openethereum/ethcore/src/state/mod.rs

3487 lines
120 KiB
Rust

// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
//! A mutable state representation suitable to execute transactions.
//! Generic over a `Backend`. Deals with `Account`s.
//! Unconfirmed sub-states are managed with `checkpoint`s which may be canonicalized
//! or rolled back.
use hash::{KECCAK_EMPTY, KECCAK_NULL_RLP};
use std::{
cell::{RefCell, RefMut},
collections::{hash_map::Entry, BTreeMap, BTreeSet, HashMap, HashSet},
fmt,
sync::Arc,
};
use error::Error;
use executed::{Executed, ExecutionError};
use executive::{Executive, TransactOptions};
use factory::{Factories, VmFactory};
use machine::EthereumMachine as Machine;
use pod_account::*;
use pod_state::{self, PodState};
use state_db::StateDB;
use trace::{self, FlatTrace, VMTrace};
use types::{
basic_account::BasicAccount,
receipt::{Receipt, TransactionOutcome},
state_diff::StateDiff,
transaction::SignedTransaction,
};
use vm::EnvInfo;
use bytes::Bytes;
use ethereum_types::{Address, H256, U256};
use hash_db::{AsHashDB, HashDB};
use keccak_hasher::KeccakHasher;
use kvdb::DBValue;
use ethtrie::{Result as TrieResult, TrieDB};
use trie::{Recorder, Trie, TrieError};
mod account;
mod substate;
pub mod backend;
pub use self::{account::Account, backend::Backend, substate::Substate};
/// Used to return information about an `State::apply` operation.
pub struct ApplyOutcome<T, V> {
/// The receipt for the applied transaction.
pub receipt: Receipt,
/// The output of the applied transaction.
pub output: Bytes,
/// The trace for the applied transaction, empty if tracing was not produced.
pub trace: Vec<T>,
/// The VM trace for the applied transaction, None if tracing was not produced.
pub vm_trace: Option<V>,
}
/// Result type for the execution ("application") of a transaction.
pub type ApplyResult<T, V> = Result<ApplyOutcome<T, V>, Error>;
/// Return type of proof validity check.
#[derive(Debug, Clone)]
pub enum ProvedExecution {
/// Proof wasn't enough to complete execution.
BadProof,
/// The transaction failed, but not due to a bad proof.
Failed(ExecutionError),
/// The transaction successfully completed with the given proof.
Complete(Box<Executed>),
}
#[derive(Eq, PartialEq, Clone, Copy, Debug)]
/// Account modification state. Used to check if the account was
/// Modified in between commits and overall.
enum AccountState {
/// Account was loaded from disk and never modified in this state object.
CleanFresh,
/// Account was loaded from the global cache and never modified.
CleanCached,
/// Account has been modified and is not committed to the trie yet.
/// This is set if any of the account data is changed, including
/// storage and code.
Dirty,
/// Account was modified and committed to the trie.
Committed,
}
#[derive(Debug)]
/// In-memory copy of the account data. Holds the optional account
/// and the modification status.
/// Account entry can contain existing (`Some`) or non-existing
/// account (`None`)
struct AccountEntry {
/// Account entry. `None` if account known to be non-existant.
account: Option<Account>,
/// Unmodified account balance.
old_balance: Option<U256>,
/// Entry state.
state: AccountState,
}
// Account cache item. Contains account data and
// modification state
impl AccountEntry {
fn is_dirty(&self) -> bool {
self.state == AccountState::Dirty
}
fn exists_and_is_null(&self) -> bool {
self.account.as_ref().map_or(false, |a| a.is_null())
}
/// Clone dirty data into new `AccountEntry`. This includes
/// basic account data and modified storage keys.
/// Returns None if clean.
fn clone_if_dirty(&self) -> Option<AccountEntry> {
match self.is_dirty() {
true => Some(self.clone_dirty()),
false => None,
}
}
/// Clone dirty data into new `AccountEntry`. This includes
/// basic account data and modified storage keys.
fn clone_dirty(&self) -> AccountEntry {
AccountEntry {
old_balance: self.old_balance,
account: self.account.as_ref().map(Account::clone_dirty),
state: self.state,
}
}
// Create a new account entry and mark it as dirty.
fn new_dirty(account: Option<Account>) -> AccountEntry {
AccountEntry {
old_balance: account.as_ref().map(|a| a.balance().clone()),
account: account,
state: AccountState::Dirty,
}
}
// Create a new account entry and mark it as clean.
fn new_clean(account: Option<Account>) -> AccountEntry {
AccountEntry {
old_balance: account.as_ref().map(|a| a.balance().clone()),
account: account,
state: AccountState::CleanFresh,
}
}
// Create a new account entry and mark it as clean and cached.
fn new_clean_cached(account: Option<Account>) -> AccountEntry {
AccountEntry {
old_balance: account.as_ref().map(|a| a.balance().clone()),
account: account,
state: AccountState::CleanCached,
}
}
// Replace data with another entry but preserve storage cache.
fn overwrite_with(&mut self, other: AccountEntry) {
self.state = other.state;
match other.account {
Some(acc) => {
if let Some(ref mut ours) = self.account {
ours.overwrite_with(acc);
} else {
self.account = Some(acc);
}
}
None => self.account = None,
}
}
}
/// Check the given proof of execution.
/// `Err(ExecutionError::Internal)` indicates failure, everything else indicates
/// a successful proof (as the transaction itself may be poorly chosen).
pub fn check_proof(
proof: &[DBValue],
root: H256,
transaction: &SignedTransaction,
machine: &Machine,
env_info: &EnvInfo,
) -> ProvedExecution {
let backend = self::backend::ProofCheck::new(proof);
let mut factories = Factories::default();
factories.accountdb = ::account_db::Factory::Plain;
let res = State::from_existing(
backend,
root,
machine.account_start_nonce(env_info.number),
factories,
);
let mut state = match res {
Ok(state) => state,
Err(_) => return ProvedExecution::BadProof,
};
let options = TransactOptions::with_no_tracing().save_output_from_contract();
match state.execute(env_info, machine, transaction, options, true) {
Ok(executed) => ProvedExecution::Complete(Box::new(executed)),
Err(ExecutionError::Internal(_)) => ProvedExecution::BadProof,
Err(e) => ProvedExecution::Failed(e),
}
}
/// Prove a `virtual` transaction on the given state.
/// Returns `None` when the transacion could not be proved,
/// and a proof otherwise.
pub fn prove_transaction_virtual<H: AsHashDB<KeccakHasher, DBValue> + Send + Sync>(
db: H,
root: H256,
transaction: &SignedTransaction,
machine: &Machine,
env_info: &EnvInfo,
factories: Factories,
) -> Option<(Bytes, Vec<DBValue>)> {
use self::backend::Proving;
let backend = Proving::new(db);
let res = State::from_existing(
backend,
root,
machine.account_start_nonce(env_info.number),
factories,
);
let mut state = match res {
Ok(state) => state,
Err(_) => return None,
};
let options = TransactOptions::with_no_tracing()
.dont_check_nonce()
.save_output_from_contract();
match state.execute(env_info, machine, transaction, options, true) {
Err(ExecutionError::Internal(_)) => None,
Err(e) => {
trace!(target: "state", "Proved call failed: {}", e);
Some((Vec::new(), state.drop().1.extract_proof()))
}
Ok(res) => Some((res.output, state.drop().1.extract_proof())),
}
}
/// Representation of the entire state of all accounts in the system.
///
/// `State` can work together with `StateDB` to share account cache.
///
/// Local cache contains changes made locally and changes accumulated
/// locally from previous commits. Global cache reflects the database
/// state and never contains any changes.
///
/// Cache items contains account data, or the flag that account does not exist
/// and modification state (see `AccountState`)
///
/// Account data can be in the following cache states:
/// * In global but not local - something that was queried from the database,
/// but never modified
/// * In local but not global - something that was just added (e.g. new account)
/// * In both with the same value - something that was changed to a new value,
/// but changed back to a previous block in the same block (same State instance)
/// * In both with different values - something that was overwritten with a
/// new value.
///
/// All read-only state queries check local cache/modifications first,
/// then global state cache. If data is not found in any of the caches
/// it is loaded from the DB to the local cache.
///
/// **** IMPORTANT *************************************************************
/// All the modifications to the account data must set the `Dirty` state in the
/// `AccountEntry`. This is done in `require` and `require_or_from`. So just
/// use that.
/// ****************************************************************************
///
/// Upon destruction all the local cache data propagated into the global cache.
/// Propagated items might be rejected if current state is non-canonical.
///
/// State checkpointing.
///
/// A new checkpoint can be created with `checkpoint()`. checkpoints can be
/// created in a hierarchy.
/// When a checkpoint is active all changes are applied directly into
/// `cache` and the original value is copied into an active checkpoint.
/// Reverting a checkpoint with `revert_to_checkpoint` involves copying
/// original values from the latest checkpoint back into `cache`. The code
/// takes care not to overwrite cached storage while doing that.
/// checkpoint can be discarded with `discard_checkpoint`. All of the orignal
/// backed-up values are moved into a parent checkpoint (if any).
