rlp_sha3); self.0.push(Operation::New(rlp_sha3, rlp)); } else { out.append_raw(&rlp, 1); } } /// Given the RLP that encodes a now-unused node, leave `diff` in such a state that it is noted. fn delete_node_sha3(&mut self, old_sha3: H256) { self.0.push(Operation::Delete(old_sha3)); } fn delete_node(&mut self, old: &Rlp) { if (old.is_data() && old.size() == 32) { self.0.push(Operation::Delete(H256::decode(old))); } } fn replace_node(&mut self, old: &Rlp, rlp: Bytes, out: &mut RlpStream) { self.delete_node(old); self.new_node(rlp, out); } } pub struct TrieDB { db: Box, root: H256, } impl TrieDB { pub fn new(db: T) -> Self where T: HashDB + 'static { TrieDB{ db: Box::new(db), root: H256::new() } } pub fn new_boxed(db_box: Box) -> Self { TrieDB{ db: db_box, root: H256::new() } } pub fn new_memory() -> Self { TrieDB{ db: Box::new(MemoryDB::new()), root: H256::new() } } pub fn init(&mut self) { self.set_root_rlp(&NULL_RLP); } pub fn db(&self) -> &HashDB { self.db.as_ref() } fn set_root_rlp(&mut self, root_data: &[u8]) { self.db.kill(&self.root); self.root = self.db.insert(root_data); trace!("set_root_rlp {:?} {:?}", root_data, self.root); } fn apply(&mut self, diff: Diff) { for d in diff.0.into_iter() { match d { Operation::Delete(h) => { trace!("TrieDB::apply --- {:?}", &h); self.db.kill(&h); }, Operation::New(h, d) => { trace!("TrieDB::apply +++ {:?} -> {:?}", &h, &d); self.db.emplace(h, d); } } } } fn add(&mut self, key: &NibbleSlice, value: &[u8]) { // determine what the new root is, insert new nodes and remove old as necessary. let mut todo: Diff = Diff::new(); let root_rlp = self.inject(self.db.lookup(&self.root).expect("Trie root not found!"), key, value, &mut todo); self.apply(todo); self.set_root_rlp(&root_rlp); } fn compose_leaf(partial: &NibbleSlice, value: &[u8]) -> Bytes { trace!("compose_leaf {:?} {:?} ({:?})", partial, value, partial.encoded(true)); let mut s = RlpStream::new_list(2); s.append(&partial.encoded(true)); s.append(&value); let r = s.out(); trace!("output: -> {:?}", &r); r } /* fn compose_raw(partial: &NibbleSlice, raw_payload: &[u8], bool is_leaf) -> Bytes { println!("compose_raw {:?} {:?} {:?} ({:?})", partial, value, is_leaf, partial.encoded(is_leaf)); let mut s = RlpStream::new_list(2); s.append(&partial.encoded(is_leaf)); s.append_raw(raw_payload, 1); let r = s.out(); println!("output: -> {:?}", &r); r } fn compose_extension(partial: &NibbleSlice, raw_payload: &[u8]) -> Bytes { Self::compose_raw(partial, raw_payload, false) } /// Return the bytes encoding the node represented by `rlp`. It will be unlinked from /// the trie. fn take_node(&self, rlp: &Rlp, &mut diff) -> Bytes { if (rlp.is_data()) { Bytes::decode(rlp) } else { let h = H256::decode(rlp); let r = self.db.lookup(&h).expect("Trie root not found!").as_vec(); diff.delete_node(h); r } } /// Transform an existing extension or leaf node plus a new partial/value to a two-entry branch. /// /// **This operation will not insert the new node nor destroy the original.** fn transmute_to_branch_and_inject(&self, orig_is_leaf: bool, orig_partial: &NibbleSlice, orig_raw_payload: &[u8], partial: &NibbleSlice, value: &[u8], diff: &mut Diff) -> Bytes { let intermediate = match orig_is_leaf { true => Self::transmute_leaf_to_branch(orig_partial, orig_raw_payload, diff), false => Self::transmute_extension_to_branch(orig_partial, orig_raw_payload, diff), }; self.inject(&intermediate, partial, value, diff) // TODO: implement without having to make an intermediate representation. } /// Transform an existing extension or leaf node to an invalid single-entry branch. /// /// **This operation will not insert the new node nor destroy the original.** fn transmute_extension_to_branch(orig_partial: &NibbleSlice, orig_raw_payload: &[u8], diff: &mut Diff) -> Bytes { let mut s = RLPStream::new_list(17); assert!(!orig_partial.is_empty()); // extension nodes are not allowed to have empty partial keys. let index = orig_partial.at(0); // orig is extension - orig_payload is a node itself. for i in 0..17 { if index == i { if orig_partial.len() > 1 { // still need an extension diff.new_node(compose_extension(orig_partial.mid(1), orig_raw_payload), s); } else { // was an extension of length 1 - just redirect the payload into here. s.append_raw(orig_payload.raw(), 1); } } else { s.append_null_data(); } } s.out() } fn transmute_leaf_to_branch(orig_partial: &NibbleSlice, orig_raw_payload: &[u8], diff: &mut Diff) -> Bytes { let mut s = RLPStream::new_list(17); let index = orig_partial.is_empty() ? 