openethereum/util/src/trie/triedbmut.rs
Robert Habermeier 13968aaa38 Refactor triedb constructors to error on invalid state root (#1230)
* add TrieError, refactor Trie DB creation

* remove Result type alias due to glob import conflicts

* fix fallout in state.rs

* add debug, display impl for TrieError

* fix fallout in account.rs

* ethcore::Error::TrieError variant

* fix remaining fallout in ethcore crate

* added From<TrieError> impl for Error, removed map_err calls

* fix test breakages

* fix doc tests

* update docs

[ci skip]
2016-06-07 11:44:09 -07:00

1101 lines
37 KiB
Rust

// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use common::*;
use hashdb::*;
use nibbleslice::*;
use rlp::*;
use super::node::Node;
use super::journal::Journal;
use super::trietraits::{Trie, TrieMut};
use super::TrieError;
/// A `Trie` implementation using a generic `HashDB` backing database.
///
/// Use it as a `Trie` trait object. You can use `db()` to get the backing database object, `keys`
/// to get the keys belonging to the trie in the backing database, and `db_items_remaining()` to get
/// which items in the backing database do not belong to this trie. If this is the only trie in the
/// backing database, then `db_items_remaining()` should be empty.
///
/// # Example
/// ```
/// extern crate ethcore_util as util;
/// use util::trie::*;
/// use util::hashdb::*;
/// use util::memorydb::*;
/// use util::hash::*;
/// use util::rlp::*;
///
/// fn main() {
/// let mut memdb = MemoryDB::new();
/// let mut root = H256::new();
/// let mut t = TrieDBMut::new(&mut memdb, &mut root);
/// assert!(t.is_empty());
/// assert_eq!(*t.root(), SHA3_NULL_RLP);
/// t.insert(b"foo", b"bar");
/// assert!(t.contains(b"foo"));
/// assert_eq!(t.get(b"foo").unwrap(), b"bar");
/// assert!(t.db_items_remaining().is_empty());
/// t.remove(b"foo");
/// assert!(!t.contains(b"foo"));
/// assert!(t.db_items_remaining().is_empty());
/// }
/// ```
pub struct TrieDBMut<'db> {
db: &'db mut HashDB,
root: &'db mut H256,
/// The number of hashes performed so far in operations on this trie.
pub hash_count: usize,
}
/// Option-like type allowing either a Node object passthrough or Bytes in the case of data alteration.
enum MaybeChanged<'a> {
Same(Node<'a>),
Changed(Bytes),
}
#[cfg_attr(feature="dev", allow(wrong_self_convention))]
impl<'db> TrieDBMut<'db> {
/// Create a new trie with the backing database `db` and empty `root`
/// Initialise to the state entailed by the genesis block.
/// This guarantees the trie is built correctly.
pub fn new(db: &'db mut HashDB, root: &'db mut H256) -> Self {
let mut r = TrieDBMut{
db: db,
root: root,
hash_count: 0
};
// set root rlp
*r.root = SHA3_NULL_RLP.clone();
r
}
/// Create a new trie with the backing database `db` and `root`.
/// Returns an error if `root` does not exist.
pub fn from_existing(db: &'db mut HashDB, root: &'db mut H256) -> Result<Self, TrieError> {
if !db.exists(root) {
Err(TrieError::InvalidStateRoot)
} else {
Ok(TrieDBMut {
db: db,
root: root,
hash_count: 0
})
}
}
/// Get the backing database.
pub fn db(&'db self) -> &'db HashDB {
self.db
}
/// Get the backing database.
pub fn db_mut(&'db mut self) -> &'db mut HashDB {
self.db
}
/// Determine all the keys in the backing database that belong to the trie.
pub fn keys(&self) -> Vec<H256> {
let mut ret: Vec<H256> = Vec::new();
ret.push(self.root.clone());
self.accumulate_keys(self.root_node(), &mut ret);
ret
}
/// Convert a vector of hashes to a hashmap of hash to occurances.
pub fn to_map(hashes: Vec<H256>) -> HashMap<H256, u32> {
let mut r: HashMap<H256, u32> = HashMap::new();
for h in hashes.into_iter() {
let c = *r.get(&h).unwrap_or(&0);
r.insert(h, c + 1);
}
r
}
/// Determine occurances of items in the backing database which are not related to this
/// trie.
pub fn db_items_remaining(&self) -> HashMap<H256, i32> {
let mut ret = self.db.keys();
for (k, v) in Self::to_map(self.keys()).into_iter() {
let keycount = *ret.get(&k).unwrap_or(&0);
match keycount <= v as i32 {
true => ret.remove(&k),
_ => ret.insert(k, keycount - v as i32),
};
}
ret
}
/// Set the trie to a new root node's RLP, inserting the new RLP into the backing database
/// and removing the old.