///
pub struct State<B> {
db: B,
root: H256,
cache: RefCell<HashMap<Address, AccountEntry>>,
// The original account is preserved in
checkpoints: RefCell<Vec<HashMap<Address, Option<AccountEntry>>>>,
account_start_nonce: U256,
factories: Factories,
}
#[derive(Copy, Clone)]
enum RequireCache {
None,
CodeSize,
Code,
}
/// Mode of dealing with null accounts.
#[derive(PartialEq)]
pub enum CleanupMode<'a> {
/// Create accounts which would be null.
ForceCreate,
/// Don't delete null accounts upon touching, but also don't create them.
NoEmpty,
/// Mark all touched accounts.
TrackTouched(&'a mut HashSet<Address>),
}
/// Provides subset of `State` methods to query state information
pub trait StateInfo {
/// Get the nonce of account `a`.
fn nonce(&self, a: &Address) -> TrieResult<U256>;
/// Get the balance of account `a`.
fn balance(&self, a: &Address) -> TrieResult<U256>;
/// Mutate storage of account `address` so that it is `value` for `key`.
fn storage_at(&self, address: &Address, key: &H256) -> TrieResult<H256>;
/// Get accounts' code.
fn code(&self, a: &Address) -> TrieResult<Option<Arc<Bytes>>>;
}
impl<B: Backend> StateInfo for State<B> {
fn nonce(&self, a: &Address) -> TrieResult<U256> {
State::nonce(self, a)
}
fn balance(&self, a: &Address) -> TrieResult<U256> {
State::balance(self, a)
}
fn storage_at(&self, address: &Address, key: &H256) -> TrieResult<H256> {
State::storage_at(self, address, key)
}
fn code(&self, address: &Address) -> TrieResult<Option<Arc<Bytes>>> {
State::code(self, address)
}
}
const SEC_TRIE_DB_UNWRAP_STR: &'static str = "A state can only be created with valid root. Creating a SecTrieDB with a valid root will not fail. \
Therefore creating a SecTrieDB with this state's root will not fail.";
impl<B: Backend> State<B> {
/// Creates new state with empty state root
/// Used for tests.
pub fn new(mut db: B, account_start_nonce: U256, factories: Factories) -> State<B> {
let mut root = H256::new();
{
// init trie and reset root to null
let _ = factories.trie.create(db.as_hash_db_mut(), &mut root);
}
State {
db: db,
root: root,
cache: RefCell::new(HashMap::new()),
checkpoints: RefCell::new(Vec::new()),
account_start_nonce: account_start_nonce,
factories: factories,
}
}
/// Creates new state with existing state root
pub fn from_existing(
db: B,
root: H256,
account_start_nonce: U256,
factories: Factories,
) -> TrieResult<State<B>> {
if !db.as_hash_db().contains(&root) {
return Err(Box::new(TrieError::InvalidStateRoot(root)));
}
let state = State {
db: db,
root: root,
cache: RefCell::new(HashMap::new()),
checkpoints: RefCell::new(Vec::new()),
account_start_nonce: account_start_nonce,
factories: factories,
};
Ok(state)
}
/// Get a VM factory that can execute on this state.
pub fn vm_factory(&self) -> VmFactory {
self.factories.vm.clone()
}
/// Create a recoverable checkpoint of this state. Return the checkpoint index.
pub fn checkpoint(&mut self) -> usize {
let checkpoints = self.checkpoints.get_mut();
let index = checkpoints.len();
checkpoints.push(HashMap::new());
index
}
/// Merge last checkpoint with previous.
pub fn discard_checkpoint(&mut self) {
// merge with previous checkpoint
let last = self.checkpoints.get_mut().pop();
if let Some(mut checkpoint) = last {
if let Some(ref mut prev) = self.checkpoints.get_mut().last_mut() {
if prev.is_empty() {
**prev = checkpoint;
} else {
for (k, v) in checkpoint.drain() {
prev.entry(k).or_insert(v);
}
}
}
}
}
/// Revert to the last checkpoint and discard it.
pub fn revert_to_checkpoint(&mut self) {
if let Some(mut checkpoint) = self.checkpoints.get_mut().pop() {
for (k, v) in checkpoint.drain() {
match v {
Some(v) => {
match self.cache.get_mut().entry(k) {
Entry::Occupied(mut e) => {
// Merge checkpointed changes back into the main account
// storage preserving the cache.
e.get_mut().overwrite_with(v);
}
Entry::Vacant(e) => {
e.insert(v);
}
}
}
None => {
if let Entry::Occupied(e) = self.cache.get_mut().entry(k) {
if e.get().is_dirty() {
e.remove();
}
}
}
}
}
}
}
fn insert_cache(&self, address: &Address, account: AccountEntry) {
// Dirty account which is not in the cache means this is a new account.
// It goes directly into the checkpoint as there's nothing to rever to.
//
// In all other cases account is read as clean first, and after that made
// dirty in and added to the checkpoint with `note_cache`.
let is_dirty = account.is_dirty();
let old_value = self.cache.borrow_mut().insert(*address, account);
if is_dirty {
if let Some(ref mut checkpoint) = self.checkpoints.borrow_mut().last_mut() {
checkpoint.entry(*address).or_insert(old_value);
}
}
}
fn note_cache(&self, address: &Address) {
if let Some(ref mut checkpoint) = self.checkpoints.borrow_mut().last_mut() {
checkpoint.entry(*address).or_insert_with(|| {
self.cache
.borrow()
.get(address)
.map(AccountEntry::clone_dirty)
});
}
}
/// Destroy the current object and return root and database.
pub fn drop(mut self) -> (H256, B) {
self.propagate_to_global_cache();
(self.root, self.db)
}
/// Destroy the current object and return single account data.
pub fn into_account(
self,
account: &Address,
) -> TrieResult<(Option<Arc<Bytes>>, HashMap<H256, H256>)> {
// TODO: deconstruct without cloning.
let account = self.require(account, true)?;
Ok((account.code().clone(), account.storage_changes().clone()))
}
/// Return reference to root
pub fn root(&self) -> &H256 {
&self.root
}
/// Create a new contract at address `contract`. If there is already an account at the address
/// it will have its code reset, ready for `init_code()`.
pub fn new_contract(
&mut self,
contract: &Address,
balance: U256,
nonce_offset: U256,
) -> TrieResult<()> {
let original_storage_root = self.original_storage_root(contract)?;
let (nonce, overflow) = self.account_start_nonce.overflowing_add(nonce_offset);
if overflow {
return Err(Box::new(TrieError::DecoderError(
H256::from(contract),
rlp::DecoderError::Custom("Nonce overflow".into()),
)));
}
self.insert_cache(
contract,
AccountEntry::new_dirty(Some(Account::new_contract(
balance,
nonce,
original_storage_root,
))),
);
Ok(())
}
/// Remove an existing account.
pub fn kill_account(&mut self, account: &Address) {
self.insert_cache(account, AccountEntry::new_dirty(None));
}
/// Determine whether an account exists.
pub fn exists(&self, a: &Address) -> TrieResult<bool> {
// Bloom filter does not contain empty accounts, so it is important here to
// check if account exists in the database directly before EIP-161 is in effect.
self.ensure_cached(a, RequireCache::None, false, |a| a.is_some())
}
/// Determine whether an account exists and if not empty.
pub fn exists_and_not_null(&self, a: &Address) -> TrieResult<bool> {
self.ensure_cached(a, RequireCache::None, false, |a| {
a.map_or(false, |a| !a.is_null())
})
}
/// Determine whether an account exists and has code or non-zero nonce.
pub fn exists_and_has_code_or_nonce(&self, a: &Address) -> TrieResult<bool> {
self.ensure_cached(a, RequireCache::CodeSize, false, |a| {
a.map_or(false, |a| {
a.code_hash() != KECCAK_EMPTY || *a.nonce() != self.account_start_nonce
})
})
}
/// Get the balance of account `a`.
pub fn balance(&self, a: &Address) -> TrieResult<U256> {
self.ensure_cached(a, RequireCache::None, true, |a| {
a.as_ref()
.map_or(U256::zero(), |account| *account.balance())
})
}
/// Get the nonce of account `a`.
pub fn nonce(&self, a: &Address) -> TrieResult<U256> {
self.ensure_cached(a, RequireCache::None, true, |a| {
a.as_ref()
.map_or(self.account_start_nonce, |account| *account.nonce())
})
}
/// Whether the base storage root of an account remains unchanged.
pub fn is_base_storage_root_unchanged(&self, a: &Address) -> TrieResult<bool> {
Ok(self
.ensure_cached(a, RequireCache::None, true, |a| {
a.as_ref()
.map(|account| account.is_base_storage_root_unchanged())
})?
.unwrap_or(true))
}
/// Get the storage root of account `a`.
pub fn storage_root(&self, a: &Address) -> TrieResult<Option<H256>> {
self.ensure_cached(a, RequireCache::None, true, |a| {
a.as_ref().and_then(|account| account.storage_root())
})
}
/// Get the original storage root since last commit of account `a`.
pub fn original_storage_root(&self, a: &Address) -> TrieResult<H256> {
Ok(self
.ensure_cached(a, RequireCache::None, true, |a| {
a.as_ref().map(|account| account.original_storage_root())
})?
.unwrap_or(KECCAK_NULL_RLP))
}
/// Get the value of storage at a specific checkpoint.
pub fn checkpoint_storage_at(
&self,
start_checkpoint_index: usize,
address: &Address,
key: &H256,
) -> TrieResult<Option<H256>> {
#[must_use]
enum ReturnKind {
/// Use original storage at value at this address.
