// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see .
//! Light Transaction Queue.
//!
//! Manages local transactions,
//! but stores all local transactions, removing only on invalidated nonce.
//!
//! Under the assumption that light nodes will have a relatively limited set of
//! accounts for which they create transactions, this queue is structured in an
//! address-wise manner.
use std::collections::{BTreeMap, HashMap};
use std::collections::hash_map::Entry;
use ethcore::error::TransactionError;
use ethcore::transaction::{Condition, PendingTransaction, SignedTransaction};
use ethcore::transaction_import::TransactionImportResult;
use util::{Address, U256, H256, H256FastMap};
// Knowledge of an account's current nonce.
#[derive(Debug, Clone, PartialEq, Eq)]
enum CurrentNonce {
// Assumed current nonce.
Assumed(U256),
// Known current nonce.
Known(U256),
}
impl CurrentNonce {
// whether this nonce is assumed
fn is_assumed(&self) -> bool {
match *self {
CurrentNonce::Assumed(_) => true,
CurrentNonce::Known(_) => false,
}
}
// whether this nonce is known for certain from an external source.
fn is_known(&self) -> bool {
!self.is_assumed()
}
// the current nonce's value.
fn value(&self) -> &U256 {
match *self {
CurrentNonce::Assumed(ref val) => val,
CurrentNonce::Known(ref val) => val,
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
struct TransactionInfo {
hash: H256,
nonce: U256,
condition: Option,
}
impl<'a> From<&'a PendingTransaction> for TransactionInfo {
fn from(tx: &'a PendingTransaction) -> Self {
TransactionInfo {
hash: tx.hash(),
nonce: tx.nonce.clone(),
condition: tx.condition.clone(),
}
}
}
// transactions associated with a specific account.
#[derive(Debug, Clone, PartialEq, Eq)]
struct AccountTransactions {
// believed current nonce (gotten from initial given TX or `cull` calls).
cur_nonce: CurrentNonce,
current: Vec, // ordered "current" transactions (cur_nonce onwards)
future: BTreeMap, // "future" transactions.
}
impl AccountTransactions {
fn is_empty(&self) -> bool {
self.current.is_empty() && self.future.is_empty()
}
fn next_nonce(&self) -> U256 {
self.current.last().map(|last| last.nonce + 1.into())
.unwrap_or_else(|| *self.cur_nonce.value())
}
// attempt to move transactions from the future queue into the current queue.
fn adjust_future(&mut self) {
let mut next_nonce = self.next_nonce();
loop {
match self.future.remove(&next_nonce) {
Some(tx) => self.current.push(tx),
None => break,
}
next_nonce = next_nonce + 1.into();
}
}
}
/// Light transaction queue. See module docs for more details.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub struct TransactionQueue {
by_account: HashMap,
by_hash: H256FastMap,
}
impl TransactionQueue {
/// Import a pending transaction to be queued.
pub fn import(&mut self, tx: PendingTransaction) -> Result {
let sender = tx.sender();
let hash = tx.hash();
let nonce = tx.nonce;
let tx_info = TransactionInfo::from(&tx);
if self.by_hash.contains_key(&hash) { return Err(TransactionError::AlreadyImported) }
let res = match self.by_account.entry(sender) {
Entry::Vacant(entry) => {
entry.insert(AccountTransactions {
cur_nonce: CurrentNonce::Assumed(nonce),
current: vec![tx_info],
future: BTreeMap::new(),
});
TransactionImportResult::Current
}
Entry::Occupied(mut entry) => {
let acct_txs = entry.get_mut();
if &nonce < acct_txs.cur_nonce.value() {
// don't accept txs from before known current nonce.
if acct_txs.cur_nonce.is_known() {
return Err(TransactionError::Old)
}
// lower our assumption until corrected later.
acct_txs.cur_nonce = CurrentNonce::Assumed(nonce);
}
match acct_txs.current.binary_search_by(|x| x.nonce.cmp(&nonce)) {
Ok(idx) => {
trace!(target: "txqueue", "Replacing existing transaction from {} with nonce {}",
sender, nonce);
let old = ::std::mem::replace(&mut acct_txs.current[idx], tx_info);
self.by_hash.remove(&old.hash);
TransactionImportResult::Current
}
Err(idx) => {
let cur_len = acct_txs.current.len();
let incr_nonce = nonce + 1.into();
// current is sorted with one tx per nonce,
// so if a tx with given nonce wasn't found that means it is either
// earlier in nonce than all other "current" transactions or later.
assert!(idx == 0 || idx == cur_len);
if idx == 0 && acct_txs.current.first().map_or(false, |f| f.nonce != incr_nonce) {
let old_cur = ::std::mem::replace(&mut acct_txs.current, vec![tx_info]);
trace!(target: "txqueue", "Moving {} transactions with nonce > {} to future",
old_cur.len(), incr_nonce);
for future in old_cur {
let future_nonce = future.nonce;
acct_txs.future.insert(future_nonce, future);
}
TransactionImportResult::Current
} else if idx == cur_len && acct_txs.current.last().map_or(false, |f| f.nonce + 1.into() != nonce) {
trace!(target: "txqueue", "Queued future transaction for {}, nonce={}", sender, nonce);
let future_nonce = nonce;
acct_txs.future.insert(future_nonce, tx_info);
TransactionImportResult::Future
} else {
trace!(target: "txqueue", "Queued current transaction for {}, nonce={}", sender, nonce);
// insert, then check if we've filled any gaps.
