openethereum/util/network-devp2p/src/host.rs
David 99271db9d3
Use parity-crypto updated to use upstream rust-secp256k1 (#11406)
* Use parity-crypto updated to use upstream rust-secp256k1

* Fetch dependency from git

* Missed a session ID

* Add free-standing inversion function that uses `libsecp256k1`

* fixed tests

* Update deps

* Use parity-crypto 0.5.0
Use libsecp256k1 0.3.5

* Review grumble

Co-authored-by: Svyatoslav Nikolsky <svyatonik@gmail.com>
2020-02-10 18:29:21 +01:00

1290 lines
42 KiB
Rust

// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
use std::cmp::{max, min};
use std::collections::{HashMap, HashSet};
use std::fs;
use std::io::{self, Read, Write};
use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4};
use std::ops::*;
use std::path::{Path, PathBuf};
use std::str::FromStr;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, Ordering as AtomicOrdering};
use std::time::Duration;
use ethereum_types::H256;
use keccak_hash::keccak;
use log::{debug, info, trace, warn};
use mio::{
deprecated::EventLoop, PollOpt, Ready, tcp::{TcpListener, TcpStream},
Token,
udp::UdpSocket
};
use parity_path::restrict_permissions_owner;
use parking_lot::{Mutex, RwLock};
use rlp::{Encodable, RlpStream};
use ethcore_io::{IoContext, IoHandler, IoManager, StreamToken, TimerToken};
use parity_crypto::publickey::{Generator, KeyPair, Random, Secret};
use network::{
client_version::ClientVersion, ConnectionDirection, ConnectionFilter, DisconnectReason, Error,
NetworkConfiguration, NetworkContext as NetworkContextTrait, NetworkIoMessage, NetworkProtocolHandler,
NonReservedPeerMode, PacketId, PeerId, ProtocolId, SessionInfo
};
use crate::{
connection::PAYLOAD_SOFT_LIMIT,
discovery::{Discovery, MAX_DATAGRAM_SIZE, NodeEntry, TableUpdates},
ip_utils::{map_external_address, select_public_address},
node_table::*,
PROTOCOL_VERSION,
session::{Session, SessionData}
};
type Slab<T> = ::slab::Slab<T, usize>;
const MAX_SESSIONS: usize = 2048 + MAX_HANDSHAKES;
const MAX_HANDSHAKES: usize = 1024;
const DEFAULT_PORT: u16 = 30303;
// StreamToken/TimerToken
const TCP_ACCEPT: StreamToken = SYS_TIMER + 1;
const IDLE: TimerToken = SYS_TIMER + 2;
const DISCOVERY: StreamToken = SYS_TIMER + 3;
const DISCOVERY_REFRESH: TimerToken = SYS_TIMER + 4;
const FAST_DISCOVERY_REFRESH: TimerToken = SYS_TIMER + 5;
const DISCOVERY_ROUND: TimerToken = SYS_TIMER + 6;
const NODE_TABLE: TimerToken = SYS_TIMER + 7;
const FIRST_SESSION: StreamToken = 0;
const LAST_SESSION: StreamToken = FIRST_SESSION + MAX_SESSIONS - 1;
const USER_TIMER: TimerToken = LAST_SESSION + 256;
const SYS_TIMER: TimerToken = LAST_SESSION + 1;
// Timeouts
// for IDLE TimerToken
const MAINTENANCE_TIMEOUT: Duration = Duration::from_secs(1);
// for DISCOVERY_REFRESH TimerToken
const DISCOVERY_REFRESH_TIMEOUT: Duration = Duration::from_secs(60);
// for FAST_DISCOVERY_REFRESH TimerToken
const FAST_DISCOVERY_REFRESH_TIMEOUT: Duration = Duration::from_secs(10);
// for DISCOVERY_ROUND TimerToken
const DISCOVERY_ROUND_TIMEOUT: Duration = Duration::from_millis(300);
// for NODE_TABLE TimerToken
const NODE_TABLE_TIMEOUT: Duration = Duration::from_secs(300);
#[derive(Debug, PartialEq, Eq)]
/// Protocol info
pub struct CapabilityInfo {
/// Protocol ID
pub protocol: ProtocolId,
/// Protocol version
pub version: u8,
/// Total number of packet IDs this protocol support.
pub packet_count: u8,
}
impl Encodable for CapabilityInfo {
fn rlp_append(&self, s: &mut RlpStream) {
s.begin_list(2);
s.append(&&self.protocol[..]);
s.append(&self.version);
}
}
/// IO access point. This is passed to all IO handlers and provides an interface to the IO subsystem.
pub struct NetworkContext<'s> {
io: &'s IoContext<NetworkIoMessage>,
protocol: ProtocolId,
sessions: Arc<RwLock<Slab<SharedSession>>>,
session: Option<SharedSession>,
session_id: Option<StreamToken>,
reserved_peers: &'s HashSet<NodeId>,
}
impl<'s> NetworkContext<'s> {
/// Create a new network IO access point. Takes references to all the data that can be updated within the IO handler.