OriginalAt,
/// The checkpoint storage value is the same as the checkpoint storage value at the next checkpoint.
SameAsNext,
}
let kind = {
let checkpoints = self.checkpoints.borrow();
if start_checkpoint_index >= checkpoints.len() {
// The checkpoint was not found. Return None.
return Ok(None);
}
let mut kind = None;
for checkpoint in checkpoints.iter().skip(start_checkpoint_index) {
match checkpoint.get(address) {
// The account exists at this checkpoint.
Some(Some(AccountEntry {
account: Some(ref account),
..
})) => {
if let Some(value) = account.cached_storage_at(key) {
return Ok(Some(value));
} else {
// This account has checkpoint entry, but the key is not in the entry's cache. We can use
// original_storage_at if current account's original storage root is the same as checkpoint
// account's original storage root. Otherwise, the account must be a newly created contract.
if account.base_storage_root() == self.original_storage_root(address)? {
kind = Some(ReturnKind::OriginalAt);
break;
} else {
// If account base storage root is different from the original storage root since last
// commit, then it can only be created from a new contract, where the base storage root
// would always be empty. Note that this branch is actually never called, because
// `cached_storage_at` handled this case.
warn!(target: "state", "Trying to get an account's cached storage value, but base storage root does not equal to original storage root! Assuming the value is empty.");
return Ok(Some(H256::new()));
}
}
}
// The account didn't exist at that point. Return empty value.
Some(Some(AccountEntry { account: None, .. })) => return Ok(Some(H256::new())),
// The value was not cached at that checkpoint, meaning it was not modified at all.
Some(None) => {
kind = Some(ReturnKind::OriginalAt);
break;
}
// This key does not have a checkpoint entry.
None => {
kind = Some(ReturnKind::SameAsNext);
}
}
}
kind.expect("start_checkpoint_index is checked to be below checkpoints_len; for loop above must have been executed at least once; it will either early return, or set the kind value to Some; qed")
};
match kind {
ReturnKind::SameAsNext => {
// If we reached here, all previous SameAsNext failed to early return. It means that the value we want
// to fetch is the same as current.
Ok(Some(self.storage_at(address, key)?))
}
ReturnKind::OriginalAt => Ok(Some(self.original_storage_at(address, key)?)),
}
}
fn storage_at_inner<FCachedStorageAt, FStorageAt>(
&self,
address: &Address,
key: &H256,
f_cached_at: FCachedStorageAt,
f_at: FStorageAt,
) -> TrieResult<H256>
where
FCachedStorageAt: Fn(&Account, &H256) -> Option<H256>,
FStorageAt: Fn(&Account, &dyn HashDB<KeccakHasher, DBValue>, &H256) -> TrieResult<H256>,
{
// Storage key search and update works like this:
// 1. If there's an entry for the account in the local cache check for the key and return it if found.
// 2. If there's an entry for the account in the global cache check for the key or load it into that account.
// 3. If account is missing in the global cache load it into the local cache and cache the key there.
{
// check local cache first without updating
let local_cache = self.cache.borrow_mut();
let mut local_account = None;
if let Some(maybe_acc) = local_cache.get(address) {
match maybe_acc.account {
Some(ref account) => {
if let Some(value) = f_cached_at(account, key) {
return Ok(value);
} else {
local_account = Some(maybe_acc);
}
}
_ => return Ok(H256::new()),
}
}
// check the global cache and and cache storage key there if found,
let trie_res = self.db.get_cached(address, |acc| match acc {
None => Ok(H256::new()),
Some(a) => {
let account_db = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), a.address_hash(address));
f_at(a, account_db.as_hash_db(), key)
}
});
if let Some(res) = trie_res {
return res;
}
// otherwise cache the account localy and cache storage key there.
if let Some(ref mut acc) = local_account {
if let Some(ref account) = acc.account {
let account_db = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), account.address_hash(address));
return f_at(account, account_db.as_hash_db(), key);
} else {
return Ok(H256::new());
}
}
}
// check if the account could exist before any requests to trie
if self.db.is_known_null(address) {
return Ok(H256::zero());
}
// account is not found in the global cache, get from the DB and insert into local
let db = &self.db.as_hash_db();
let db = self
.factories
.trie
.readonly(db, &self.root)
.expect(SEC_TRIE_DB_UNWRAP_STR);
let from_rlp = |b: &[u8]| Account::from_rlp(b).expect("decoding db value failed");
let maybe_acc = db.get_with(address, from_rlp)?;
let r = maybe_acc.as_ref().map_or(Ok(H256::new()), |a| {
let account_db = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), a.address_hash(address));
f_at(a, account_db.as_hash_db(), key)
});
self.insert_cache(address, AccountEntry::new_clean(maybe_acc));
r
}
/// Mutate storage of account `address` so that it is `value` for `key`.
pub fn storage_at(&self, address: &Address, key: &H256) -> TrieResult<H256> {
self.storage_at_inner(
address,
key,
|account, key| account.cached_storage_at(key),
|account, db, key| account.storage_at(db, key),
)
}
/// Get the value of storage after last state commitment.
pub fn original_storage_at(&self, address: &Address, key: &H256) -> TrieResult<H256> {
self.storage_at_inner(
address,
key,
|account, key| account.cached_original_storage_at(key),
|account, db, key| account.original_storage_at(db, key),
)
}
/// Get accounts' code.
pub fn code(&self, a: &Address) -> TrieResult<Option<Arc<Bytes>>> {
self.ensure_cached(a, RequireCache::Code, true, |a| {
a.as_ref().map_or(None, |a| a.code().clone())
})
}
/// Get an account's code hash.
pub fn code_hash(&self, a: &Address) -> TrieResult<Option<H256>> {
self.ensure_cached(a, RequireCache::None, true, |a| {
a.as_ref().map(|a| a.code_hash())
})
}
/// Get accounts' code size.
pub fn code_size(&self, a: &Address) -> TrieResult<Option<usize>> {
self.ensure_cached(a, RequireCache::CodeSize, true, |a| {
a.as_ref().and_then(|a| a.code_size())
})
}
/// Add `incr` to the balance of account `a`.
pub fn add_balance(
&mut self,
a: &Address,
incr: &U256,
cleanup_mode: CleanupMode,
) -> TrieResult<()> {
trace!(target: "state", "add_balance({}, {}): {}", a, incr, self.balance(a)?);
let is_value_transfer = !incr.is_zero();
if is_value_transfer || (cleanup_mode == CleanupMode::ForceCreate && !self.exists(a)?) {
self.require(a, false)?.add_balance(incr);
} else if let CleanupMode::TrackTouched(set) = cleanup_mode {
if self.exists(a)? {
set.insert(*a);
self.touch(a)?;
}
}
Ok(())
}
/// Subtract `decr` from the balance of account `a`.
pub fn sub_balance(
&mut self,
a: &Address,
decr: &U256,
cleanup_mode: &mut CleanupMode,
) -> TrieResult<()> {
trace!(target: "state", "sub_balance({}, {}): {}", a, decr, self.balance(a)?);
if !decr.is_zero() || !self.exists(a)? {
self.require(a, false)?.sub_balance(decr);
}
if let CleanupMode::TrackTouched(ref mut set) = *cleanup_mode {
set.insert(*a);
}
Ok(())
}
/// Subtracts `by` from the balance of `from` and adds it to that of `to`.
pub fn transfer_balance(
&mut self,
from: &Address,
to: &Address,
by: &U256,
mut cleanup_mode: CleanupMode,
) -> TrieResult<()> {
self.sub_balance(from, by, &mut cleanup_mode)?;
self.add_balance(to, by, cleanup_mode)?;
Ok(())
}
/// Increment the nonce of account `a` by 1.
pub fn inc_nonce(&mut self, a: &Address) -> TrieResult<()> {
self.require(a, false).map(|mut x| x.inc_nonce())
}
/// Mutate storage of account `a` so that it is `value` for `key`.
pub fn set_storage(&mut self, a: &Address, key: H256, value: H256) -> TrieResult<()> {
trace!(target: "state", "set_storage({}:{:x} to {:x})", a, key, value);
if self.storage_at(a, &key)? != value {
self.require(a, false)?.set_storage(key, value)
}
Ok(())
}
/// Initialise the code of account `a` so that it is `code`.
/// NOTE: Account should have been created with `new_contract`.
pub fn init_code(&mut self, a: &Address, code: Bytes) -> TrieResult<()> {
self.require_or_from(
a,
true,
|| Account::new_contract(0.into(), self.account_start_nonce, KECCAK_NULL_RLP),
|_| {},
)?
.init_code(code);
Ok(())
}
/// Reset the code of account `a` so that it is `code`.
pub fn reset_code(&mut self, a: &Address, code: Bytes) -> TrieResult<()> {
self.require_or_from(
a,
true,
|| Account::new_contract(0.into(), self.account_start_nonce, KECCAK_NULL_RLP),
|_| {},
)?
.reset_code(code);
Ok(())
}
/// Execute a given transaction, producing a receipt and an optional trace.
