openethereum/ethcore/src/evm/interpreter/gasometer.rs

331 lines
11 KiB
Rust

// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use util::*;
use super::u256_to_address;
use evm::{self, CostType};
use evm::instructions::{self, Instruction, InstructionInfo};
use evm::interpreter::stack::Stack;
use evm::schedule::Schedule;
macro_rules! overflowing {
($x: expr) => {{
let (v, overflow) = $x;
if overflow { return Err(evm::Error::OutOfGas); }
v
}}
}
#[cfg_attr(feature="dev", allow(enum_variant_names))]
enum InstructionCost<Cost: CostType> {
Gas(Cost),
GasMem(Cost, Cost, Option<Cost>),
GasMemCopy(Cost, Cost, Cost)
}
pub struct Gasometer<Gas: CostType> {
pub current_gas: Gas,
pub current_mem_gas: Gas,
}
impl<Gas: CostType> Gasometer<Gas> {
pub fn new(current_gas: Gas) -> Self {
Gasometer {
current_gas: current_gas,
current_mem_gas: Gas::from(0),
}
}
pub fn verify_gas(&self, gas_cost: &Gas) -> evm::Result<()> {
match &self.current_gas < gas_cost {
true => Err(evm::Error::OutOfGas),
false => Ok(())
}
}
/// How much gas is provided to a CALL/CREATE, given that we need to deduct `needed` for this operation
/// and that we `requested` some.
pub fn gas_provided(&self, schedule: &Schedule, needed: Gas, requested: Option<evm::Result<Gas>>) -> evm::Result<Gas> {
match schedule.sub_gas_cap_divisor {
Some(cap_divisor) if self.current_gas >= needed => {
let gas_remaining = self.current_gas - needed;
let max_gas_provided = gas_remaining - gas_remaining / Gas::from(cap_divisor);
if let Some(Ok(r)) = requested {
Ok(min(r, max_gas_provided))
} else {
Ok(max_gas_provided)
}
},
_ => {
if let Some(r) = requested {
r
} else if self.current_gas >= needed {
Ok(self.current_gas - needed)
} else {
Ok(0.into())
}
}
}
}
#[cfg_attr(feature="dev", allow(cyclomatic_complexity))]
/// Determine how much gas is used by the given instruction, given the machine's state.
///
/// We guarantee that the final element of the returned tuple (`provided`) will be `Some`
/// iff the `instruction` is one of `CREATE`, or any of the `CALL` variants. In this case,
/// it will be the amount of gas that the current context provides to the child context.
pub fn get_gas_cost_mem(
&mut self,
ext: &evm::Ext,
instruction: Instruction,
info: &InstructionInfo,
stack: &Stack<U256>,
current_mem_size: usize,
) -> evm::Result<(Gas, Gas, usize, Option<Gas>)> {
let schedule = ext.schedule();
let tier = instructions::get_tier_idx(info.tier);
let default_gas = Gas::from(schedule.tier_step_gas[tier]);
let cost = match instruction {
instructions::JUMPDEST => {
InstructionCost::Gas(Gas::from(1))
},
instructions::SSTORE => {
let address = H256::from(stack.peek(0));
let newval = stack.peek(1);
let val = U256::from(&*ext.storage_at(&address));
let gas = if val.is_zero() && !newval.is_zero() {
schedule.sstore_set_gas
} else {
// Refund for below case is added when actually executing sstore
// !is_zero(&val) && is_zero(newval)
schedule.sstore_reset_gas
};
InstructionCost::Gas(Gas::from(gas))
},
instructions::SLOAD => {
InstructionCost::Gas(Gas::from(schedule.sload_gas))
},
instructions::BALANCE => {
InstructionCost::Gas(Gas::from(schedule.balance_gas))
},
instructions::EXTCODESIZE => {
InstructionCost::Gas(Gas::from(schedule.extcodesize_gas))
},
instructions::SUICIDE => {
let mut gas = Gas::from(schedule.suicide_gas);
let address = u256_to_address(stack.peek(0));
if !ext.exists(&address) {