fn new(
io: &'s IoContext<NetworkIoMessage>,
protocol: ProtocolId,
session: Option<SharedSession>,
sessions: Arc<RwLock<Slab<SharedSession>>>,
reserved_peers: &'s HashSet<NodeId>,
) -> NetworkContext<'s> {
let id = session.as_ref().map(|s| s.lock().token());
NetworkContext {
io,
protocol,
session_id: id,
session,
sessions,
reserved_peers: reserved_peers,
}
}
fn resolve_session(&self, peer: PeerId) -> Option<SharedSession> {
match self.session_id {
Some(id) if id == peer => self.session.clone(),
_ => self.sessions.read().get(peer).cloned(),
}
}
}
impl<'s> NetworkContextTrait for NetworkContext<'s> {
fn send(&self, peer: PeerId, packet_id: PacketId, data: Vec<u8>) -> Result<(), Error> {
self.send_protocol(self.protocol, peer, packet_id, data)
}
fn send_protocol(&self, protocol: ProtocolId, peer: PeerId, packet_id: PacketId, data: Vec<u8>) -> Result<(), Error> {
let session = self.resolve_session(peer);
if let Some(session) = session {
session.lock().send_packet(self.io, Some(protocol), packet_id as u8, &data)?;
} else {
trace!(target: "network", "Send: Peer no longer exist")
}
Ok(())
}
fn respond(&self, packet_id: PacketId, data: Vec<u8>) -> Result<(), Error> {
assert!(self.session.is_some(), "Respond called without network context");
self.session_id.map_or_else(|| Err(Error::Expired), |id| self.send(id, packet_id, data))
}
fn disable_peer(&self, peer: PeerId) {
self.io.message(NetworkIoMessage::DisablePeer(peer))
.unwrap_or_else(|e| warn!("Error sending network IO message: {:?}", e));
}
fn disconnect_peer(&self, peer: PeerId) {
self.io.message(NetworkIoMessage::Disconnect(peer))
.unwrap_or_else(|e| warn!("Error sending network IO message: {:?}", e));
}
fn is_expired(&self) -> bool {
self.session.as_ref().map_or(false, |s| s.lock().expired())
}
fn register_timer(&self, token: TimerToken, delay: Duration) -> Result<(), Error> {
self.io.message(NetworkIoMessage::AddTimer {
token,
delay,
protocol: self.protocol,
}).unwrap_or_else(|e| warn!("Error sending network IO message: {:?}", e));
Ok(())
}
fn peer_client_version(&self, peer: PeerId) -> ClientVersion {
self.resolve_session(peer).map_or(ClientVersion::from("unknown").to_owned(), |s| s.lock().info.client_version.clone())
}
fn session_info(&self, peer: PeerId) -> Option<SessionInfo> {
self.resolve_session(peer).map(|s| s.lock().info.clone())
}
fn protocol_version(&self, protocol: ProtocolId, peer: PeerId) -> Option<u8> {
let session = self.resolve_session(peer);
session.and_then(|s| s.lock().capability_version(protocol))
}
fn subprotocol_name(&self) -> ProtocolId { self.protocol }
fn is_reserved_peer(&self, peer: PeerId) -> bool {
self.session_info(peer)
.and_then(|info| info.id)
.map(|node| self.reserved_peers.contains(&node))
.unwrap_or(false)
}
fn payload_soft_limit(&self) -> usize {
PAYLOAD_SOFT_LIMIT
}
}
/// Shared host information
pub struct HostInfo {
/// Our private and public keys.
keys: KeyPair,
/// Current network configuration
config: NetworkConfiguration,
/// Connection nonce.
nonce: H256,
/// RLPx protocol version
pub protocol_version: u32,
/// Registered capabilities (handlers)
pub capabilities: Vec<CapabilityInfo>,
/// Local address + discovery port
pub local_endpoint: NodeEndpoint,
/// Public address + discovery port
pub public_endpoint: Option<NodeEndpoint>,
}
impl HostInfo {
fn next_nonce(&mut self) -> H256 {
self.nonce = keccak(&self.nonce);
self.nonce
}
pub(crate) fn client_version(&self) -> &str {
&self.config.client_version
}
pub(crate) fn secret(&self) -> &Secret {
self.keys.secret()
}
pub(crate) fn id(&self) -> &NodeId {
self.keys.public()
}
}
type SharedSession = Arc<Mutex<Session>>;
#[derive(Copy, Clone)]
struct ProtocolTimer {
pub protocol: ProtocolId,
pub token: TimerToken, // Handler level token
}
/// Root IO handler. Manages protocol handlers, IO timers and network connections.
///
/// NOTE: must keep the lock in order of: reserved_nodes (rwlock) -> session (mutex, from sessions)
pub struct Host {
pub info: RwLock<HostInfo>,
udp_socket: Mutex<Option<UdpSocket>>,
tcp_listener: Mutex<TcpListener>,
sessions: Arc<RwLock<Slab<SharedSession>>>,
discovery: Mutex<Option<Discovery<'static>>>,
nodes: RwLock<NodeTable>,
handlers: RwLock<HashMap<ProtocolId, Arc<dyn NetworkProtocolHandler + Sync>>>,
timers: RwLock<HashMap<TimerToken, ProtocolTimer>>,
timer_counter: RwLock<usize>,
reserved_nodes: RwLock<HashSet<NodeId>>,
stopping: AtomicBool,
filter: Option<Arc<dyn ConnectionFilter>>,
}
impl Host {
/// Create a new instance
pub fn new(mut config: NetworkConfiguration, filter: Option<Arc<dyn ConnectionFilter>>) -> Result<Host, Error> {
let mut listen_address = match config.listen_address {
None => SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(0, 0, 0, 0), DEFAULT_PORT)),
Some(addr) => addr,
};
let keys = if let Some(ref secret) = config.use_secret {
KeyPair::from_secret(secret.clone())?