acct_txs.current.insert(idx, tx_info);
acct_txs.adjust_future();
TransactionImportResult::Current
}
}
}
}
};
self.by_hash.insert(hash, tx);
Ok(res)
}
/// Get pending transaction by hash.
pub fn transaction(&self, hash: &H256) -> Option {
self.by_hash.get(hash).map(|tx| (&**tx).clone())
}
/// Get the next nonce for a given address based on what's within the queue.
/// If the address has no queued transactions, then `None` will be returned
/// and the next nonce will have to be deduced via other means.
pub fn next_nonce(&self, address: &Address) -> Option {
self.by_account.get(address).map(AccountTransactions::next_nonce)
}
/// Get all transactions ready to be propagated.
/// `best_block_number` and `best_block_timestamp` are used to filter out conditionally
/// propagated transactions.
///
/// Returned transactions are batched by sender, in order of ascending nonce.
pub fn ready_transactions(&self, best_block_number: u64, best_block_timestamp: u64) -> Vec {
self.by_account.values()
.flat_map(|acct_txs| {
acct_txs.current.iter().take_while(|tx| match tx.condition {
None => true,
Some(Condition::Number(blk_num)) => blk_num <= best_block_number,
Some(Condition::Timestamp(time)) => time <= best_block_timestamp,
}).map(|info| info.hash)
})
.filter_map(|hash| match self.by_hash.get(&hash) {
Some(tx) => Some(tx.clone()),
None => {
warn!(target: "txqueue", "Inconsistency detected between `by_hash` and `by_account`: {} not stored.",
hash);
None
}
})
.collect()
}
/// Get all transactions not ready to be propagated.
/// `best_block_number` and `best_block_timestamp` are used to filter out conditionally
/// propagated transactions.
///
/// Returned transactions are batched by sender, in order of ascending nonce.
pub fn future_transactions(&self, best_block_number: u64, best_block_timestamp: u64) -> Vec {
self.by_account.values()
.flat_map(|acct_txs| {
acct_txs.current.iter().skip_while(|tx| match tx.condition {
None => true,
Some(Condition::Number(blk_num)) => blk_num <= best_block_number,
Some(Condition::Timestamp(time)) => time <= best_block_timestamp,
}).chain(acct_txs.future.values()).map(|info| info.hash)
})
.filter_map(|hash| match self.by_hash.get(&hash) {
Some(tx) => Some(tx.clone()),
None => {
warn!(target: "txqueue", "Inconsistency detected between `by_hash` and `by_account`: {} not stored.",
hash);
None
}
})
.collect()
}
/// Addresses for which we store transactions.
pub fn queued_senders(&self) -> Vec {
self.by_account.keys().cloned().collect()
}
/// Cull out all transactions by the given address which are invalidated by the given nonce.
pub fn cull(&mut self, address: Address, cur_nonce: U256) {
let mut removed_hashes = vec![];
if let Entry::Occupied(mut entry) = self.by_account.entry(address) {
{
let acct_txs = entry.get_mut();
acct_txs.cur_nonce = CurrentNonce::Known(cur_nonce);
// cull old "future" keys.
let old_future: Vec<_> = acct_txs.future.keys().take_while(|&&k| k < cur_nonce).cloned().collect();
for old in old_future {
let hash = acct_txs.future.remove(&old)
.expect("key extracted from keys iterator; known to exist; qed")
.hash;
removed_hashes.push(hash);
}
// then cull from "current".
let valid_pos = acct_txs.current.iter().position(|tx| tx.nonce >= cur_nonce);
match valid_pos {
None =>
removed_hashes.extend(acct_txs.current.drain(..).map(|tx| tx.hash)),
Some(valid) =>
removed_hashes.extend(acct_txs.current.drain(..valid).map(|tx| tx.hash)),
}
// now try and move stuff out of future into current.