fn set_root_rlp(&mut self, root_data: &[u8]) {
self.db.kill(&self.root);
*self.root = self.db.insert(root_data);
self.hash_count += 1;
trace!("set_root_rlp {:?} {:?}", root_data.pretty(), self.root);
}
/// Apply the items in `journal` into the backing database.
fn apply(&mut self, journal: Journal) {
self.hash_count += journal.apply(self.db).inserts;
}
/// Recursion helper for `keys`.
fn accumulate_keys(&self, node: Node, acc: &mut Vec<H256>) {
let mut handle_payload = |payload| {
let p = Rlp::new(payload);
if p.is_data() && p.size() == 32 {
acc.push(p.as_val());
}
self.accumulate_keys(self.get_node(payload), acc);
};
match node {
Node::Extension(_, payload) => handle_payload(payload),
Node::Branch(payloads, _) => for payload in &payloads { handle_payload(payload) },
_ => {},
}
}
/// Get the root node's RLP.
fn root_node(&self) -> Node {
Node::decoded(self.db.lookup(&self.root).expect("Trie root not found!"))
}
/// Get the root node as a `Node`.
fn get_node<'a>(&'a self, node: &'a [u8]) -> Node {
Node::decoded(self.get_raw_or_lookup(node))
}
/// Indentation helper for `formal_all`.
fn fmt_indent(&self, f: &mut fmt::Formatter, size: usize) -> fmt::Result {
for _ in 0..size {
try!(write!(f, " "));
}
Ok(())
}
/// Recursion helper for implementation of formatting trait.
fn fmt_all(&self, node: Node, f: &mut fmt::Formatter, deepness: usize) -> fmt::Result {
match node {
Node::Leaf(slice, value) => try!(writeln!(f, "'{:?}: {:?}.", slice, value.pretty())),
Node::Extension(ref slice, ref item) => {
try!(write!(f, "'{:?} ", slice));
try!(self.fmt_all(self.get_node(item), f, deepness));
},
Node::Branch(ref nodes, ref value) => {
try!(writeln!(f, ""));
if let Some(v) = *value {
try!(self.fmt_indent(f, deepness + 1));
try!(writeln!(f, "=: {:?}", v.pretty()))
}
for i in 0..16 {
match self.get_node(nodes[i]) {
Node::Empty => {},
n => {
try!(self.fmt_indent(f, deepness + 1));
try!(write!(f, "'{:x} ", i));
try!(self.fmt_all(n, f, deepness + 1));
}
}
}
},
// empty
Node::Empty => {
try!(writeln!(f, "<empty>"));
}
};
Ok(())
}
/// Return optional data for a key given as a `NibbleSlice`. Returns `None` if no data exists.
fn do_lookup<'a, 'key>(&'a self, key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!");
self.get_from_node(&root_rlp, key)
}
/// Recursible function to retrieve the value given a `node` and a partial `key`. `None` if no
/// value exists for the key.
///
/// Note: Not a public API; use Trie trait functions.
fn get_from_node<'a, 'key>(&'a self, node: &'a [u8], key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
match Node::decoded(node) {
Node::Leaf(ref slice, ref value) if key == slice => Some(value),
Node::Extension(ref slice, ref item) if key.starts_with(slice) => {
self.get_from_node(self.get_raw_or_lookup(item), &key.mid(slice.len()))
},
Node::Branch(ref nodes, value) => match key.is_empty() {
true => value,
false => self.get_from_node(self.get_raw_or_lookup(nodes[key.at(0) as usize]), &key.mid(1))
},
_ => None
}
}
/// Given some node-describing data `node`, return the actual node RLP.
/// This could be a simple identity operation in the case that the node is sufficiently small, but
/// may require a database lookup.
fn get_raw_or_lookup<'a>(&'a self, node: &'a [u8]) -> &'a [u8] {
// check if its sha3 + len
let r = Rlp::new(node);
match r.is_data() && r.size() == 32 {
true => self.db.lookup(&r.as_val::<H256>()).expect("Not found!"),
false => node
}
}
/// Insert a `key` and `value` pair into the trie.
///
/// Note: Not a public API; use Trie trait functions.
fn insert_ns(&mut self, key: &NibbleSlice, value: &[u8]) {
trace!("ADD: {:?} {:?}", key, value.pretty());
// determine what the new root is, insert new nodes and remove old as necessary.
let mut todo: Journal = Journal::new();
let root_rlp = self.augmented(self.db.lookup(&self.root).expect("Trie root not found!"), key, value, &mut todo);
self.apply(todo);
self.set_root_rlp(&root_rlp);
trace!("/");
}
/// Remove a `key` and `value` pair from the trie.