} else {
config.config_path.clone().and_then(|ref p| load_key(Path::new(&p)))
.map_or_else(|| {
let key = Random.generate();
if let Some(path) = config.config_path.clone() {
save_key(Path::new(&path), key.secret());
}
key
},
|s| KeyPair::from_secret(s).expect("Error creating node secret key"))
};
let path = config.net_config_path.clone();
// Setup the server socket
let tcp_listener = TcpListener::bind(&listen_address)?;
listen_address = SocketAddr::new(listen_address.ip(), tcp_listener.local_addr()?.port());
debug!(target: "network", "Listening at {:?}", listen_address);
let udp_port = config.udp_port.unwrap_or_else(|| listen_address.port());
let local_endpoint = NodeEndpoint { address: listen_address, udp_port };
let boot_nodes = config.boot_nodes.clone();
let reserved_nodes = config.reserved_nodes.clone();
config.max_handshakes = min(config.max_handshakes, MAX_HANDSHAKES as u32);
let mut host = Host {
info: RwLock::new(HostInfo {
keys,
config,
nonce: H256::random(),
protocol_version: PROTOCOL_VERSION,
capabilities: Vec::new(),
public_endpoint: None,
local_endpoint,
}),
discovery: Mutex::new(None),
udp_socket: Mutex::new(None),
tcp_listener: Mutex::new(tcp_listener),
sessions: Arc::new(RwLock::new(Slab::new_starting_at(FIRST_SESSION, MAX_SESSIONS))),
nodes: RwLock::new(NodeTable::new(path)),
handlers: RwLock::new(HashMap::new()),
timers: RwLock::new(HashMap::new()),
timer_counter: RwLock::new(USER_TIMER),
reserved_nodes: RwLock::new(HashSet::new()),
stopping: AtomicBool::new(false),
filter,
};
for n in boot_nodes {
host.add_node(&n);
}
for n in reserved_nodes {
if let Err(e) = host.add_reserved_node(&n) {
debug!(target: "network", "Error parsing node id: {}: {:?}", n, e);
}
}
Ok(host)
}
pub fn add_node(&mut self, id: &str) {
match Node::from_str(id) {
Err(e) => { debug!(target: "network", "Could not add node {}: {:?}", id, e); },
Ok(n) => {
let entry = NodeEntry { endpoint: n.endpoint.clone(), id: n.id };
self.nodes.write().add_node(n);
if let Some(ref mut discovery) = *self.discovery.lock() {
discovery.add_node(entry);
}
}
}
}
pub fn add_reserved_node(&self, id: &str) -> Result<(), Error> {
let n = Node::from_str(id)?;
let entry = NodeEntry { endpoint: n.endpoint.clone(), id: n.id };
self.reserved_nodes.write().insert(n.id);
self.nodes.write().add_node(Node::new(entry.id, entry.endpoint.clone()));
if let Some(ref mut discovery) = *self.discovery.lock() {
discovery.add_node(entry);
}
Ok(())
}
pub fn set_non_reserved_mode(&self, mode: NonReservedPeerMode, io: &IoContext<NetworkIoMessage>) {
let mut info = self.info.write();
if info.config.non_reserved_mode != mode {
info.config.non_reserved_mode = mode;
drop(info);
if let NonReservedPeerMode::Deny = mode {
// disconnect all non-reserved peers here.
let reserved: HashSet<NodeId> = self.reserved_nodes.read().clone();
let mut to_kill = Vec::new();
for e in self.sessions.read().iter() {
let mut s = e.lock();
{
let id = s.id();
if id.map_or(false, |id| reserved.contains(id)) {
continue;
}
}
s.disconnect(io, DisconnectReason::ClientQuit);
to_kill.push(s.token());
}
for p in to_kill {
trace!(target: "network", "Disconnecting on reserved-only mode: {}", p);
self.kill_connection(p, io, false);
}
}
}
}
pub fn remove_reserved_node(&self, id: &str) -> Result<(), Error> {
let n = Node::from_str(id)?;
self.reserved_nodes.write().remove(&n.id);
Ok(())
}
pub fn external_url(&self) -> Option<String> {
let info = self.info.read();
info.public_endpoint.as_ref().map(|e| format!("{}", Node::new(*info.id(), e.clone())))
}
pub fn local_url(&self) -> String {
let info = self.info.read();
format!("{}", Node::new(*info.id(), info.local_endpoint.clone()))
}
pub fn stop(&self, io: &IoContext<NetworkIoMessage>) {
self.stopping.store(true, AtomicOrdering::Release);
let mut to_kill = Vec::new();
for e in self.sessions.read().iter() {
let mut s = e.lock();
s.disconnect(io, DisconnectReason::ClientQuit);
to_kill.push(s.token());
}
for p in to_kill {
trace!(target: "network", "Disconnecting on shutdown: {}", p);
self.kill_connection(p, io, true);
}
io.unregister_handler();
}
/// Get all connected peers.
pub fn connected_peers(&self) -> Vec<PeerId> {
let sessions = self.sessions.read();
let sessions = &*sessions;
let mut peers = Vec::with_capacity(sessions.count());
for i in (0..MAX_SESSIONS).map(|x| x + FIRST_SESSION) {
if sessions.get(i).is_some() {
peers.push(i);
}
}
peers
}
fn init_public_interface(&self, io: &IoContext<NetworkIoMessage>) -> Result<(), Error> {
if self.info.read().public_endpoint.is_some() {
return Ok(());
}
let local_endpoint = self.info.read().local_endpoint.clone();
let public_address = self.info.read().config.public_address;
let allow_ips = self.info.read().config.ip_filter.clone();
let public_endpoint = match public_address {
None => {
let public_address = select_public_address(local_endpoint.address.port());
let public_endpoint = NodeEndpoint { address: public_address, udp_port: local_endpoint.udp_port };
if self.info.read().config.nat_enabled {
match map_external_address(&local_endpoint, &self.info.read().config.nat_type) {
Some(endpoint) => {
info!("NAT mapped to external address {}", endpoint.address);
endpoint
},
None => public_endpoint
}
} else {
public_endpoint
}
}
Some(addr) => NodeEndpoint { address: addr, udp_port: local_endpoint.udp_port }
};
self.info.write().public_endpoint = Some(public_endpoint.clone());
if let Some(url) = self.external_url() {
io.message(NetworkIoMessage::NetworkStarted(url)).unwrap_or_else(|e| warn!("Error sending IO notification: {:?}", e));
}
// Initialize discovery.