acct_txs.adjust_future();
}
if entry.get_mut().is_empty() {
trace!(target: "txqueue", "No more queued transactions for {} after nonce {}",
address, cur_nonce);
entry.remove();
}
}
trace!(target: "txqueue", "Culled {} old transactions from sender {} (nonce={})",
removed_hashes.len(), address, cur_nonce);
for hash in removed_hashes {
self.by_hash.remove(&hash);
}
}
}
#[cfg(test)]
mod tests {
use super::TransactionQueue;
use util::Address;
use ethcore::transaction::{Transaction, PendingTransaction, Condition};
#[test]
fn queued_senders() {
let sender = Address::default();
let mut txq = TransactionQueue::default();
let tx = Transaction::default().fake_sign(sender);
txq.import(tx.into()).unwrap();
assert_eq!(txq.queued_senders(), vec![sender]);
txq.cull(sender, 1.into());
assert_eq!(txq.queued_senders(), vec![]);
assert!(txq.by_hash.is_empty());
}
#[test]
fn next_nonce() {
let sender = Address::default();
let mut txq = TransactionQueue::default();
for i in (0..5).chain(10..15) {
let mut tx = Transaction::default();
tx.nonce = i.into();
let tx = tx.fake_sign(sender);
txq.import(tx.into()).unwrap();
}
// current: 0..5, future: 10..15
assert_eq!(txq.ready_transactions(0, 0).len(), 5);
assert_eq!(txq.next_nonce(&sender).unwrap(), 5.into());
txq.cull(sender, 8.into());
// current: empty, future: 10..15
assert_eq!(txq.ready_transactions(0, 0).len(), 0);
assert_eq!(txq.next_nonce(&sender).unwrap(), 8.into());
txq.cull(sender, 10.into());
// current: 10..15, future: empty
assert_eq!(txq.ready_transactions(0, 0).len(), 5);
assert_eq!(txq.next_nonce(&sender).unwrap(), 15.into());
}
#[test]
fn current_to_future() {
let sender = Address::default();
let mut txq = TransactionQueue::default();
for i in 5..10 {
let mut tx = Transaction::default();
tx.nonce = i.into();
let tx = tx.fake_sign(sender);
txq.import(tx.into()).unwrap();
}
assert_eq!(txq.ready_transactions(0, 0).len(), 5);
assert_eq!(txq.next_nonce(&sender).unwrap(), 10.into());
for i in 0..3 {
let mut tx = Transaction::default();
tx.nonce = i.into();
let tx = tx.fake_sign(sender);
txq.import(tx.into()).unwrap();
}
assert_eq!(txq.ready_transactions(0, 0).len(), 3);
assert_eq!(txq.next_nonce(&sender).unwrap(), 3.into());
for i in 3..5 {
let mut tx = Transaction::default();
tx.nonce = i.into();
let tx = tx.fake_sign(sender);
txq.import(tx.into()).unwrap();
}
assert_eq!(txq.ready_transactions(0, 0).len(), 10);
assert_eq!(txq.next_nonce(&sender).unwrap(), 10.into());
}
#[test]
fn conditional() {
let mut txq = TransactionQueue::default();
let sender = Address::default();
for i in 0..5 {
let mut tx = Transaction::default();
tx.nonce = i.into();
let tx = tx.fake_sign(sender);
txq.import(match i {
3 => PendingTransaction::new(tx, Some(Condition::Number(100))),
4 => PendingTransaction::new(tx, Some(Condition::Timestamp(1234))),
_ => tx.into(),
}).unwrap();
}
assert_eq!(txq.ready_transactions(0, 0).len(), 3);
assert_eq!(txq.ready_transactions(0, 1234).len(), 3);
assert_eq!(txq.ready_transactions(100, 0).len(), 4);
assert_eq!(txq.ready_transactions(100, 1234).len(), 5);
}
#[test]
fn cull_from_future() {
let sender = Address::default();
let mut txq = TransactionQueue::default();
for i in (0..1).chain(3..10) {
let mut tx = Transaction::default();
tx.nonce = i.into();
let tx = tx.fake_sign(sender);
txq.import(tx.into()).unwrap();
}
txq.cull(sender, 6.into());
assert_eq!(txq.ready_transactions(0, 0).len(), 4);
assert_eq!(txq.next_nonce(&sender).unwrap(), 10.into());
}
#[test]
fn import_old() {
let sender = Address::default();
let mut txq = TransactionQueue::default();
let mut tx_a = Transaction::default();
tx_a.nonce = 3.into();
let mut tx_b = Transaction::default();
tx_b.nonce = 2.into();
txq.import(tx_a.fake_sign(sender).into()).unwrap();
txq.cull(sender, 3.into());
assert!(txq.import(tx_b.fake_sign(sender).into()).is_err())
}
#[test]
fn replace_is_removed() {
let sender = Address::default();
let mut txq = TransactionQueue::default();
let tx_b: PendingTransaction = Transaction::default().fake_sign(sender).into();
let tx_a: PendingTransaction = {
let mut tx_a = Transaction::default();
tx_a.gas_price = tx_b.gas_price + 1.into();
tx_a.fake_sign(sender).into()
};
let hash = tx_a.hash();
txq.import(tx_a).unwrap();
txq.import(tx_b).unwrap();
assert!(txq.transaction(&hash).is_none());
}
#[test]
fn future_transactions() {
let sender = Address::default();
let mut txq = TransactionQueue::default();
for i in (0..1).chain(3..10) {
let mut tx = Transaction::default();
tx.nonce = i.into();
let tx = tx.fake_sign(sender);
txq.import(tx.into()).unwrap();
}
assert_eq!(txq.future_transactions(0, 0).len(), 7);
assert_eq!(txq.next_nonce(&sender).unwrap(), 1.into());
}
}