/// This will change the state accordingly.
pub fn apply(
&mut self,
env_info: &EnvInfo,
machine: &Machine,
t: &SignedTransaction,
tracing: bool,
) -> ApplyResult<FlatTrace, VMTrace> {
if tracing {
let options = TransactOptions::with_tracing();
self.apply_with_tracing(env_info, machine, t, options.tracer, options.vm_tracer)
} else {
let options = TransactOptions::with_no_tracing();
self.apply_with_tracing(env_info, machine, t, options.tracer, options.vm_tracer)
}
}
/// Execute a given transaction with given tracer and VM tracer producing a receipt and an optional trace.
/// This will change the state accordingly.
pub fn apply_with_tracing<V, T>(
&mut self,
env_info: &EnvInfo,
machine: &Machine,
t: &SignedTransaction,
tracer: T,
vm_tracer: V,
) -> ApplyResult<T::Output, V::Output>
where
T: trace::Tracer,
V: trace::VMTracer,
{
let options = TransactOptions::new(tracer, vm_tracer);
let e = self.execute(env_info, machine, t, options, false)?;
let params = machine.params();
let eip658 = env_info.number >= params.eip658_transition;
let no_intermediate_commits = eip658
|| (env_info.number >= params.eip98_transition
&& env_info.number >= params.validate_receipts_transition);
let outcome = if no_intermediate_commits {
if eip658 {
TransactionOutcome::StatusCode(if e.exception.is_some() { 0 } else { 1 })
} else {
TransactionOutcome::Unknown
}
} else {
self.commit()?;
TransactionOutcome::StateRoot(self.root().clone())
};
let output = e.output;
let receipt = Receipt::new(outcome, e.cumulative_gas_used, e.logs);
trace!(target: "state", "Transaction receipt: {:?}", receipt);
Ok(ApplyOutcome {
receipt,
output,
trace: e.trace,
vm_trace: e.vm_trace,
})
}
// Execute a given transaction without committing changes.
//
// `virt` signals that we are executing outside of a block set and restrictions like
// gas limits and gas costs should be lifted.
fn execute<T, V>(
&mut self,
env_info: &EnvInfo,
machine: &Machine,
t: &SignedTransaction,
options: TransactOptions<T, V>,
virt: bool,
) -> Result<Executed<T::Output, V::Output>, ExecutionError>
where
T: trace::Tracer,
V: trace::VMTracer,
{
let schedule = machine.schedule(env_info.number);
let mut e = Executive::new(self, env_info, machine, &schedule);
match virt {
true => e.transact_virtual(t, options),
false => e.transact(t, options),
}
}
fn touch(&mut self, a: &Address) -> TrieResult<()> {
self.require(a, false)?;
Ok(())
}
/// Commits our cached account changes into the trie.
pub fn commit(&mut self) -> Result<(), Error> {
assert!(self.checkpoints.borrow().is_empty());
// first, commit the sub trees.
let mut accounts = self.cache.borrow_mut();
for (address, ref mut a) in accounts.iter_mut().filter(|&(_, ref a)| a.is_dirty()) {
if let Some(ref mut account) = a.account {
let addr_hash = account.address_hash(address);
{
let mut account_db = self
.factories
.accountdb
.create(self.db.as_hash_db_mut(), addr_hash);
account.commit_storage(&self.factories.trie, account_db.as_hash_db_mut())?;
account.commit_code(account_db.as_hash_db_mut());
}
if !account.is_empty() {
self.db.note_non_null_account(address);
}
}
}
{
let mut trie = self
.factories
.trie
.from_existing(self.db.as_hash_db_mut(), &mut self.root)?;
for (address, ref mut a) in accounts.iter_mut().filter(|&(_, ref a)| a.is_dirty()) {
a.state = AccountState::Committed;
match a.account {
Some(ref mut account) => {
trie.insert(address, &account.rlp())?;
}
None => {
trie.remove(address)?;
}
};
}
}
Ok(())
}
/// Propagate local cache into shared canonical state cache.
fn propagate_to_global_cache(&mut self) {
let mut addresses = self.cache.borrow_mut();
trace!("Committing cache {:?} entries", addresses.len());
for (address, a) in addresses.drain().filter(|&(_, ref a)| {
a.state == AccountState::Committed || a.state == AccountState::CleanFresh
}) {
self.db
.add_to_account_cache(address, a.account, a.state == AccountState::Committed);
}
}
/// Clear state cache
pub fn clear(&mut self) {
assert!(self.checkpoints.borrow().is_empty());
self.cache.borrow_mut().clear();
}
/// Remove any touched empty or dust accounts.
pub fn kill_garbage(
&mut self,
touched: &HashSet<Address>,
remove_empty_touched: bool,
min_balance: &Option<U256>,
kill_contracts: bool,
) -> TrieResult<()> {
let to_kill: HashSet<_> = {
self.cache.borrow().iter().filter_map(|(address, ref entry)|
if touched.contains(address) && // Check all touched accounts
((remove_empty_touched && entry.exists_and_is_null()) // Remove all empty touched accounts.
|| min_balance.map_or(false, |ref balance| entry.account.as_ref().map_or(false, |account|
(account.is_basic() || kill_contracts) // Remove all basic and optionally contract accounts where balance has been decreased.
&& account.balance() < balance && entry.old_balance.as_ref().map_or(false, |b| account.balance() < b)))) {
Some(address.clone())
} else { None }).collect()
};
for address in to_kill {
self.kill_account(&address);
}
Ok(())
}
/// Populate the state from `accounts`.
/// Used for tests.
pub fn populate_from(&mut self, accounts: PodState) {
assert!(self.checkpoints.borrow().is_empty());
for (add, acc) in accounts.drain().into_iter() {
self.cache
.borrow_mut()
.insert(add, AccountEntry::new_dirty(Some(Account::from_pod(acc))));
}
}
/// Populate a PodAccount map from this state.
fn to_pod_cache(&self) -> PodState {
assert!(self.checkpoints.borrow().is_empty());
PodState::from(
self.cache
.borrow()
.iter()
.fold(BTreeMap::new(), |mut m, (add, opt)| {
if let Some(ref acc) = opt.account {
m.insert(*add, PodAccount::from_account(acc));
}
m
}),
)
}
#[cfg(feature = "to-pod-full")]
/// Populate a PodAccount map from this state.
/// Warning this is not for real time use.
/// Use of this method requires FatDB mode to be able
/// to iterate on accounts.
pub fn to_pod_full(&self) -> Result<PodState, Error> {
assert!(self.checkpoints.borrow().is_empty());
assert!(self.factories.trie.is_fat());
let mut result = BTreeMap::new();
let db = &self.db.as_hash_db();
let trie = self.factories.trie.readonly(db, &self.root)?;
// put trie in cache
for item in trie.iter()? {
if let Ok((addr, _dbval)) = item {
let address = Address::from_slice(&addr);
let _ = self.require(&address, true);
}
}
// Resolve missing part
for (add, opt) in self.cache.borrow().iter() {
if let Some(ref acc) = opt.account {
let pod_account = self.account_to_pod_account(acc, add)?;
result.insert(add.clone(), pod_account);
}
}
Ok(PodState::from(result))
}
/// Create a PodAccount from an account.
/// Differs from existing method by including all storage
/// values of the account to the PodAccount.
/// This function is only intended for use in small tests or with fresh accounts.
/// It requires FatDB.
#[cfg(feature = "to-pod-full")]
fn account_to_pod_account(
&self,
account: &Account,
address: &Address,
) -> Result<PodAccount, Error> {
let mut pod_storage = BTreeMap::new();
let addr_hash = account.address_hash(address);
let accountdb = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), addr_hash);
let root = account.base_storage_root();
let accountdb = &accountdb.as_hash_db();
let trie = self.factories.trie.readonly(accountdb, &root)?;
for o_kv in trie.iter()? {
if let Ok((key, val)) = o_kv {
pod_storage.insert(
key[..].into(),
rlp::decode::<U256>(&val[..])
.expect("Decoded from trie which was encoded from the same type; qed")
.into(),
);
}
}
let mut pod_account = PodAccount::from_account(&account);
// cached one first
pod_storage.append(&mut pod_account.storage);
pod_account.storage = pod_storage;
Ok(pod_account)
}
/// Populate a PodAccount map from this state, with another state as the account and storage query.
fn to_pod_diff<X: Backend>(&mut self, query: &State<X>) -> TrieResult<PodState> {
assert!(self.checkpoints.borrow().is_empty());
// Merge PodAccount::to_pod for cache of self and `query`.
let all_addresses = self
.cache
.borrow()
.keys()
.cloned()
.chain(query.cache.borrow().keys().cloned())
.collect::<BTreeSet<_>>();
Ok(PodState::from(all_addresses.into_iter().fold(
Ok(BTreeMap::new()),
|m: TrieResult<_>, address| {
let mut m = m?;
let account = self.ensure_cached(&address, RequireCache::Code, true, |acc| {
acc.map(|acc| {
// Merge all modified storage keys.
let all_keys = {
let self_keys = acc
.storage_changes()
.keys()
.cloned()
.collect::<BTreeSet<_>>();
if let Some(ref query_storage) =
query.cache.borrow().get(&address).and_then(|opt| {
Some(
opt.account
.as_ref()?