let discovery = {
let info = self.info.read();
if info.config.discovery_enabled && info.config.non_reserved_mode == NonReservedPeerMode::Accept {
Some(Discovery::new(&info.keys, public_endpoint, allow_ips))
} else { None }
};
if let Some(mut discovery) = discovery {
let mut udp_addr = local_endpoint.address;
udp_addr.set_port(local_endpoint.udp_port);
let socket = UdpSocket::bind(&udp_addr).expect("Error binding UDP socket");
*self.udp_socket.lock() = Some(socket);
discovery.add_node_list(self.nodes.read().entries());
*self.discovery.lock() = Some(discovery);
io.register_stream(DISCOVERY)?;
io.register_timer(FAST_DISCOVERY_REFRESH, FAST_DISCOVERY_REFRESH_TIMEOUT)?;
io.register_timer(DISCOVERY_REFRESH, DISCOVERY_REFRESH_TIMEOUT)?;
io.register_timer(DISCOVERY_ROUND, DISCOVERY_ROUND_TIMEOUT)?;
}
io.register_timer(NODE_TABLE, NODE_TABLE_TIMEOUT)?;
io.register_stream(TCP_ACCEPT)?;
Ok(())
}
fn maintain_network(&self, io: &IoContext<NetworkIoMessage>) {
self.keep_alive(io);
self.connect_peers(io);
}
fn have_session(&self, id: &NodeId) -> bool {
self.sessions.read().iter().any(|e| e.lock().info.id == Some(*id))
}
// returns (handshakes, egress, ingress)
fn session_count(&self) -> (usize, usize, usize) {
let mut handshakes = 0;
let mut egress = 0;
let mut ingress = 0;
for s in self.sessions.read().iter() {
match s.try_lock() {
Some(ref s) if s.is_ready() && s.info.originated => egress += 1,
Some(ref s) if s.is_ready() && !s.info.originated => ingress += 1,
_ => handshakes +=1,
}
}
(handshakes, egress, ingress)
}
fn connecting_to(&self, id: &NodeId) -> bool {
self.sessions.read().iter().any(|e| e.lock().id() == Some(id))
}
fn keep_alive(&self, io: &IoContext<NetworkIoMessage>) {
let mut to_kill = Vec::new();
for e in self.sessions.read().iter() {
let mut s = e.lock();
if !s.keep_alive(io) {
s.disconnect(io, DisconnectReason::PingTimeout);
to_kill.push(s.token());
}
}
for p in to_kill {
trace!(target: "network", "Ping timeout: {}", p);
self.kill_connection(p, io, true);
}
}
fn has_enough_peers(&self) -> bool {
let min_peers = {
let info = self.info.read();
let config = &info.config;
config.min_peers
};
let (_, egress_count, ingress_count) = self.session_count();
return egress_count + ingress_count >= min_peers as usize;
}
fn connect_peers(&self, io: &IoContext<NetworkIoMessage>) {
let (min_peers, mut pin, max_handshakes, allow_ips, self_id) = {
let info = self.info.read();
if info.capabilities.is_empty() {
return;
}
let config = &info.config;
(config.min_peers, config.non_reserved_mode == NonReservedPeerMode::Deny, config.max_handshakes as usize, config.ip_filter.clone(), *info.id())
};
let (handshake_count, egress_count, ingress_count) = self.session_count();
let reserved_nodes = self.reserved_nodes.read();
if egress_count + ingress_count >= min_peers as usize + reserved_nodes.len() {
// check if all pinned nodes are connected.
if reserved_nodes.iter().all(|n| self.have_session(n) && self.connecting_to(n)) {
return;
}
// if not, only attempt connect to reserved peers
pin = true;
}
// allow 16 slots for incoming connections
if handshake_count >= max_handshakes {
return;
}
// iterate over all nodes, reserved ones coming first.
// if we are pinned to only reserved nodes, ignore all others.