///
/// Note: Not a public API; use Trie trait functions.
fn remove_ns(&mut self, key: &NibbleSlice) {
trace!("DELETE: {:?}", key);
// determine what the new root is, insert new nodes and remove old as necessary.
let mut todo: Journal = Journal::new();
match self.cleared_from_slice(self.db.lookup(&self.root).expect("Trie root not found!"), key, &mut todo) {
Some(root_rlp) => {
self.apply(todo);
self.set_root_rlp(&root_rlp);
},
None => {
trace!("no change needed");
}
}
trace!("/");
}
/// Compose a leaf node in RLP given the `partial` key and `value`.
fn compose_leaf(partial: &NibbleSlice, value: &[u8]) -> Bytes {
trace!("compose_leaf {:?} {:?} ({:?})", partial, value.pretty(), partial.encoded(true).pretty());
let mut s = RlpStream::new_list(2);
s.append(&partial.encoded(true));
s.append(&value);
let r = s.out();
trace!("compose_leaf: -> {:?}", r.pretty());
r
}
/// Compose a raw extension/leaf node in RLP given the `partial` key, `raw_payload` and whether it `is_leaf`.
fn compose_raw(partial: &NibbleSlice, raw_payload: &[u8], is_leaf: bool) -> Bytes {
trace!("compose_raw {:?} {:?} {:?} ({:?})", partial, raw_payload.pretty(), is_leaf, partial.encoded(is_leaf));
let mut s = RlpStream::new_list(2);
s.append(&partial.encoded(is_leaf));
s.append_raw(raw_payload, 1);
let r = s.out();
trace!("compose_raw: -> {:?}", r.pretty());
r
}
/// Compose a branch node in RLP with a particular `value` sitting in the value position (17th place).
fn compose_stub_branch(value: &[u8]) -> Bytes {
let mut s = RlpStream::new_list(17);
for _ in 0..16 { s.append_empty_data(); }
s.append(&value);
s.out()
}
/// Compose an extension node's RLP with the `partial` key and `raw_payload`.
fn compose_extension(partial: &NibbleSlice, raw_payload: &[u8]) -> Bytes {
Self::compose_raw(partial, raw_payload, false)
}
/// Return the bytes encoding the node represented by `rlp`. `journal` will record necessary
/// removal instructions from the backing database.
fn take_node<'a, 'rlp_view>(&'a self, rlp: &'rlp_view Rlp<'a>, journal: &mut Journal) -> &'a [u8] where 'a: 'rlp_view {
if rlp.is_list() {
trace!("take_node {:?} (inline)", rlp.as_raw().pretty());
rlp.as_raw()
}
else if rlp.is_data() && rlp.size() == 32 {
let h = rlp.as_val();
let r = self.db.lookup(&h).unwrap_or_else(||{
println!("Node not found! rlp={:?}, node_hash={:?}", rlp.as_raw().pretty(), h);
println!("Journal: {:?}", journal);
panic!();
});
trace!("take_node {:?} (indirect for {:?})", rlp.as_raw().pretty(), r);
journal.delete_node_sha3(h);
r
}
else {
trace!("take_node {:?} (???)", rlp.as_raw().pretty());
panic!("Empty or invalid node given?");
}
}
#[cfg_attr(feature="dev", allow(cyclomatic_complexity))]
/// Determine the RLP of the node, assuming we're inserting `partial` into the
/// node currently of data `old`. This will *not* delete any hash of `old` from the database;
/// it will just return the new RLP that includes the new node.
///
/// `journal` will record the database updates so as to make the returned RLP valid through inserting
/// and deleting nodes as necessary.
///
/// **This operation will not insert the new node nor destroy the original.**
fn augmented(&self, old: &[u8], partial: &NibbleSlice, value: &[u8], journal: &mut Journal) -> Bytes {
trace!("augmented (old: {:?}, partial: {:?}, value: {:?})", old.pretty(), partial, value.pretty());
// already have an extension. either fast_forward, cleve or transmute_to_branch.
let old_rlp = Rlp::new(old);
match old_rlp.prototype() {
Prototype::List(17) => {
trace!("branch: ROUTE,AUGMENT");
// already have a branch. route and augment.
let mut s = RlpStream::new_list(17);
let index = if partial.is_empty() {16} else {partial.at(0) as usize};
for i in 0..17 {
match index == i {
// not us - leave alone.
false => { s.append_raw(old_rlp.at(i).as_raw(), 1); },
// branch-leaf entry - just replace.
true if i == 16 => { s.append(&value); },
// original had empty slot - place a leaf there.
true if old_rlp.at(i).is_empty() => journal.new_node(Self::compose_leaf(&partial.mid(1), value), &mut s),
// original has something there already; augment.