.storage_changes()
.keys()
.cloned()
.collect::<BTreeSet<_>>(),
)
})
{
self_keys.union(&query_storage).cloned().collect::<Vec<_>>()
} else {
self_keys.into_iter().collect::<Vec<_>>()
}
};
// Storage must be fetched after ensure_cached to avoid borrow problem.
(
*acc.balance(),
*acc.nonce(),
all_keys,
acc.code().map(|x| x.to_vec()),
)
})
})?;
if let Some((balance, nonce, storage_keys, code)) = account {
let storage = storage_keys.into_iter().fold(
Ok(BTreeMap::new()),
|s: TrieResult<_>, key| {
let mut s = s?;
s.insert(key, self.storage_at(&address, &key)?);
Ok(s)
},
)?;
m.insert(
address,
PodAccount {
balance,
nonce,
storage,
code,
},
);
}
Ok(m)
},
)?))
}
/// Returns a `StateDiff` describing the difference from `orig` to `self`.
/// Consumes self.
pub fn diff_from<X: Backend>(&self, mut orig: State<X>) -> TrieResult<StateDiff> {
let pod_state_post = self.to_pod_cache();
let pod_state_pre = orig.to_pod_diff(self)?;
Ok(pod_state::diff_pod(&pod_state_pre, &pod_state_post))
}
/// Load required account data from the databases. Returns whether the cache succeeds.
#[must_use]
fn update_account_cache(
require: RequireCache,
account: &mut Account,
state_db: &B,
db: &dyn HashDB<KeccakHasher, DBValue>,
) -> bool {
if let RequireCache::None = require {
return true;
}
if account.is_cached() {
return true;
}
// if there's already code in the global cache, always cache it localy
let hash = account.code_hash();
match state_db.get_cached_code(&hash) {
Some(code) => {
account.cache_given_code(code);
true
}
None => match require {
RequireCache::None => true,
RequireCache::Code => {
if let Some(code) = account.cache_code(db) {
// propagate code loaded from the database to
// the global code cache.
state_db.cache_code(hash, code);
true
} else {
false
}
}
RequireCache::CodeSize => account.cache_code_size(db),
},
}
}
/// Check caches for required data
/// First searches for account in the local, then the shared cache.
/// Populates local cache if nothing found.
fn ensure_cached<F, U>(
&self,
a: &Address,
require: RequireCache,
check_null: bool,
f: F,
) -> TrieResult<U>
where
F: Fn(Option<&Account>) -> U,
{
// check local cache first
if let Some(ref mut maybe_acc) = self.cache.borrow_mut().get_mut(a) {
if let Some(ref mut account) = maybe_acc.account {
let accountdb = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), account.address_hash(a));
if Self::update_account_cache(require, account, &self.db, accountdb.as_hash_db()) {
return Ok(f(Some(account)));
} else {
return Err(Box::new(TrieError::IncompleteDatabase(H256::from(a))));
}
}
return Ok(f(None));
}
// check global cache
let result = self.db.get_cached(a, |mut acc| {
if let Some(ref mut account) = acc {
let accountdb = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), account.address_hash(a));
if !Self::update_account_cache(require, account, &self.db, accountdb.as_hash_db()) {
return Err(Box::new(TrieError::IncompleteDatabase(H256::from(a))));
}
}
Ok(f(acc.map(|a| &*a)))
});
match result {
Some(r) => Ok(r?),
None => {
// first check if it is not in database for sure
if check_null && self.db.is_known_null(a) {
return Ok(f(None));
}
// not found in the global cache, get from the DB and insert into local
let db = &self.db.as_hash_db();
let db = self.factories.trie.readonly(db, &self.root)?;
let from_rlp = |b: &[u8]| Account::from_rlp(b).expect("decoding db value failed");
let mut maybe_acc = db.get_with(a, from_rlp)?;
if let Some(ref mut account) = maybe_acc.as_mut() {
let accountdb = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), account.address_hash(a));
if !Self::update_account_cache(
require,
account,
&self.db,
accountdb.as_hash_db(),
) {
return Err(Box::new(TrieError::IncompleteDatabase(H256::from(a))));
}
}
let r = f(maybe_acc.as_ref());
self.insert_cache(a, AccountEntry::new_clean(maybe_acc));
Ok(r)
}
}
}
/// Pull account `a` in our cache from the trie DB. `require_code` requires that the code be cached, too.
fn require<'a>(&'a self, a: &Address, require_code: bool) -> TrieResult<RefMut<'a, Account>> {
self.require_or_from(
a,
require_code,
|| Account::new_basic(0u8.into(), self.account_start_nonce),
|_| {},
)
}
/// Pull account `a` in our cache from the trie DB. `require_code` requires that the code be cached, too.
/// If it doesn't exist, make account equal the evaluation of `default`.
fn require_or_from<'a, F, G>(
&'a self,
a: &Address,
require_code: bool,
default: F,
not_default: G,
) -> TrieResult<RefMut<'a, Account>>
where
F: FnOnce() -> Account,
G: FnOnce(&mut Account),
{
let contains_key = self.cache.borrow().contains_key(a);
if !contains_key {
match self.db.get_cached_account(a) {
Some(acc) => self.insert_cache(a, AccountEntry::new_clean_cached(acc)),
None => {
let maybe_acc = if !self.db.is_known_null(a) {
let db = &self.db.as_hash_db();
let db = self.factories.trie.readonly(db, &self.root)?;
let from_rlp =
|b: &[u8]| Account::from_rlp(b).expect("decoding db value failed");
AccountEntry::new_clean(db.get_with(a, from_rlp)?)
} else {
AccountEntry::new_clean(None)
};
self.insert_cache(a, maybe_acc);
}
}
}
self.note_cache(a);
// at this point the entry is guaranteed to be in the cache.
let mut account = RefMut::map(self.cache.borrow_mut(), |c| {
let entry = c
.get_mut(a)
.expect("entry known to exist in the cache; qed");
match &mut entry.account {
&mut Some(ref mut acc) => not_default(acc),
slot => *slot = Some(default()),
}
// set the dirty flag after changing account data.
entry.state = AccountState::Dirty;
entry
.account
.as_mut()
.expect("Required account must always exist; qed")
});
if require_code {
let addr_hash = account.address_hash(a);
let accountdb = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), addr_hash);
if !Self::update_account_cache(
RequireCache::Code,
&mut account,
&self.db,
accountdb.as_hash_db(),
) {
return Err(Box::new(TrieError::IncompleteDatabase(H256::from(a))));
}
}
Ok(account)
}
/// Replace account code and storage. Creates account if it does not exist.
pub fn patch_account(
&self,
a: &Address,
code: Arc<Bytes>,
storage: HashMap<H256, H256>,
) -> TrieResult<()> {
Ok(self
.require(a, false)?
.reset_code_and_storage(code, storage))
}
}
// State proof implementations; useful for light client protocols.
impl<B: Backend> State<B> {
/// Prove an account's existence or nonexistence in the state trie.
/// Returns a merkle proof of the account's trie node omitted or an encountered trie error.
/// If the account doesn't exist in the trie, prove that and return defaults.
/// Requires a secure trie to be used for accurate results.
/// `account_key` == keccak(address)
pub fn prove_account(&self, account_key: H256) -> TrieResult<(Vec<Bytes>, BasicAccount)> {
let mut recorder = Recorder::new();
let db = &self.db.as_hash_db();
let trie = TrieDB::new(db, &self.root)?;
let maybe_account: Option<BasicAccount> = {
let panicky_decoder = |bytes: &[u8]| {
::rlp::decode(bytes).unwrap_or_else(|_| {
panic!(
"prove_account, could not query trie for account key={}",
&account_key
)
})
};
let query = (&mut recorder, panicky_decoder);
trie.get_with(&account_key, query)?
};
let account = maybe_account.unwrap_or_else(|| BasicAccount {
balance: 0.into(),
nonce: self.account_start_nonce,
code_hash: KECCAK_EMPTY,
storage_root: KECCAK_NULL_RLP,
});
Ok((
recorder.drain().into_iter().map(|r| r.data).collect(),
account,
))
}
/// Prove an account's storage key's existence or nonexistence in the state.
/// Returns a merkle proof of the account's storage trie.
/// Requires a secure trie to be used for correctness.