let nodes = reserved_nodes.iter().cloned().chain(if !pin {
self.nodes.read().nodes(&allow_ips)
} else {
Vec::new()
});
let max_handshakes_per_round = max_handshakes / 2;
let mut started: usize = 0;
for id in nodes.filter(|id|
!self.have_session(id) &&
!self.connecting_to(id) &&
*id != self_id &&
self.filter.as_ref().map_or(true, |f| f.connection_allowed(&self_id, &id, ConnectionDirection::Outbound))
).take(min(max_handshakes_per_round, max_handshakes - handshake_count)) {
self.connect_peer(&id, io);
started += 1;
}
debug!(target: "network", "Connecting peers: {} sessions, {} pending + {} started", egress_count + ingress_count, handshake_count, started);
}
fn connect_peer(&self, id: &NodeId, io: &IoContext<NetworkIoMessage>) {
if self.have_session(id) {
trace!(target: "network", "Aborted connect. Node already connected.");
return;
}
if self.connecting_to(id) {
trace!(target: "network", "Aborted connect. Node already connecting.");
return;
}
let socket = {
let address = {
let nodes = self.nodes.read();
if let Some(node) = nodes.get(id) {
node.endpoint.address
} else {
debug!(target: "network", "Connection to expired node aborted");
return;
}
};
match TcpStream::connect(&address) {
Ok(socket) => {
trace!(target: "network", "{}: Connecting to {:?}", id, address);
socket
},
Err(e) => {
debug!(target: "network", "{}: Can't connect to address {:?}: {:?}", id, address, e);
self.nodes.write().note_failure(&id);
return;
}
}
};
if let Err(e) = self.create_connection(socket, Some(id), io) {
debug!(target: "network", "Can't create connection: {:?}", e);
}
}
fn create_connection(&self, socket: TcpStream, id: Option<&NodeId>, io: &IoContext<NetworkIoMessage>) -> Result<(), Error> {
let nonce = self.info.write().next_nonce();
let mut sessions = self.sessions.write();
let token = sessions.insert_with_opt(|token| {
trace!(target: "network", "{}: Initiating session {:?}", token, id);
match Session::new(io, socket, token, id, &nonce, &self.info.read()) {
Ok(s) => Some(Arc::new(Mutex::new(s))),
Err(e) => {
debug!(target: "network", "Session create error: {:?}", e);
None
}
}
});
match token {
Some(t) => io.register_stream(t).map(|_| ()).map_err(Into::into),
None => {
debug!(target: "network", "Max sessions reached");
Ok(())
}
}
}
fn accept(&self, io: &IoContext<NetworkIoMessage>) {
trace!(target: "network", "Accepting incoming connection");
loop {
let socket = match self.tcp_listener.lock().accept() {
Ok((sock, _addr)) => sock,
Err(e) => {
if e.kind() != io::ErrorKind::WouldBlock {
debug!(target: "network", "Error accepting connection: {:?}", e);
}
break
},
};
if let Err(e) = self.create_connection(socket, None, io) {
debug!(target: "network", "Can't accept connection: {:?}", e);
}
}
}
fn session_writable(&self, token: StreamToken, io: &IoContext<NetworkIoMessage>) {
let session = { self.sessions.read().get(token).cloned() };
if let Some(session) = session {
let mut s = session.lock();
if let Err(e) = s.writable(io, &self.info.read()) {
trace!(target: "network", "Session write error: {}: {:?}", token, e);
}
if s.done() {
io.deregister_stream(token).unwrap_or_else(|e| debug!("Error deregistering stream: {:?}", e));
}
}
}
fn connection_closed(&self, token: StreamToken, io: &IoContext<NetworkIoMessage>) {
trace!(target: "network", "Connection closed: {}", token);
self.kill_connection(token, io, true);
}
fn session_readable(&self, token: StreamToken, io: &IoContext<NetworkIoMessage>) {
let mut ready_data: Vec<ProtocolId> = Vec::new();
let mut packet_data: Vec<(ProtocolId, PacketId, Vec<u8>)> = Vec::new();
let mut kill = false;
let session = { self.sessions.read().get(token).cloned() };
let mut ready_id = None;
if let Some(session) = session.clone() {
{
loop {
let session_result = session.lock().readable(io, &self.info.read());
match session_result {
Err(e) => {
let reserved_nodes = self.reserved_nodes.read();
let s = session.lock();
trace!(target: "network", "Session read error: {}:{:?} ({:?}) {:?}", token, s.id(), s.remote_addr(), e);
match e {
Error::Disconnect(DisconnectReason::IncompatibleProtocol) | Error::Disconnect(DisconnectReason::UselessPeer) => {
if let Some(id) = s.id() {
if !reserved_nodes.contains(id) {
let mut nodes = self.nodes.write();
nodes.note_failure(&id);
nodes.mark_as_useless(id);
}
}
},
_ => {},
}
kill = true;
break;
},
Ok(SessionData::Ready) => {
let (_, egress_count, ingress_count) = self.session_count();
let reserved_nodes = self.reserved_nodes.read();
let mut s = session.lock();
let (min_peers, mut max_peers, reserved_only, self_id) = {
let info = self.info.read();
let mut max_peers = info.config.max_peers;
for cap in &s.info.capabilities {
if let Some(num) = info.config.reserved_protocols.get(&cap.protocol) {
max_peers += *num;
break;
}
}
(info.config.min_peers as usize, max_peers as usize, info.config.non_reserved_mode == NonReservedPeerMode::Deny, *info.id())
};
max_peers = max(max_peers, min_peers);
let id = *s.id().expect("Ready session always has id");
// Check for the session limit.
// Outgoing connections are allowed as long as their count is <= min_peers
// Incoming connections are allowed to take all of the max_peers reserve, or at most half of the slots.
let max_ingress = max(max_peers - min_peers, min_peers / 2);
if reserved_only ||
(s.info.originated && egress_count > min_peers) ||
(!s.info.originated && ingress_count > max_ingress) {
if !reserved_nodes.contains(&id) {
// only proceed if the connecting peer is reserved.
trace!(target: "network", "Disconnecting non-reserved peer {:?}", id);
s.disconnect(io, DisconnectReason::TooManyPeers);
kill = true;
break;
}
}
if !self.filter.as_ref().map_or(true, |f| f.connection_allowed(&self_id, &id, ConnectionDirection::Inbound)) {
trace!(target: "network", "Inbound connection not allowed for {:?}", id);
s.disconnect(io, DisconnectReason::UnexpectedIdentity);
kill = true;
break;
}
ready_id = Some(id);
// Add it to the node table
if !s.info.originated {
if let Ok(address) = s.remote_addr() {
// We can't know remote listening ports, so just assume defaults and hope for the best.