true => {
let new = self.augmented(self.take_node(&old_rlp.at(i), journal), &partial.mid(1), value, journal);
journal.new_node(new, &mut s);
}
}
}
s.out()
},
Prototype::List(2) => {
let existing_key_rlp = old_rlp.at(0);
let (existing_key, is_leaf) = NibbleSlice::from_encoded(existing_key_rlp.data());
match (is_leaf, partial.common_prefix(&existing_key)) {
(true, cp) if cp == existing_key.len() && partial.len() == existing_key.len() => {
// equivalent-leaf: replace
trace!("equivalent-leaf: REPLACE");
Self::compose_leaf(partial, value)
},
(_, 0) => {
// one of us isn't empty: transmute to branch here
trace!("no-common-prefix, not-both-empty (exist={:?}; new={:?}): TRANSMUTE,AUGMENT", existing_key.len(), partial.len());
assert!(is_leaf || !existing_key.is_empty()); // extension nodes are not allowed to have empty partial keys.
let mut s = RlpStream::new_list(17);
let index = if existing_key.is_empty() {16} else {existing_key.at(0)};
for i in 0..17 {
match is_leaf {
// not us - empty.
_ if index != i => { s.append_empty_data(); },
// branch-value: just replace.
true if i == 16 => { s.append_raw(old_rlp.at(1).as_raw(), 1); },
// direct extension: just replace.
false if existing_key.len() == 1 => { s.append_raw(old_rlp.at(1).as_raw(), 1); },
// original has empty slot.
true => journal.new_node(Self::compose_leaf(&existing_key.mid(1), old_rlp.at(1).data()), &mut s),
// additional work required after branching.
false => journal.new_node(Self::compose_extension(&existing_key.mid(1), old_rlp.at(1).as_raw()), &mut s),
}
};
self.augmented(&s.out(), partial, value, journal)
},
(_, cp) if cp == existing_key.len() => {
trace!("complete-prefix (cp={:?}): AUGMENT-AT-END", cp);
// fully-shared prefix for this extension:
// transform to an extension + augmented version of onward node.
let downstream_node: Bytes = match is_leaf {
// no onward node because we're a leaf - create fake stub and use that.
true => self.augmented(&Self::compose_stub_branch(old_rlp.at(1).data()), &partial.mid(cp), value, journal),
false => self.augmented(self.take_node(&old_rlp.at(1), journal), &partial.mid(cp), value, journal),
};
trace!("create_extension partial: {:?}, downstream_node: {:?}", existing_key, downstream_node.pretty());
let mut s = RlpStream::new_list(2);
s.append(&existing_key.encoded(false));
journal.new_node(downstream_node, &mut s);
s.out()
},
(_, cp) => {
// partially-shared prefix for this extension:
// split into two extensions, high and low, pass the
// low through augment with the value before inserting the result
// into high to create the new.
// TODO: optimise by doing this without creating augmented_low.
trace!("partially-shared-prefix (exist={:?}; new={:?}; cp={:?}): AUGMENT-AT-END", existing_key.len(), partial.len(), cp);
// low (farther from root)
let low = Self::compose_raw(&existing_key.mid(cp), old_rlp.at(1).as_raw(), is_leaf);
let augmented_low = self.augmented(&low, &partial.mid(cp), value, journal);
// high (closer to root)
let mut s = RlpStream::new_list(2);
s.append(&existing_key.encoded_leftmost(cp, false));
journal.new_node(augmented_low, &mut s);
s.out()
},
}
},
Prototype::Data(0) => {
trace!("empty: COMPOSE");
Self::compose_leaf(partial, value)
},
_ => panic!("Invalid RLP for node: {:?}", old.pretty()),
}
}
/// Given a `MaybeChanged` result `n`, return the node's RLP regardless of whether it changed.
fn encoded(n: MaybeChanged) -> Bytes {
match n {
MaybeChanged::Same(n) => n.encoded(),
MaybeChanged::Changed(b) => b,
}
}
/// Fix the node payload's sizes in `n`, replacing any over-size payloads with the hashed reference
/// and placing the payload DB insertions in the `journal`.
fn fixed_indirection<'a>(n: Node<'a>, journal: &mut Journal) -> MaybeChanged<'a> {
match n {
Node::Extension(partial, payload) if payload.len() >= 32 && Rlp::new(payload).is_list() => {
// make indirect
MaybeChanged::Changed(Node::Extension(partial, &Node::decoded(payload).encoded_and_added(journal)).encoded())
},
Node::Branch(payloads, value) => {
// check each child isn't too big
// TODO OPTIMISE - should really check at the point of (re-)constructing the branch.
for i in 0..16 {
if payloads[i].len() >= 32 && Rlp::new(payloads[i]).is_list() {
let n = Node::decoded(payloads[i]).encoded_and_added(journal);
let mut new_nodes = payloads;
new_nodes[i] = &n;
return MaybeChanged::Changed(Node::Branch(new_nodes, value).encoded())
}
}
MaybeChanged::Same(n)
}
_ => MaybeChanged::Same(n),
}
}
/// Given a node `n` which may be in an _invalid state_, fix it such that it is then in a valid
/// state.