/// `account_key` == keccak(address)
/// `storage_key` == keccak(key)
pub fn prove_storage(
&self,
account_key: H256,
storage_key: H256,
) -> TrieResult<(Vec<Bytes>, H256)> {
// TODO: probably could look into cache somehow but it's keyed by
// address, not keccak(address).
let db = &self.db.as_hash_db();
let trie = TrieDB::new(db, &self.root)?;
let from_rlp = |b: &[u8]| Account::from_rlp(b).expect("decoding db value failed");
let acc = match trie.get_with(&account_key, from_rlp)? {
Some(acc) => acc,
None => return Ok((Vec::new(), H256::new())),
};
let account_db = self
.factories
.accountdb
.readonly(self.db.as_hash_db(), account_key);
acc.prove_storage(account_db.as_hash_db(), storage_key)
}
}
impl<B: Backend> fmt::Debug for State<B> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self.cache.borrow())
}
}
impl State<StateDB> {
/// Get a reference to the underlying state DB.
pub fn db(&self) -> &StateDB {
&self.db
}
}
// TODO: cloning for `State` shouldn't be possible in general; Remove this and use
// checkpoints where possible.
impl Clone for State<StateDB> {
fn clone(&self) -> State<StateDB> {
let cache = {
let mut cache: HashMap<Address, AccountEntry> = HashMap::new();
for (key, val) in self.cache.borrow().iter() {
if let Some(entry) = val.clone_if_dirty() {
cache.insert(key.clone(), entry);
}
}
cache
};
State {
db: self.db.boxed_clone(),
root: self.root.clone(),
cache: RefCell::new(cache),
checkpoints: RefCell::new(Vec::new()),
account_start_nonce: self.account_start_nonce.clone(),
factories: self.factories.clone(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use ethereum_types::{Address, H256, U256};
use ethkey::Secret;
use evm::CallType;
use hash::{keccak, KECCAK_NULL_RLP};
use machine::EthereumMachine;
use rustc_hex::FromHex;
use spec::*;
use std::{str::FromStr, sync::Arc};
use test_helpers::{get_temp_state, get_temp_state_db};
use trace::{trace, FlatTrace, TraceError};
use types::transaction::*;
use vm::EnvInfo;
fn secret() -> Secret {
keccak("").into()
}
fn make_frontier_machine(max_depth: usize) -> EthereumMachine {
let mut machine = ::ethereum::new_frontier_test_machine();
machine.set_schedule_creation_rules(Box::new(move |s, _| s.max_depth = max_depth));
machine
}
#[test]
fn should_apply_create_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Create,
value: 100.into(),
data: FromHex::from_hex("601080600c6000396000f3006000355415600957005b60203560003555")
.unwrap(),
}
.sign(&secret(), None);
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
subtraces: 0,
action: trace::Action::Create(trace::Create {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
value: 100.into(),
gas: 77412.into(),
init: vec![
96, 16, 128, 96, 12, 96, 0, 57, 96, 0, 243, 0, 96, 0, 53, 84, 21, 96, 9, 87, 0,
91, 96, 32, 53, 96, 0, 53, 85,
],
}),
result: trace::Res::Create(trace::CreateResult {
gas_used: U256::from(3224),
address: Address::from_str("8988167e088c87cd314df6d3c2b83da5acb93ace").unwrap(),
code: vec![96, 0, 53, 84, 21, 96, 9, 87, 0, 91, 96, 32, 53, 96, 0, 53],
}),
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_work_when_cloned() {
let _ = env_logger::try_init();
let a = Address::zero();
let mut state = {
let mut state = get_temp_state();
assert_eq!(state.exists(&a).unwrap(), false);
state.inc_nonce(&a).unwrap();
state.commit().unwrap();
state.clone()
};
state.inc_nonce(&a).unwrap();
state.commit().unwrap();
}
#[test]
fn should_trace_failed_create_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Create,
value: 100.into(),
data: FromHex::from_hex("5b600056").unwrap(),
}
.sign(&secret(), None);
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
action: trace::Action::Create(trace::Create {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
value: 100.into(),
gas: 78792.into(),
init: vec![91, 96, 0, 86],
}),
result: trace::Res::FailedCreate(TraceError::OutOfGas),
subtraces: 0,
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_call_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(&0xa.into(), FromHex::from_hex("6000").unwrap())
.unwrap();
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(3),
output: vec![],
}),
subtraces: 0,
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_basic_call_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(0),
output: vec![],
}),
subtraces: 0,
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_call_transaction_to_builtin() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = Spec::new_test_machine();
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0x1.into()),
value: 0.into(),
data: vec![],
}
.sign(&secret(), None);
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: "0000000000000000000000000000000000000001".into(),
value: 0.into(),
gas: 79_000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(3000),
output: vec![],
}),
subtraces: 0,
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_not_trace_subcall_transaction_to_builtin() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = Spec::new_test_machine();
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 0.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("600060006000600060006001610be0f1").unwrap(),
)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 0.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(3_721), // in post-eip150
output: vec![],
}),
subtraces: 0,
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_callcode_properly() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = Spec::new_test_machine();
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 0.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("60006000600060006000600b611000f2").unwrap(),
)
.unwrap();
state
.init_code(&0xb.into(), FromHex::from_hex("6000").unwrap())
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 0.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: 724.into(), // in post-eip150
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: 0xa.into(),
to: 0xb.into(),
value: 0.into(),
gas: 4096.into(),
input: vec![],
call_type: CallType::CallCode,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: 3.into(),
output: vec![],
}),
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_delegatecall_properly() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
info.number = 0x789b0;
let machine = Spec::new_test_machine();
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 0.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("6000600060006000600b618000f4").unwrap(),
)
.unwrap();
state
.init_code(
&0xb.into(),
FromHex::from_hex("60056000526001601ff3").unwrap(),
)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 0.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(736), // in post-eip150
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: 0xa.into(),
to: 0xb.into(),
value: 0.into(),
gas: 32768.into(),
input: vec![],
call_type: CallType::DelegateCall,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: 18.into(),
output: vec![5],
}),
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_failed_call_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(&0xa.into(), FromHex::from_hex("5b600056").unwrap())
.unwrap();
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::FailedCall(TraceError::OutOfGas),
subtraces: 0,
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_call_with_subcall_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap(),
)
.unwrap();
state
.init_code(&0xb.into(), FromHex::from_hex("6000").unwrap())
.unwrap();
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(69),
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: 0xa.into(),
to: 0xb.into(),
value: 0.into(),
gas: 78934.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(3),
output: vec![],
}),
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_call_with_basic_subcall_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("60006000600060006045600b6000f1").unwrap(),
)
.unwrap();
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(31761),
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: 0xa.into(),
to: 0xb.into(),
value: 69.into(),
gas: 2300.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult::default()),
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_not_trace_call_with_invalid_basic_subcall_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("600060006000600060ff600b6000f1").unwrap(),
)
.unwrap(); // not enough funds.
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![FlatTrace {
trace_address: Default::default(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(31761),
output: vec![],
}),
}];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_failed_subcall_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![], //600480600b6000396000f35b600056
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap(),
)
.unwrap();
state
.init_code(&0xb.into(), FromHex::from_hex("5b600056").unwrap())
.unwrap();
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(79_000),
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: 0xa.into(),
to: 0xb.into(),
value: 0.into(),
gas: 78934.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::FailedCall(TraceError::OutOfGas),
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_call_with_subcall_with_subcall_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap(),
)
.unwrap();
state
.init_code(
&0xb.into(),
FromHex::from_hex("60006000600060006000600c602b5a03f1").unwrap(),
)
.unwrap();
state
.init_code(&0xc.into(), FromHex::from_hex("6000").unwrap())
.unwrap();
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(135),
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: 0xa.into(),
to: 0xb.into(),
value: 0.into(),
gas: 78934.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(69),
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0, 0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: 0xb.into(),
to: 0xc.into(),
value: 0.into(),
gas: 78868.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(3),
output: vec![],
}),
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_failed_subcall_with_subcall_transaction() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![], //600480600b6000396000f35b600056
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("60006000600060006000600b602b5a03f1").unwrap(),
)
.unwrap();
state
.init_code(
&0xb.into(),
FromHex::from_hex("60006000600060006000600c602b5a03f1505b601256").unwrap(),
)
.unwrap();
state
.init_code(&0xc.into(), FromHex::from_hex("6000").unwrap())
.unwrap();
state
.add_balance(&t.sender(), &(100.into()), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(79_000),
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: 0xa.into(),
to: 0xb.into(),