let endpoint = NodeEndpoint { address: SocketAddr::new(address.ip(), DEFAULT_PORT), udp_port: DEFAULT_PORT };
let entry = NodeEntry { id, endpoint };
let mut nodes = self.nodes.write();
if !nodes.contains(&entry.id) {
nodes.add_node(Node::new(entry.id, entry.endpoint.clone()));
let mut discovery = self.discovery.lock();
if let Some(ref mut discovery) = *discovery {
discovery.add_node(entry);
}
}
}
}
// Note connection success
self.nodes.write().note_success(&id);
for (p, _) in self.handlers.read().iter() {
if s.have_capability(*p) {
ready_data.push(*p);
}
}
},
Ok(SessionData::Packet {
data,
protocol,
packet_id,
}) => {
match self.handlers.read().get(&protocol) {
None => { warn!(target: "network", "No handler found for protocol: {:?}", protocol) },
Some(_) => packet_data.push((protocol, packet_id, data)),
}
},
Ok(SessionData::Continue) => (),
Ok(SessionData::None) => break,
}
}
}
if kill {
self.kill_connection(token, io, true);
}
let handlers = self.handlers.read();
if !ready_data.is_empty() {
let duplicate = self.sessions.read().iter().any(|e| {
let session = e.lock();
session.token() != token && session.info.id == ready_id
});
if duplicate {
trace!(target: "network", "Rejected duplicate connection: {}", token);
session.lock().disconnect(io, DisconnectReason::DuplicatePeer);
drop(handlers);
self.kill_connection(token, io, false);
return;
}
for p in ready_data {
let reserved = self.reserved_nodes.read();
if let Some(h) = handlers.get(&p) {
h.connected(&NetworkContext::new(io, p, Some(session.clone()), self.sessions.clone(), &reserved), &token);
// accumulate pending packets.
let mut session = session.lock();
packet_data.extend(session.mark_connected(p));
}
}
}
for (p, packet_id, data) in packet_data {
let reserved = self.reserved_nodes.read();
if let Some(h) = handlers.get(&p) {
h.read(&NetworkContext::new(io, p, Some(session.clone()), self.sessions.clone(), &reserved), &token, packet_id, &data);
}
}
}
}
fn discovery_readable(&self, io: &IoContext<NetworkIoMessage>) {
let node_changes = match (self.udp_socket.lock().as_ref(), self.discovery.lock().as_mut()) {
(Some(udp_socket), Some(discovery)) => {
let mut buf = [0u8; MAX_DATAGRAM_SIZE];
let writable = discovery.any_sends_queued();
let res = match udp_socket.recv_from(&mut buf) {
Ok(Some((len, address))) => discovery.on_packet(&buf[0..len], address).unwrap_or_else(|e| {
debug!(target: "network", "Error processing UDP packet: {:?}", e);
None
}),
Ok(_) => None,
Err(e) => {
debug!(target: "network", "Error reading UPD socket: {:?}", e);
None
}
};
let new_writable = discovery.any_sends_queued();
if writable != new_writable {
io.update_registration(DISCOVERY)
.unwrap_or_else(|e| {
debug!(target: "network" ,"Error updating discovery registration: {:?}", e)
});
}
res
},
_ => None,
};
if let Some(node_changes) = node_changes {
self.update_nodes(io, node_changes);
}
}
fn discovery_writable(&self, io: &IoContext<NetworkIoMessage>) {
if let (Some(udp_socket), Some(discovery)) = (self.udp_socket.lock().as_ref(), self.discovery.lock().as_mut()) {
while let Some(data) = discovery.dequeue_send() {
match udp_socket.send_to(&data.payload, &data.address) {
Ok(Some(size)) if size == data.payload.len() => {
},
Ok(Some(_)) => {
warn!(target: "network", "UDP sent incomplete datagram");
},
Ok(None) => {
discovery.requeue_send(data);
return;
}
Err(e) => {
debug!(target: "network", "UDP send error: {:?}, address: {:?}", e, &data.address);
return;
}
}
}
io.update_registration(DISCOVERY)
.unwrap_or_else(|e| {
debug!(target: "network", "Error updating discovery registration: {:?}", e)
});
}
}
fn connection_timeout(&self, token: StreamToken, io: &IoContext<NetworkIoMessage>) {
trace!(target: "network", "Connection timeout: {}", token);
self.kill_connection(token, io, true)
}
fn kill_connection(&self, token: StreamToken, io: &IoContext<NetworkIoMessage>, remote: bool) {
let mut to_disconnect: Vec<ProtocolId> = Vec::new();
let mut failure_id = None;
let mut deregister = false;
let mut expired_session = None;
if let FIRST_SESSION ..= LAST_SESSION = token {
let sessions = self.sessions.read();
if let Some(session) = sessions.get(token).cloned() {
expired_session = Some(session.clone());
let mut s = session.lock();
if !s.expired() {
if s.is_ready() {
for (p, _) in self.handlers.read().iter() {
if s.have_capability(*p) {
to_disconnect.push(*p);
}
}
}
s.set_expired();
failure_id = s.id().cloned();
}
deregister = remote || s.done();
}
}
if let Some(id) = failure_id {
if remote {
self.nodes.write().note_failure(&id);
}
}
for p in to_disconnect {
let reserved = self.reserved_nodes.read();
if let Some(h) = self.handlers.read().get(&p) {
h.disconnected(&NetworkContext::new(io, p, expired_session.clone(), self.sessions.clone(), &reserved), &token);
}
}
if deregister {
io.deregister_stream(token).unwrap_or_else(|e| debug!("Error deregistering stream: {:?}", e));
}
}
fn update_nodes(&self, _io: &IoContext<NetworkIoMessage>, node_changes: TableUpdates) {
let mut to_remove: Vec<PeerId> = Vec::new();
{
let sessions = self.sessions.read();
for c in sessions.iter() {
let s = c.lock();
if let Some(id) = s.id() {
if node_changes.removed.contains(id) {
to_remove.push(s.token());
}
}
}
}
for i in to_remove {
trace!(target: "network", "Removed from node table: {}", i);
}
let reserved_nodes = self.reserved_nodes.read();
self.nodes.write().update(node_changes, &*reserved_nodes);
}
pub fn with_context<F>(&self, protocol: ProtocolId, io: &IoContext<NetworkIoMessage>, action: F) where F: FnOnce(&dyn NetworkContextTrait) {