///
/// _invalid state_ means:
/// - Branch node where there is only a single entry;
/// - Extension node followed by anything other than a Branch node.
/// - Extension node with a child which has too many bytes to be inline.
///
/// `journal` will record the database updates so as to make the returned RLP valid through inserting
/// and deleting nodes as necessary.
///
/// **This operation will not insert the new node nor destroy the original.**
fn fixed<'a, 'b>(&'a self, n: Node<'b>, journal: &mut Journal) -> MaybeChanged<'b> where 'a: 'b {
trace!("fixed node={:?}", n);
match n {
Node::Branch(nodes, node_value) => {
// if only a single value, transmute to leaf/extension and feed through fixed.
#[derive(Debug)]
enum UsedIndex {
None,
One(u8),
Many,
};
let mut used_index = UsedIndex::None;
for i in 0..16 {
match (nodes[i] == NULL_RLP, &used_index) {
(false, &UsedIndex::None) => used_index = UsedIndex::One(i as u8),
(false, &UsedIndex::One(_)) => used_index = UsedIndex::Many,
(_, _) => {},
}
}
trace!("branch: used_index={:?}, node_value={:?}", used_index, node_value);
match (used_index, node_value) {
(UsedIndex::None, None) => panic!("Branch with no subvalues. Something went wrong."),
(UsedIndex::One(a), None) => { // one onward node
// transmute to extension.
// TODO: OPTIMISE: - don't call fixed again but put the right node in straight away here.
// call fixed again since the transmute may cause invalidity.
let new_partial: [u8; 1] = [a; 1];
MaybeChanged::Changed(Self::encoded(self.fixed(Node::Extension(NibbleSlice::new_offset(&new_partial[..], 1), nodes[a as usize]), journal)))
},
(UsedIndex::None, Some(value)) => { // one leaf value
// transmute to leaf.
// call fixed again since the transmute may cause invalidity.
MaybeChanged::Changed(Self::encoded(self.fixed(Node::Leaf(NibbleSlice::new(&b""[..]), value), journal)))
}
_ => { // onwards node(s) and/or leaf
// no transmute needed, but should still fix the indirection.
trace!("no-transmute: FIXINDIRECTION");
Self::fixed_indirection(Node::Branch(nodes, node_value), journal)
},
}
},
Node::Extension(partial, payload) => {
match Node::decoded(self.get_raw_or_lookup(payload)) {
Node::Extension(sub_partial, sub_payload) => {
// combine with node below
journal.delete_node(payload);
MaybeChanged::Changed(Self::encoded(Self::fixed_indirection(Node::Extension(NibbleSlice::new_composed(&partial, &sub_partial), sub_payload), journal)))
},
Node::Leaf(sub_partial, sub_value) => {
// combine with node below
journal.delete_node(payload);
MaybeChanged::Changed(Self::encoded(Self::fixed_indirection(Node::Leaf(NibbleSlice::new_composed(&partial, &sub_partial), sub_value), journal)))
},
// no change, might still have an oversize node inline - fix indirection
_ => Self::fixed_indirection(n, journal),
}
},
// leaf or empty. no change.
n => { MaybeChanged::Same(n) }
}
}
/// Determine the RLP of the node, assuming we're removing `partial` from the
/// node currently of data `old`. This will *not* delete any hash of `old` from the database;
/// it will just return the new RLP that represents the new node.
/// `None` may be returned should no change be needed.
///
/// `journal` will record the database updates so as to make the returned RLP valid through inserting
/// and deleting nodes as necessary.
///
/// **This operation will not insert the new node nor destroy the original.**
fn cleared_from_slice(&self, old: &[u8], partial: &NibbleSlice, journal: &mut Journal) -> Option<Bytes> {
self.cleared(Node::decoded(old), partial, journal)
}
/// Compose the RLP of the node equivalent to `n` except with the `partial` key removed from its (sub-)trie.
///
/// `journal` will record the database updates so as to make the returned RLP valid through inserting
/// and deleting nodes as necessary.
///
/// **This operation will not insert the new node nor destroy the original.**
fn cleared(&self, n: Node, partial: &NibbleSlice, journal: &mut Journal) -> Option<Bytes> {
trace!("cleared old={:?}, partial={:?})", n, partial);
match (n, partial.is_empty()) {
(Node::Empty, _) => None,
(Node::Branch(_, None), true) => { None },
(Node::Branch(payloads, _), true) => Some(Self::encoded(self.fixed(Node::Branch(payloads, None), journal))), // matched as leaf-branch - give back fixed branch with it.