gas = overflowing!(gas.overflow_add(schedule.suicide_to_new_account_cost.into()));
}
InstructionCost::Gas(gas)
},
instructions::MSTORE | instructions::MLOAD => {
InstructionCost::GasMem(default_gas, try!(mem_needed_const(stack.peek(0), 32)), None)
},
instructions::MSTORE8 => {
InstructionCost::GasMem(default_gas, try!(mem_needed_const(stack.peek(0), 1)), None)
},
instructions::RETURN => {
InstructionCost::GasMem(default_gas, try!(mem_needed(stack.peek(0), stack.peek(1))), None)
},
instructions::SHA3 => {
let w = overflowing!(add_gas_usize(try!(Gas::from_u256(*stack.peek(1))), 31));
let words = w >> 5;
let gas = Gas::from(schedule.sha3_gas) + (Gas::from(schedule.sha3_word_gas) * words);
InstructionCost::GasMem(gas, try!(mem_needed(stack.peek(0), stack.peek(1))), None)
},
instructions::CALLDATACOPY | instructions::CODECOPY => {
InstructionCost::GasMemCopy(default_gas, try!(mem_needed(stack.peek(0), stack.peek(2))), try!(Gas::from_u256(*stack.peek(2))))
},
instructions::EXTCODECOPY => {
InstructionCost::GasMemCopy(schedule.extcodecopy_base_gas.into(), try!(mem_needed(stack.peek(1), stack.peek(3))), try!(Gas::from_u256(*stack.peek(3))))
},
instructions::LOG0...instructions::LOG4 => {
let no_of_topics = instructions::get_log_topics(instruction);
let log_gas = schedule.log_gas + schedule.log_topic_gas * no_of_topics;
let data_gas = overflowing!(try!(Gas::from_u256(*stack.peek(1))).overflow_mul(Gas::from(schedule.log_data_gas)));
let gas = overflowing!(data_gas.overflow_add(Gas::from(log_gas)));
InstructionCost::GasMem(gas, try!(mem_needed(stack.peek(0), stack.peek(1))), None)
},
instructions::CALL | instructions::CALLCODE => {
let mut gas = Gas::from(schedule.call_gas);
let mem = cmp::max(
try!(mem_needed(stack.peek(5), stack.peek(6))),
try!(mem_needed(stack.peek(3), stack.peek(4)))
);
let address = u256_to_address(stack.peek(1));
if instruction == instructions::CALL && !ext.exists(&address) {
gas = overflowing!(gas.overflow_add(schedule.call_new_account_gas.into()));
};
if !stack.peek(2).is_zero() {
gas = overflowing!(gas.overflow_add(schedule.call_value_transfer_gas.into()));
};
// TODO: refactor to avoid duplicate calculation here and later on.
let (mem_gas_cost, _, _) = try!(self.mem_gas_cost(schedule, current_mem_size, &mem));
let cost_so_far = overflowing!(gas.overflow_add(mem_gas_cost.into()));
let requested = Gas::from_u256(*stack.peek(0));
let provided = try!(self.gas_provided(schedule, cost_so_far, Some(requested)));
gas = overflowing!(gas.overflow_add(provided));
InstructionCost::GasMem(gas, mem, Some(provided))
},
instructions::DELEGATECALL => {
let mut gas = Gas::from(schedule.call_gas);
let mem = cmp::max(
try!(mem_needed(stack.peek(4), stack.peek(5))),
try!(mem_needed(stack.peek(2), stack.peek(3)))
);
// TODO: refactor to avoid duplicate calculation here and later on.
let (mem_gas_cost, _, _) = try!(self.mem_gas_cost(schedule, current_mem_size, &mem));
let cost_so_far = overflowing!(gas.overflow_add(mem_gas_cost.into()));
let requested = Gas::from_u256(*stack.peek(0));
let provided = try!(self.gas_provided(schedule, cost_so_far, Some(requested)));
gas = overflowing!(gas.overflow_add(provided));
InstructionCost::GasMem(gas, mem, Some(provided))
},
instructions::CREATE => {
let mut gas = Gas::from(schedule.create_gas);
let mem = try!(mem_needed(stack.peek(1), stack.peek(2)));
// TODO: refactor to avoid duplicate calculation here and later on.