16 : orig_partial.at(0); // orig is leaf - orig_payload is data representing the actual value. for i in 0..17 { if index == i { // this is our node. diff.new_node(compose_raw(orig_partial.mid(if i == 16 {0} else {1}), orig_raw_payload, true), s); } else { s.append_null_data(); } } s.out() } /// Given a branch node's RLP `orig` together with a `partial` key and `value`, return the /// RLP-encoded node that accomodates the trie with the new entry. Mutate `diff` so that /// once applied the returned node is valid. fn injected_into_branch(&self, orig: &Rlp, partial: &NibbleSlice, value: &[u8], diff: &mut Diff) -> Bytes { RlpStream s; let index = partial.is_empty() ? 16 : partial.at(0); for i in 0..17 { if index == i && { // this is our node. if (orig.at(i).is_empty()) { // easy - original had empty slot. diff.new_node(compose_leaf(partial.mid(if i == 16 {0} else {1}), value), s); } else if (i == 16) { // leaf entry - just replace. let new = compose_leaf(partial.mid(if i == 16 {0} else {1}), value); diff.replace_node(orig.at(i).raw(), new, s), } else { // harder - original has something there already let new = self.inject(orig.at(i).raw(), partial.mid(1), value, diff); diff.replace_node(orig.at(i).raw(), new, s) } } else { s.append_raw(orig.at(i).raw(), 1); } } s } fn inject_and_replace(&self, old: &[u8], old_sha3: H256, partial: &NibbleSlice, value: &[u8], diff: &mut Diff, out: &mut RlpStream) { diff.new_node(self.inject(old, partial, value, diff), &mut out); diff.delete_node(old, old_sha3); } */ /// Determine the RLP of the node, assuming we're inserting `partial` into the /// node currently of data `old`. This will *not* delete any hash of `old` from the database; /// it will just return the new RLP that includes the new node. /// /// The database will be updated so as to make the returned RLP valid through inserting /// and deleting nodes as necessary. /// /// **This operation will not insert the new node now destroy the original.** fn inject(&self, old: &[u8], partial: &NibbleSlice, value: &[u8], diff: &mut Diff) -> Bytes { // already have an extension. either fast_forward, cleve or transmute_to_branch. let old_rlp = Rlp::new(old); match old_rlp.prototype() { Prototype::List(17) => { unimplemented!(); // already have a branch. route and inject. // self.injected_into_branch(old_rlp, partial, value, diff) }, Prototype::List(2) => { unimplemented!(); /* let their_key_rlp = old_rlp.at(0); let (them, is_leaf) = NibbleSlice::from_encoded(their_key_rlp.data()); match partial.common_prefix(&them) { 0 if partial.is_empty() && them.is_empty() => { // both empty: just replace. compose_leaf(partial, value) }, 0 => { // one of us isn't empty: transmute to branch here transmute_to_branch_and_inject(is_leaf, them, old_rlp.at(1).raw()) }, cp if cp == them.len() => { // fully-shared prefix for this extension: // skip to the end of this extension and continue the inject there. let n = self.take_node(old_rlp.at(1).raw()); let downstream_node = self.inject(&n, partial.mid(cp), value, diff); let mut s = RlpStream::new_list(2); s.append_raw(old_rlp.at(0).raw(), 1); diff.new_node(downstream_node, s); s.out() }, cp => { // partially-shared prefix for this extension: // split into two extensions, high and low, pass the // low through inject with the value before inserting the result // into high to create the new. // TODO: optimise by doing this without creating injected_low. // low (farther from root) let low = Self::compose_raw(them.mid(cp), old_rlp.at(1).raw(), is_leaf); let injected_low = self.inject(&low, partial.mid(cp), value, diff); // high (closer to root) let mut s = RlpStream::new_list(2); s.append(them.encoded_leftmost(cp, false)); diff.new_node(injected_low, s); s.out() }, }*/ }, Prototype::Data(0) => { Self::compose_leaf(partial, value) }, _ => panic!("Invalid RLP for node."), } } } impl Trie for TrieDB { fn root(&self) -> &H256 { &self.root } fn contains(&self, _key: &[u8]) -> bool { unimplemented!(); } fn at(&self, _key: &[u8]) -> Option<&[u8]> { unimplemented!(); } fn insert(&mut self, key: &[u8], value: &[u8]) { (self as &mut TrieDB).add(&NibbleSlice::new(key), value); } fn remove(&mut self, _key: &[u8]) { unimplemented!(); } } #[test] fn playpen() { use overlaydb::*; use triehash::*; use env_logger; env_logger::init().unwrap(); (&[1, 2, 3]).starts_with(&[1, 2]); let mut t = TrieDB::new(OverlayDB::new_temp()); t.init(); assert_eq!(*t.root(), SHA3_NULL_RLP); assert!(t.is_empty()); t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]); assert_eq!(*t.root(), trie_root(vec![ (vec![1u8, 0x23], vec![1u8, 0x23]) ])); assert!(false); }