(Node::Branch(payloads, value), false) => {
// Branch with partial left - route, clear, fix.
let i: usize = partial.at(0) as usize;
trace!("branch-with-partial node[{:?}]={:?}", i, payloads[i].pretty());
self.cleared(self.get_node(payloads[i]), &partial.mid(1), journal).map(|new_payload| {
trace!("branch-new-payload={:?}; delete-old={:?}", new_payload.pretty(), payloads[i].pretty());
// downsteam node needed to be changed.
journal.delete_node(payloads[i]);
// return fixed up new node.
let mut new_payloads = payloads;
new_payloads[i] = &new_payload;
Self::encoded(self.fixed(Node::Branch(new_payloads, value), journal))
})
},
(Node::Leaf(node_partial, _), _) => {
trace!("leaf partial={:?}", node_partial);
match node_partial.common_prefix(partial) {
cp if cp == partial.len() => { // leaf to be deleted - delete it :)
trace!("matched-prefix (cp={:?}): REPLACE-EMPTY", cp);
Some(Node::Empty.encoded())
},
_ => None, // anything else and the key doesn't exit - no change.
}
},
(Node::Extension(node_partial, node_payload), _) => {
trace!("extension partial={:?}, payload={:?}", node_partial, node_payload.pretty());
match node_partial.common_prefix(partial) {
cp if cp == node_partial.len() => {
trace!("matching-prefix (cp={:?}): SKIP,CLEAR,FIXUP", cp);
// key at end of extension - skip, clear, fix
self.cleared(self.get_node(node_payload), &partial.mid(node_partial.len()), journal).map(|new_payload| {
trace!("extension-new-payload={:?}; delete-old={:?}", new_payload.pretty(), node_payload.pretty());
// downsteam node needed to be changed.
journal.delete_node(node_payload);
// return fixed up new node.
Self::encoded(self.fixed(Node::Extension(node_partial, &new_payload), journal))
})
},
_ => None, // key in the middle of an extension - doesn't exist.
}
},
}
}
}
impl<'db> Trie for TrieDBMut<'db> {
fn root(&self) -> &H256 { &self.root }
fn contains(&self, key: &[u8]) -> bool {
self.get(key).is_some()
}
fn get<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key {
self.do_lookup(&NibbleSlice::new(key))
}
}
impl<'db> TrieMut for TrieDBMut<'db> {
fn insert(&mut self, key: &[u8], value: &[u8]) {
match value.is_empty() {
false => self.insert_ns(&NibbleSlice::new(key), value),
true => self.remove_ns(&NibbleSlice::new(key)),
}
}
fn remove(&mut self, key: &[u8]) {
self.remove_ns(&NibbleSlice::new(key));
}
}
impl<'db> fmt::Debug for TrieDBMut<'db> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(writeln!(f, "c={:?} [", self.hash_count));
let root_rlp = self.db.lookup(&self.root).expect("Trie root not found!");
try!(self.fmt_all(Node::decoded(root_rlp), f, 0));
writeln!(f, "]")
}
}
#[cfg(test)]
mod tests {
extern crate json_tests;
use self::json_tests::{trie, execute_tests_from_directory};
use triehash::*;
use hash::*;
use hashdb::*;
use memorydb::*;
use super::*;
use nibbleslice::*;
use rlp::*;
use bytes::ToPretty;
use super::super::node::*;
use super::super::trietraits::*;
use super::super::standardmap::*;
fn populate_trie<'db>(db: &'db mut HashDB, root: &'db mut H256, v: &[(Vec<u8>, Vec<u8>)]) -> TrieDBMut<'db> {
let mut t = TrieDBMut::new(db, root);
for i in 0..v.len() {
let key: &[u8]= &v[i].0;
let val: &[u8] = &v[i].1;
t.insert(&key, &val);
}
t
}
fn unpopulate_trie<'db>(t: &mut TrieDBMut<'db>, v: &[(Vec<u8>, Vec<u8>)]) {
for i in v {
let key: &[u8]= &i.0;
t.remove(&key);
}
}
macro_rules! map({$($key:expr => $value:expr),+ } => {
{
let mut m = ::std::collections::HashMap::new();
$(
m.insert($key, $value);
)+
m
}
};);
#[test]
fn playpen() {
/*let maps = map!{
"six-low" => StandardMap{alphabet: Alphabet::Low, min_key: 6, journal_key: 0, count: 1000},
"six-mid" => StandardMap{alphabet: Alphabet::Mid, min_key: 6, journal_key: 0, count: 1000},
"six-all" => StandardMap{alphabet: Alphabet::All, min_key: 6, journal_key: 0, count: 1000},
"mix-mid" => StandardMap{alphabet: Alphabet::Mid, min_key: 1, journal_key: 5, count: 1000}
};
for sm in maps {
let m = sm.1.make();
let t = populate_trie(&m);
println!("{:?}: root={:?}, hash_count={:?}", sm.0, t.root(), t.hash_count);
};*/
// panic!();
let mut seed = H256::new();
for test_i in 0..1 {
if test_i % 50 == 0 {
debug!("{:?} of 10000 stress tests done", test_i);
}
let x = StandardMap {
alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