let (mem_gas_cost, _, _) = try!(self.mem_gas_cost(schedule, current_mem_size, &mem));
let cost_so_far = overflowing!(gas.overflow_add(mem_gas_cost.into()));
let provided = try!(self.gas_provided(schedule, cost_so_far, None));
gas = overflowing!(gas.overflow_add(provided));
InstructionCost::GasMem(gas, mem, Some(provided))
},
instructions::EXP => {
let expon = stack.peek(1);
let bytes = ((expon.bits() + 7) / 8) as usize;
let gas = Gas::from(schedule.exp_gas + schedule.exp_byte_gas * bytes);
InstructionCost::Gas(gas)
},
_ => InstructionCost::Gas(default_gas),
};
match cost {
InstructionCost::Gas(gas) => {
Ok((gas, self.current_mem_gas, 0, None))
},
InstructionCost::GasMem(gas, mem_size, provided) => {
let (mem_gas_cost, new_mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, current_mem_size, &mem_size));
let gas = overflowing!(gas.overflow_add(mem_gas_cost));
Ok((gas, new_mem_gas, new_mem_size, provided))
},
InstructionCost::GasMemCopy(gas, mem_size, copy) => {
let (mem_gas_cost, new_mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, current_mem_size, &mem_size));
let copy = overflowing!(add_gas_usize(copy, 31)) >> 5;
let copy_gas = Gas::from(schedule.copy_gas) * copy;
let gas = overflowing!(gas.overflow_add(copy_gas));
let gas = overflowing!(gas.overflow_add(mem_gas_cost));
Ok((gas, new_mem_gas, new_mem_size, None))
}
}
}
fn mem_gas_cost(&self, schedule: &evm::Schedule, current_mem_size: usize, mem_size: &Gas) -> evm::Result<(Gas, Gas, usize)> {
let gas_for_mem = |mem_size: Gas| {
let s = mem_size >> 5;
// s * memory_gas + s * s / quad_coeff_div
let a = overflowing!(s.overflow_mul(Gas::from(schedule.memory_gas)));
// Calculate s*s/quad_coeff_div
debug_assert_eq!(schedule.quad_coeff_div, 512);
let b = overflowing!(s.overflow_mul_shr(s, 9));
Ok(overflowing!(a.overflow_add(b)))
};
let current_mem_size = Gas::from(current_mem_size);
let req_mem_size_rounded = (overflowing!(mem_size.overflow_add(Gas::from(31 as usize))) >> 5) << 5;
let (mem_gas_cost, new_mem_gas) = if req_mem_size_rounded > current_mem_size {
let new_mem_gas = try!(gas_for_mem(req_mem_size_rounded));
(new_mem_gas - self.current_mem_gas, new_mem_gas)
} else {
(Gas::from(0), self.current_mem_gas)
};
Ok((mem_gas_cost, new_mem_gas, req_mem_size_rounded.as_usize()))
}
}
#[inline]
fn mem_needed_const<Gas: CostType>(mem: &U256, add: usize) -> evm::Result<Gas> {
Gas::from_u256(overflowing!(mem.overflowing_add(U256::from(add))))
}
#[inline]
fn mem_needed<Gas: CostType>(offset: &U256, size: &U256) -> evm::Result<Gas> {
if size.is_zero() {
return Ok(Gas::from(0));
}
Gas::from_u256(overflowing!(offset.overflowing_add(*size)))
}
#[inline]
fn add_gas_usize<Gas: CostType>(value: Gas, num: usize) -> (Gas, bool) {
value.overflow_add(Gas::from(num))
}
#[test]
fn test_mem_gas_cost() {
// given
let gasometer = Gasometer::<U256>::new(U256::zero());
let schedule = evm::Schedule::default();
let current_mem_size = 5;
let mem_size = !U256::zero();
// when
let result = gasometer.mem_gas_cost(&schedule, current_mem_size, &mem_size);
// then
if let Ok(_) = result {
assert!(false, "Should fail with OutOfGas");
}
}
#[test]
fn test_calculate_mem_cost() {
// given
let gasometer = Gasometer::<usize>::new(0);
let schedule = evm::Schedule::default();
let current_mem_size = 0;
let mem_size = 5;
// when
let (mem_cost, new_mem_gas, mem_size) = gasometer.mem_gas_cost(&schedule, current_mem_size, &mem_size).unwrap();
// then
assert_eq!(mem_cost, 3);
assert_eq!(new_mem_gas, 3);
assert_eq!(mem_size, 32);
}