value: 0.into(),
gas: 78934.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::FailedCall(TraceError::OutOfGas),
},
FlatTrace {
trace_address: vec![0, 0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Call(trace::Call {
from: 0xb.into(),
to: 0xc.into(),
value: 0.into(),
gas: 78868.into(),
call_type: CallType::Call,
input: vec![],
}),
result: trace::Res::Call(trace::CallResult {
gas_used: U256::from(3),
output: vec![],
}),
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn should_trace_suicide() {
let _ = env_logger::try_init();
let mut state = get_temp_state();
let mut info = EnvInfo::default();
info.gas_limit = 1_000_000.into();
let machine = make_frontier_machine(5);
let t = Transaction {
nonce: 0.into(),
gas_price: 0.into(),
gas: 100_000.into(),
action: Action::Call(0xa.into()),
value: 100.into(),
data: vec![],
}
.sign(&secret(), None);
state
.init_code(
&0xa.into(),
FromHex::from_hex("73000000000000000000000000000000000000000bff").unwrap(),
)
.unwrap();
state
.add_balance(&0xa.into(), &50.into(), CleanupMode::NoEmpty)
.unwrap();
state
.add_balance(&t.sender(), &100.into(), CleanupMode::NoEmpty)
.unwrap();
let result = state.apply(&info, &machine, &t, true).unwrap();
let expected_trace = vec![
FlatTrace {
trace_address: Default::default(),
subtraces: 1,
action: trace::Action::Call(trace::Call {
from: "9cce34f7ab185c7aba1b7c8140d620b4bda941d6".into(),
to: 0xa.into(),
value: 100.into(),
gas: 79000.into(),
input: vec![],
call_type: CallType::Call,
}),
result: trace::Res::Call(trace::CallResult {
gas_used: 3.into(),
output: vec![],
}),
},
FlatTrace {
trace_address: vec![0].into_iter().collect(),
subtraces: 0,
action: trace::Action::Suicide(trace::Suicide {
address: 0xa.into(),
refund_address: 0xb.into(),
balance: 150.into(),
}),
result: trace::Res::None,
},
];
assert_eq!(result.trace, expected_trace);
}
#[test]
fn code_from_database() {
let a = Address::zero();
let (root, db) = {
let mut state = get_temp_state();
state
.require_or_from(
&a,
false,
|| Account::new_contract(42.into(), 0.into(), KECCAK_NULL_RLP),
|_| {},
)
.unwrap();
state.init_code(&a, vec![1, 2, 3]).unwrap();
assert_eq!(state.code(&a).unwrap(), Some(Arc::new(vec![1u8, 2, 3])));
state.commit().unwrap();
assert_eq!(state.code(&a).unwrap(), Some(Arc::new(vec![1u8, 2, 3])));
state.drop()
};
let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
assert_eq!(state.code(&a).unwrap(), Some(Arc::new(vec![1u8, 2, 3])));
}
#[test]
fn storage_at_from_database() {
let a = Address::zero();
let (root, db) = {
let mut state = get_temp_state();
state
.set_storage(
&a,
H256::from(&U256::from(1u64)),
H256::from(&U256::from(69u64)),
)
.unwrap();
state.commit().unwrap();
state.drop()
};
let s = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
assert_eq!(
s.storage_at(&a, &H256::from(&U256::from(1u64))).unwrap(),
H256::from(&U256::from(69u64))
);
}
#[test]
fn get_from_database() {
let a = Address::zero();
let (root, db) = {
let mut state = get_temp_state();
state.inc_nonce(&a).unwrap();
state
.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty)
.unwrap();
state.commit().unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
state.drop()
};
let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64));
}
#[test]
fn remove() {
let a = Address::zero();
let mut state = get_temp_state();
assert_eq!(state.exists(&a).unwrap(), false);
assert_eq!(state.exists_and_not_null(&a).unwrap(), false);
state.inc_nonce(&a).unwrap();
assert_eq!(state.exists(&a).unwrap(), true);
assert_eq!(state.exists_and_not_null(&a).unwrap(), true);
assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64));
state.kill_account(&a);
assert_eq!(state.exists(&a).unwrap(), false);
assert_eq!(state.exists_and_not_null(&a).unwrap(), false);
assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64));
}
#[test]
fn empty_account_is_not_created() {
let a = Address::zero();
let db = get_temp_state_db();
let (root, db) = {
let mut state = State::new(db, U256::from(0), Default::default());
state
.add_balance(&a, &U256::default(), CleanupMode::NoEmpty)
.unwrap(); // create an empty account
state.commit().unwrap();
state.drop()
};
let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
assert!(!state.exists(&a).unwrap());
assert!(!state.exists_and_not_null(&a).unwrap());
}
#[test]
fn empty_account_exists_when_creation_forced() {
let a = Address::zero();
let db = get_temp_state_db();
let (root, db) = {
let mut state = State::new(db, U256::from(0), Default::default());
state
.add_balance(&a, &U256::default(), CleanupMode::ForceCreate)
.unwrap(); // create an empty account
state.commit().unwrap();
state.drop()
};
let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
assert!(state.exists(&a).unwrap());
assert!(!state.exists_and_not_null(&a).unwrap());
}
#[test]
fn remove_from_database() {
let a = Address::zero();
let (root, db) = {
let mut state = get_temp_state();
state.inc_nonce(&a).unwrap();
state.commit().unwrap();
assert_eq!(state.exists(&a).unwrap(), true);
assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64));
state.drop()
};
let (root, db) = {
let mut state =
State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
assert_eq!(state.exists(&a).unwrap(), true);
assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64));
state.kill_account(&a);
state.commit().unwrap();
assert_eq!(state.exists(&a).unwrap(), false);
assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64));
state.drop()
};
let state = State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
assert_eq!(state.exists(&a).unwrap(), false);
assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64));
}
#[test]
fn alter_balance() {
let mut state = get_temp_state();
let a = Address::zero();
let b = 1u64.into();
state
.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty)
.unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
state.commit().unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
state
.sub_balance(&a, &U256::from(42u64), &mut CleanupMode::NoEmpty)
.unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(27u64));
state.commit().unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(27u64));
state
.transfer_balance(&a, &b, &U256::from(18u64), CleanupMode::NoEmpty)
.unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(9u64));
assert_eq!(state.balance(&b).unwrap(), U256::from(18u64));
state.commit().unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(9u64));
assert_eq!(state.balance(&b).unwrap(), U256::from(18u64));
}
#[test]
fn alter_nonce() {
let mut state = get_temp_state();
let a = Address::zero();
state.inc_nonce(&a).unwrap();
assert_eq!(state.nonce(&a).unwrap(), U256::from(1u64));
state.inc_nonce(&a).unwrap();
assert_eq!(state.nonce(&a).unwrap(), U256::from(2u64));
state.commit().unwrap();
assert_eq!(state.nonce(&a).unwrap(), U256::from(2u64));
state.inc_nonce(&a).unwrap();
assert_eq!(state.nonce(&a).unwrap(), U256::from(3u64));
state.commit().unwrap();
assert_eq!(state.nonce(&a).unwrap(), U256::from(3u64));
}
#[test]
fn balance_nonce() {
let mut state = get_temp_state();
let a = Address::zero();
assert_eq!(state.balance(&a).unwrap(), U256::from(0u64));
assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64));
state.commit().unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(0u64));
assert_eq!(state.nonce(&a).unwrap(), U256::from(0u64));
}
#[test]
fn ensure_cached() {
let mut state = get_temp_state();
let a = Address::zero();
state.require(&a, false).unwrap();
state.commit().unwrap();
assert_eq!(
*state.root(),
"0ce23f3c809de377b008a4a3ee94a0834aac8bec1f86e28ffe4fdb5a15b0c785".into()
);
}
#[test]
fn checkpoint_basic() {
let mut state = get_temp_state();
let a = Address::zero();
state.checkpoint();
state
.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty)
.unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
state.discard_checkpoint();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
state.checkpoint();
state
.add_balance(&a, &U256::from(1u64), CleanupMode::NoEmpty)
.unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(70u64));
state.revert_to_checkpoint();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
}
#[test]
fn checkpoint_nested() {
let mut state = get_temp_state();
let a = Address::zero();
state.checkpoint();
state.checkpoint();
state
.add_balance(&a, &U256::from(69u64), CleanupMode::NoEmpty)
.unwrap();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
state.discard_checkpoint();
assert_eq!(state.balance(&a).unwrap(), U256::from(69u64));
state.revert_to_checkpoint();
assert_eq!(state.balance(&a).unwrap(), U256::from(0));
}
#[test]
fn checkpoint_revert_to_get_storage_at() {
let mut state = get_temp_state();
let a = Address::zero();
let k = H256::from(U256::from(0));
let c0 = state.checkpoint();
let c1 = state.checkpoint();
state.set_storage(&a, k, H256::from(U256::from(1))).unwrap();
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(1)));
state.revert_to_checkpoint(); // Revert to c1.
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0)));
}
#[test]
fn checkpoint_from_empty_get_storage_at() {
let mut state = get_temp_state();
let a = Address::zero();
let k = H256::from(U256::from(0));
let k2 = H256::from(U256::from(1));
assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0)));
state.clear();
let c0 = state.checkpoint();
state.new_contract(&a, U256::zero(), U256::zero()).unwrap();
let c1 = state.checkpoint();
state.set_storage(&a, k, H256::from(U256::from(1))).unwrap();
let c2 = state.checkpoint();
let c3 = state.checkpoint();
state
.set_storage(&a, k2, H256::from(U256::from(3)))
.unwrap();
state.set_storage(&a, k, H256::from(U256::from(3))).unwrap();
let c4 = state.checkpoint();
state.set_storage(&a, k, H256::from(U256::from(4))).unwrap();
let c5 = state.checkpoint();
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c3, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c4, &a, &k).unwrap(),
Some(H256::from(U256::from(3)))
);
assert_eq!(
state.checkpoint_storage_at(c5, &a, &k).unwrap(),
Some(H256::from(U256::from(4)))
);
state.discard_checkpoint(); // Commit/discard c5.
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c3, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c4, &a, &k).unwrap(),
Some(H256::from(U256::from(3)))
);
state.revert_to_checkpoint(); // Revert to c4.
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c3, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
state.discard_checkpoint(); // Commit/discard c3.
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
state.revert_to_checkpoint(); // Revert to c2.
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
state.discard_checkpoint(); // Commit/discard c1.