min_key: 5,
journal_key: 0,
value_mode: ValueMode::Index,
count: 100,
}.make_with(&mut seed);
let real = trie_root(x.clone());
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut memtrie = populate_trie(&mut memdb, &mut root, &x);
if *memtrie.root() != real || !memtrie.db_items_remaining().is_empty() {
println!("TRIE MISMATCH");
println!("");
println!("{:?} vs {:?}", memtrie.root(), real);
for i in &x {
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
}
println!("{:?}", memtrie);
}
assert_eq!(*memtrie.root(), real);
assert!(memtrie.db_items_remaining().is_empty());
unpopulate_trie(&mut memtrie, &x);
if *memtrie.root() != SHA3_NULL_RLP || !memtrie.db_items_remaining().is_empty() {
println!("- TRIE MISMATCH");
println!("");
println!("remaining: {:?}", memtrie.db_items_remaining());
println!("{:?} vs {:?}", memtrie.root(), real);
for i in &x {
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
}
println!("{:?}", memtrie);
}
assert_eq!(*memtrie.root(), SHA3_NULL_RLP);
assert!(memtrie.db_items_remaining().is_empty());
}
}
#[test]
fn init() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let t = TrieDBMut::new(&mut memdb, &mut root);
assert_eq!(*t.root(), SHA3_NULL_RLP);
assert!(t.is_empty());
}
#[test]
fn insert_on_empty() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]) ]));
}
#[test]
fn remove_to_empty() {
let big_value = b"00000000000000000000000000000000";
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t1 = TrieDBMut::new(&mut memdb, &mut root);
t1.insert(&[0x01, 0x23], &big_value.to_vec());
t1.insert(&[0x01, 0x34], &big_value.to_vec());
println!("********************** keys remaining {:?}", t1.db_items_remaining());
assert!(t1.db_items_remaining().is_empty());
let mut memdb2 = MemoryDB::new();
let mut root2 = H256::new();
let mut t2 = TrieDBMut::new(&mut memdb2, &mut root2);
t2.insert(&[0x01], &big_value.to_vec());
t2.insert(&[0x01, 0x23], &big_value.to_vec());
t2.insert(&[0x01, 0x34], &big_value.to_vec());
t2.remove(&[0x01]);
assert!(t2.db_items_remaining().is_empty());
/*if t1.root() != t2.root()*/ {
trace!("{:?}", t1);
trace!("{:?}", t2);
}
}
#[test]
fn insert_replace_root() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[0x01u8, 0x23], &[0x23u8, 0x45]);
assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x23u8, 0x45]) ]));
}
#[test]
fn insert_make_branch_root() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[0x11u8, 0x23], &[0x11u8, 0x23]);
assert_eq!(*t.root(), trie_root(vec![
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
(vec![0x11u8, 0x23], vec![0x11u8, 0x23])
]));
}
#[test]
fn insert_into_branch_root() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]);
t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]);
assert_eq!(*t.root(), trie_root(vec![
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
(vec![0x81u8, 0x23], vec![0x81u8, 0x23]),
(vec![0xf1u8, 0x23], vec![0xf1u8, 0x23]),
]));
}
#[test]
fn insert_value_into_branch_root() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[], &[0x0]);
assert_eq!(*t.root(), trie_root(vec![
(vec![], vec![0x0]),
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
]));
}
#[test]
fn insert_split_leaf() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[0x01u8, 0x34], &[0x01u8, 0x34]);
assert_eq!(*t.root(), trie_root(vec![
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
(vec![0x01u8, 0x34], vec![0x01u8, 0x34]),
]));
}
#[test]
fn insert_split_extenstion() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01, 0x23, 0x45], &[0x01]);
t.insert(&[0x01, 0xf3, 0x45], &[0x02]);
t.insert(&[0x01, 0xf3, 0xf5], &[0x03]);
assert_eq!(*t.root(), trie_root(vec![
(vec![0x01, 0x23, 0x45], vec![0x01]),
(vec![0x01, 0xf3, 0x45], vec![0x02]),
(vec![0x01, 0xf3, 0xf5], vec![0x03]),
]));
}
#[test]
fn insert_big_value() {
let big_value0 = b"00000000000000000000000000000000";
let big_value1 = b"11111111111111111111111111111111";
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], big_value0);
t.insert(&[0x11u8, 0x23], big_value1);
assert_eq!(*t.root(), trie_root(vec![
(vec![0x01u8, 0x23], big_value0.to_vec()),
(vec![0x11u8, 0x23], big_value1.to_vec())
]));
}
#[test]
fn insert_duplicate_value() {
let big_value = b"00000000000000000000000000000000";