let reserved = { self.reserved_nodes.read() };
let context = NetworkContext::new(io, protocol, None, self.sessions.clone(), &reserved);
action(&context);
}
pub fn with_context_eval<F, T>(&self, protocol: ProtocolId, io: &IoContext<NetworkIoMessage>, action: F) -> T where F: FnOnce(&dyn NetworkContextTrait) -> T {
let reserved = { self.reserved_nodes.read() };
let context = NetworkContext::new(io, protocol, None, self.sessions.clone(), &reserved);
action(&context)
}
}
impl IoHandler<NetworkIoMessage> for Host {
/// Initialize networking
fn initialize(&self, io: &IoContext<NetworkIoMessage>) {
io.register_timer(IDLE, MAINTENANCE_TIMEOUT).expect("Error registering Network idle timer");
io.message(NetworkIoMessage::InitPublicInterface).unwrap_or_else(|e| warn!("Error sending IO notification: {:?}", e));
self.maintain_network(io)
}
fn stream_hup(&self, io: &IoContext<NetworkIoMessage>, stream: StreamToken) {
trace!(target: "network", "Hup: {}", stream);
match stream {
FIRST_SESSION ..= LAST_SESSION => self.connection_closed(stream, io),
_ => warn!(target: "network", "Unexpected hup"),
};
}
fn stream_readable(&self, io: &IoContext<NetworkIoMessage>, stream: StreamToken) {
if self.stopping.load(AtomicOrdering::Acquire) {
return;
}
match stream {
FIRST_SESSION ..= LAST_SESSION => self.session_readable(stream, io),
DISCOVERY => self.discovery_readable(io),
TCP_ACCEPT => self.accept(io),
_ => panic!("Received unknown readable token"),
}
}
fn stream_writable(&self, io: &IoContext<NetworkIoMessage>, stream: StreamToken) {
if self.stopping.load(AtomicOrdering::Acquire) {
return;
}
match stream {
FIRST_SESSION ..= LAST_SESSION => self.session_writable(stream, io),
DISCOVERY => self.discovery_writable(io),
_ => panic!("Received unknown writable token"),
}
}
fn timeout(&self, io: &IoContext<NetworkIoMessage>, token: TimerToken) {
if self.stopping.load(AtomicOrdering::Acquire) {
return;
}
match token {
IDLE => self.maintain_network(io),
FIRST_SESSION ..= LAST_SESSION => self.connection_timeout(token, io),
DISCOVERY_REFRESH => {
// Run the _slow_ discovery if enough peers are connected
if !self.has_enough_peers() {
return;
}
self.discovery.lock().as_mut().map(|d| d.refresh());
io.update_registration(DISCOVERY).unwrap_or_else(|e| debug!("Error updating discovery registration: {:?}", e));
},
FAST_DISCOVERY_REFRESH => {
// Run the fast discovery if not enough peers are connected
if self.has_enough_peers() {
return;
}
self.discovery.lock().as_mut().map(|d| d.refresh());
io.update_registration(DISCOVERY).unwrap_or_else(|e| debug!("Error updating discovery registration: {:?}", e));
},
DISCOVERY_ROUND => {
self.discovery.lock().as_mut().map(|d| d.round());
io.update_registration(DISCOVERY).unwrap_or_else(|e| debug!("Error updating discovery registration: {:?}", e));
},
NODE_TABLE => {
trace!(target: "network", "Refreshing node table");
let mut nodes = self.nodes.write();
nodes.clear_useless();
nodes.save();
},
_ => match self.timers.read().get(&token).cloned() {
Some(timer) => match self.handlers.read().get(&timer.protocol).cloned() {
None => { warn!(target: "network", "No handler found for protocol: {:?}", timer.protocol) },
Some(h) => {
let reserved = self.reserved_nodes.read();
h.timeout(&NetworkContext::new(io, timer.protocol, None, self.sessions.clone(), &reserved), timer.token);
}
},
None => { warn!("Unknown timer token: {}", token); } // timer is not registerd through us
}
}
}
fn message(&self, io: &IoContext<NetworkIoMessage>, message: &NetworkIoMessage) {
if self.stopping.load(AtomicOrdering::Acquire) {
return;
}
match *message {
NetworkIoMessage::AddHandler {
ref handler,
ref protocol,
ref versions,
} => {
let h = handler.clone();
let reserved = self.reserved_nodes.read();
h.initialize(
&NetworkContext::new(io, *protocol, None, self.sessions.clone(), &reserved),
);
self.handlers.write().insert(*protocol, h);
let mut info = self.info.write();
for &(version, packet_count) in versions {
info.capabilities.push(CapabilityInfo {
protocol: *protocol,
version,
packet_count,
});
}
},
NetworkIoMessage::AddTimer {
ref protocol,
ref delay,
ref token,
} => {
let handler_token = {
let mut timer_counter = self.timer_counter.write();
let counter = &mut *timer_counter;
let handler_token = *counter;
*counter += 1;
handler_token
};
self.timers.write().insert(handler_token, ProtocolTimer { protocol: *protocol, token: *token });
io.register_timer(handler_token, *delay).unwrap_or_else(|e| debug!("Error registering timer {}: {:?}", token, e));
},
NetworkIoMessage::Disconnect(ref peer) => {
let session = { self.sessions.read().get(*peer).cloned() };
if let Some(session) = session {
session.lock().disconnect(io, DisconnectReason::DisconnectRequested);
}
trace!(target: "network", "Disconnect requested {}", peer);
self.kill_connection(*peer, io, false);
},
NetworkIoMessage::DisablePeer(ref peer) => {
let session = { self.sessions.read().get(*peer).cloned() };
if let Some(session) = session {
session.lock().disconnect(io, DisconnectReason::DisconnectRequested);
if let Some(id) = session.lock().id() {
let mut nodes = self.nodes.write();
nodes.note_failure(&id);
nodes.mark_as_useless(id);
}
}
trace!(target: "network", "Disabling peer {}", peer);
self.kill_connection(*peer, io, false);
},
NetworkIoMessage::InitPublicInterface =>
self.init_public_interface(io).unwrap_or_else(|e| warn!("Error initializing public interface: {:?}", e)),
_ => {} // ignore others.
}
}
fn register_stream(&self, stream: StreamToken, reg: Token, event_loop: &mut EventLoop<IoManager<NetworkIoMessage>>) {
match stream {
FIRST_SESSION ..= LAST_SESSION => {
let session = { self.sessions.read().get(stream).cloned() };
if let Some(session) = session {
session.lock().register_socket(reg, event_loop).expect("Error registering socket");
}
}
DISCOVERY => match self.udp_socket.lock().as_ref() {
Some(udp_socket) => {
event_loop.register(udp_socket, reg, Ready::all(), PollOpt::edge())
.expect("Error registering UDP socket");
},
_ => panic!("Error registering discovery socket"),
}
TCP_ACCEPT => event_loop.register(&*self.tcp_listener.lock(), Token(TCP_ACCEPT), Ready::all(), PollOpt::edge()).expect("Error registering stream"),
_ => warn!("Unexpected stream registration")
}
}
fn deregister_stream(&self, stream: StreamToken, event_loop: &mut EventLoop<IoManager<NetworkIoMessage>>) {
match stream {
FIRST_SESSION ..= LAST_SESSION => {
let mut connections = self.sessions.write();
if let Some(connection) = connections.get(stream).cloned() {
let c = connection.lock();
if c.expired() { // make sure it is the same connection that the event was generated for
c.deregister_socket(event_loop).expect("Error deregistering socket");
connections.remove(stream);
}
}
}
DISCOVERY => (),
_ => warn!("Unexpected stream deregistration")
}
}
fn update_stream(&self, stream: StreamToken, reg: Token, event_loop: &mut EventLoop<IoManager<NetworkIoMessage>>) {
match stream {
FIRST_SESSION ..= LAST_SESSION => {
let connection = { self.sessions.read().get(stream).cloned() };
if let Some(connection) = connection {
connection.lock().update_socket(reg, event_loop).expect("Error updating socket");
}
}
DISCOVERY => match (self.udp_socket.lock().as_ref(), self.discovery.lock().as_ref()) {
(Some(udp_socket), Some(discovery)) => {
let registration = if discovery.any_sends_queued() {
Ready::readable() | Ready::writable()
} else {
Ready::readable()
};
event_loop.reregister(udp_socket, reg, registration, PollOpt::edge())
.expect("Error reregistering UDP socket");
},
_ => panic!("Error reregistering discovery socket"),
}
TCP_ACCEPT => event_loop.reregister(&*self.tcp_listener.lock(), Token(TCP_ACCEPT), Ready::all(), PollOpt::edge()).expect("Error reregistering stream"),
_ => warn!("Unexpected stream update")
}
}
}
fn save_key(path: &Path, key: &Secret) {
let mut path_buf = PathBuf::from(path);
if let Err(e) = fs::create_dir_all(path_buf.as_path()) {
warn!("Error creating key directory: {:?}", e);
return;
};
path_buf.push("key");
let path = path_buf.as_path();
let mut file = match fs::File::create(&path) {
Ok(file) => file,
Err(e) => {
warn!("Error creating key file: {:?}", e);
return;
}
};
if let Err(e) = restrict_permissions_owner(path, true, false) {
warn!(target: "network", "Failed to modify permissions of the file ({})", e);
}
if let Err(e) = file.write(&key.to_hex().into_bytes()) {
warn!("Error writing key file: {:?}", e);
}
}
fn load_key(path: &Path) -> Option<Secret> {
let mut path_buf = PathBuf::from(path);
path_buf.push("key");
let mut file = match fs::File::open(path_buf.as_path()) {
Ok(file) => file,
Err(e) => {
debug!("Error opening key file: {:?}", e);
return None;
}
};
let mut buf = String::new();
match file.read_to_string(&mut buf) {
Ok(_) => {},
Err(e) => {
warn!("Error reading key file: {:?}", e);
return None;
}
}
match Secret::from_str(&buf) {
Ok(key) => Some(key),
Err(e) => {
warn!("Error parsing key file: {:?}", e);
None
}
}
}
#[test]
fn key_save_load() {
use tempdir::TempDir;
let tempdir = TempDir::new("").unwrap();
let key = H256::random().into();
save_key(tempdir.path(), &key);
let r = load_key(tempdir.path());
assert_eq!(key, r.unwrap());
}
#[test]
fn host_client_url() {
let mut config = NetworkConfiguration::new_local();
let key = "6f7b0d801bc7b5ce7bbd930b84fd0369b3eb25d09be58d64ba811091046f3aa2".parse().unwrap();
config.use_secret = Some(key);
let host: Host = Host::new(config, None).unwrap();
assert!(host.local_url().starts_with("enode://101b3ef5a4ea7a1c7928e24c4c75fd053c235d7b80c22ae5c03d145d0ac7396e2a4ffff9adee3133a7b05044a5cee08115fd65145e5165d646bde371010d803c@"));
}