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], big_value);
t.insert(&[0x11u8, 0x23], big_value);
assert_eq!(*t.root(), trie_root(vec![
(vec![0x01u8, 0x23], big_value.to_vec()),
(vec![0x11u8, 0x23], big_value.to_vec())
]));
}
#[test]
fn test_node_leaf() {
let k = vec![0x20u8, 0x01, 0x23, 0x45];
let v: Vec<u8> = From::from("cat");
let (slice, is_leaf) = NibbleSlice::from_encoded(&k);
assert_eq!(is_leaf, true);
let leaf = Node::Leaf(slice, &v);
let rlp = leaf.encoded();
let leaf2 = Node::decoded(&rlp);
assert_eq!(leaf, leaf2);
}
#[test]
fn test_node_extension() {
let k = vec![0x00u8, 0x01, 0x23, 0x45];
// in extension, value must be valid rlp
let v = encode(&"cat");
let (slice, is_leaf) = NibbleSlice::from_encoded(&k);
assert_eq!(is_leaf, false);
let ex = Node::Extension(slice, &v);
let rlp = ex.encoded();
let ex2 = Node::decoded(&rlp);
assert_eq!(ex, ex2);
}
#[test]
fn test_node_empty_branch() {
let null_rlp = NULL_RLP;
let branch = Node::Branch([&null_rlp; 16], None);
let rlp = branch.encoded();
let branch2 = Node::decoded(&rlp);
println!("{:?}", rlp);
assert_eq!(branch, branch2);
}
#[test]
fn test_node_branch() {
let k = encode(&"cat");
let mut nodes: [&[u8]; 16] = unsafe { ::std::mem::uninitialized() };
for i in 0..16 { nodes[i] = &k; }
let v: Vec<u8> = From::from("dog");
let branch = Node::Branch(nodes, Some(&v));
let rlp = branch.encoded();
let branch2 = Node::decoded(&rlp);
assert_eq!(branch, branch2);
}
#[test]
fn test_at_empty() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let t = TrieDBMut::new(&mut memdb, &mut root);
assert_eq!(t.get(&[0x5]), None);
}
#[test]
fn test_at_one() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
assert_eq!(t.get(&[0x1, 0x23]).unwrap(), &[0x1u8, 0x23]);
}
#[test]
fn test_at_three() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]);
t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]);
assert_eq!(t.get(&[0x01, 0x23]).unwrap(), &[0x01u8, 0x23]);
assert_eq!(t.get(&[0xf1, 0x23]).unwrap(), &[0xf1u8, 0x23]);
assert_eq!(t.get(&[0x81, 0x23]).unwrap(), &[0x81u8, 0x23]);
assert_eq!(t.get(&[0x82, 0x23]), None);
}
#[test]
fn test_print_trie() {
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[0x02u8, 0x23], &[0x01u8, 0x23]);
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]);
t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]);
println!("trie:");
println!("{:?}", t);
//assert!(false);
}
#[test]
fn stress() {
let mut seed = H256::new();
for _ in 0..50 {
let x = StandardMap {
alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
min_key: 5,
journal_key: 0,
value_mode: ValueMode::Index,
count: 4,
}.make_with(&mut seed);
let real = trie_root(x.clone());
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let memtrie = populate_trie(&mut memdb, &mut root, &x);
let mut y = x.clone();
y.sort_by(|ref a, ref b| a.0.cmp(&b.0));
let mut memdb2 = MemoryDB::new();
let mut root2 = H256::new();
let memtrie_sorted = populate_trie(&mut memdb2, &mut root2, &y);
if *memtrie.root() != real || *memtrie_sorted.root() != real {
println!("TRIE MISMATCH");
println!("");
println!("ORIGINAL... {:?}", memtrie.root());
for i in &x {
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
}
println!("{:?}", memtrie);
println!("SORTED... {:?}", memtrie_sorted.root());
for i in &y {
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
}
println!("{:?}", memtrie_sorted);
}
assert_eq!(*memtrie.root(), real);
assert_eq!(*memtrie_sorted.root(), real);
}
}
#[test]
fn test_trie_json() {
println!("Json trie test: ");
execute_tests_from_directory::<trie::TrieTest, _>("json-tests/json/trie/*.json", &mut | file, input, output | {
println!("file: {}", file);
let mut memdb = MemoryDB::new();
let mut root = H256::new();
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for operation in input.into_iter() {
match operation {
trie::Operation::Insert(key, value) => t.insert(&key, &value),
trie::Operation::Remove(key) => t.remove(&key)
}
}
assert_eq!(*t.root(), H256::from_slice(&output));
});
}
#[test]
fn test_trie_existing() {
let mut root = H256::new();
let mut db = MemoryDB::new();
{
let mut t = TrieDBMut::new(&mut db, &mut root);
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]);
}
{
let _ = TrieDBMut::from_existing(&mut db, &mut root);
}
}
}