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
}
#[test]
fn checkpoint_get_storage_at() {
let mut state = get_temp_state();
let a = Address::zero();
let k = H256::from(U256::from(0));
let k2 = H256::from(U256::from(1));
state
.set_storage(&a, k, H256::from(U256::from(0xffff)))
.unwrap();
state.commit().unwrap();
state.clear();
assert_eq!(
state.storage_at(&a, &k).unwrap(),
H256::from(U256::from(0xffff))
);
state.clear();
let cm1 = state.checkpoint();
let c0 = state.checkpoint();
state.new_contract(&a, U256::zero(), U256::zero()).unwrap();
let c1 = state.checkpoint();
state.set_storage(&a, k, H256::from(U256::from(1))).unwrap();
let c2 = state.checkpoint();
let c3 = state.checkpoint();
state
.set_storage(&a, k2, H256::from(U256::from(3)))
.unwrap();
state.set_storage(&a, k, H256::from(U256::from(3))).unwrap();
let c4 = state.checkpoint();
state.set_storage(&a, k, H256::from(U256::from(4))).unwrap();
let c5 = state.checkpoint();
assert_eq!(
state.checkpoint_storage_at(cm1, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c3, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c4, &a, &k).unwrap(),
Some(H256::from(U256::from(3)))
);
assert_eq!(
state.checkpoint_storage_at(c5, &a, &k).unwrap(),
Some(H256::from(U256::from(4)))
);
state.discard_checkpoint(); // Commit/discard c5.
assert_eq!(
state.checkpoint_storage_at(cm1, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c3, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c4, &a, &k).unwrap(),
Some(H256::from(U256::from(3)))
);
state.revert_to_checkpoint(); // Revert to c4.
assert_eq!(
state.checkpoint_storage_at(cm1, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
assert_eq!(
state.checkpoint_storage_at(c3, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
state.discard_checkpoint(); // Commit/discard c3.
assert_eq!(
state.checkpoint_storage_at(cm1, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
assert_eq!(
state.checkpoint_storage_at(c2, &a, &k).unwrap(),
Some(H256::from(U256::from(1)))
);
state.revert_to_checkpoint(); // Revert to c2.
assert_eq!(
state.checkpoint_storage_at(cm1, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c1, &a, &k).unwrap(),
Some(H256::from(U256::from(0)))
);
state.discard_checkpoint(); // Commit/discard c1.
assert_eq!(
state.checkpoint_storage_at(cm1, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
assert_eq!(
state.checkpoint_storage_at(c0, &a, &k).unwrap(),
Some(H256::from(U256::from(0xffff)))
);
}
#[test]
fn kill_account_with_checkpoints() {
let mut state = get_temp_state();
let a = Address::zero();
let k = H256::from(U256::from(0));
state.checkpoint();
state.set_storage(&a, k, H256::from(U256::from(1))).unwrap();
state.checkpoint();
state.kill_account(&a);
assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0)));
state.revert_to_checkpoint();
assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(1)));
}
#[test]
fn create_contract_fail() {
let mut state = get_temp_state();
let orig_root = state.root().clone();
let a: Address = 1000.into();
state.checkpoint(); // c1
state.new_contract(&a, U256::zero(), U256::zero()).unwrap();
state
.add_balance(&a, &U256::from(1), CleanupMode::ForceCreate)
.unwrap();
state.checkpoint(); // c2
state
.add_balance(&a, &U256::from(1), CleanupMode::ForceCreate)
.unwrap();
state.discard_checkpoint(); // discard c2
state.revert_to_checkpoint(); // revert to c1
assert_eq!(state.exists(&a).unwrap(), false);
state.commit().unwrap();
assert_eq!(orig_root, state.root().clone());
}
#[test]
fn create_contract_fail_previous_storage() {
let mut state = get_temp_state();
let a: Address = 1000.into();
let k = H256::from(U256::from(0));
state
.set_storage(&a, k, H256::from(U256::from(0xffff)))
.unwrap();
state.commit().unwrap();
state.clear();
let orig_root = state.root().clone();
assert_eq!(
state.storage_at(&a, &k).unwrap(),
H256::from(U256::from(0xffff))
);
state.clear();
state.checkpoint(); // c1
state.new_contract(&a, U256::zero(), U256::zero()).unwrap();
state.checkpoint(); // c2
state.set_storage(&a, k, H256::from(U256::from(2))).unwrap();
state.revert_to_checkpoint(); // revert to c2
assert_eq!(state.storage_at(&a, &k).unwrap(), H256::from(U256::from(0)));
state.revert_to_checkpoint(); // revert to c1
assert_eq!(
state.storage_at(&a, &k).unwrap(),
H256::from(U256::from(0xffff))
);
state.commit().unwrap();
assert_eq!(orig_root, state.root().clone());
}
#[test]
fn create_empty() {
let mut state = get_temp_state();
state.commit().unwrap();
assert_eq!(
*state.root(),
"56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421".into()
);
}
#[test]
fn should_not_panic_on_state_diff_with_storage() {
let mut state = get_temp_state();
let a: Address = 0xa.into();
state.init_code(&a, b"abcdefg".to_vec()).unwrap();
state
.add_balance(&a, &256.into(), CleanupMode::NoEmpty)
.unwrap();
state.set_storage(&a, 0xb.into(), 0xc.into()).unwrap();
let mut new_state = state.clone();
new_state.set_storage(&a, 0xb.into(), 0xd.into()).unwrap();
new_state.diff_from(state).unwrap();
}
#[test]
fn should_kill_garbage() {
let a = 10.into();
let b = 20.into();
let c = 30.into();
let d = 40.into();
let e = 50.into();
let x = 0.into();
let db = get_temp_state_db();
let (root, db) = {
let mut state = State::new(db, U256::from(0), Default::default());
state
.add_balance(&a, &U256::default(), CleanupMode::ForceCreate)
.unwrap(); // create an empty account
state
.add_balance(&b, &100.into(), CleanupMode::ForceCreate)
.unwrap(); // create a dust account
state
.add_balance(&c, &101.into(), CleanupMode::ForceCreate)
.unwrap(); // create a normal account
state
.add_balance(&d, &99.into(), CleanupMode::ForceCreate)
.unwrap(); // create another dust account
state.new_contract(&e, 100.into(), 1.into()).unwrap(); // create a contract account
state.init_code(&e, vec![0x00]).unwrap();
state.commit().unwrap();
state.drop()
};
let mut state =
State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
let mut touched = HashSet::new();
state
.add_balance(
&a,
&U256::default(),
CleanupMode::TrackTouched(&mut touched),
)
.unwrap(); // touch an account
state
.transfer_balance(&b, &x, &1.into(), CleanupMode::TrackTouched(&mut touched))
.unwrap(); // touch an account decreasing its balance
state
.transfer_balance(&c, &x, &1.into(), CleanupMode::TrackTouched(&mut touched))
.unwrap(); // touch an account decreasing its balance
state
.transfer_balance(&e, &x, &1.into(), CleanupMode::TrackTouched(&mut touched))
.unwrap(); // touch an account decreasing its balance
state.kill_garbage(&touched, true, &None, false).unwrap();
assert!(!state.exists(&a).unwrap());
assert!(state.exists(&b).unwrap());
state
.kill_garbage(&touched, true, &Some(100.into()), false)
.unwrap();
assert!(!state.exists(&b).unwrap());
assert!(state.exists(&c).unwrap());
assert!(state.exists(&d).unwrap());
assert!(state.exists(&e).unwrap());
state
.kill_garbage(&touched, true, &Some(100.into()), true)
.unwrap();
assert!(state.exists(&c).unwrap());
assert!(state.exists(&d).unwrap());
assert!(!state.exists(&e).unwrap());
}
#[test]
fn should_trace_diff_suicided_accounts() {
use pod_account;
let a = 10.into();
let db = get_temp_state_db();
let (root, db) = {
let mut state = State::new(db, U256::from(0), Default::default());
state
.add_balance(&a, &100.into(), CleanupMode::ForceCreate)
.unwrap();
state.commit().unwrap();
state.drop()
};
let mut state =
State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
let original = state.clone();
state.kill_account(&a);
let diff = state.diff_from(original).unwrap();
let diff_map = diff.get();
assert_eq!(diff_map.len(), 1);
assert!(diff_map.get(&a).is_some());
assert_eq!(
diff_map.get(&a),
pod_account::diff_pod(
Some(&PodAccount {
balance: U256::from(100),
nonce: U256::zero(),
code: Some(Default::default()),
storage: Default::default()
}),
None
)
.as_ref()
);
}
#[test]
fn should_trace_diff_unmodified_storage() {
use pod_account;
let a = 10.into();
let db = get_temp_state_db();
let (root, db) = {
let mut state = State::new(db, U256::from(0), Default::default());
state
.set_storage(
&a,
H256::from(&U256::from(1u64)),
H256::from(&U256::from(20u64)),
)
.unwrap();
state.commit().unwrap();
state.drop()
};
let mut state =
State::from_existing(db, root, U256::from(0u8), Default::default()).unwrap();
let original = state.clone();
state
.set_storage(
&a,
H256::from(&U256::from(1u64)),
H256::from(&U256::from(100u64)),
)
.unwrap();
let diff = state.diff_from(original).unwrap();
let diff_map = diff.get();
assert_eq!(diff_map.len(), 1);
assert!(diff_map.get(&a).is_some());
assert_eq!(
diff_map.get(&a),
pod_account::diff_pod(
Some(&PodAccount {
balance: U256::zero(),
nonce: U256::zero(),
code: Some(Default::default()),
storage: vec![(
H256::from(&U256::from(1u64)),
H256::from(&U256::from(20u64))
)]
.into_iter()
.collect(),
}),
Some(&PodAccount {
balance: U256::zero(),
nonce: U256::zero(),
code: Some(Default::default()),
storage: vec![(
H256::from(&U256::from(1u64)),
H256::from(&U256::from(100u64))
)]
.into_iter()
.collect(),
})
)
.as_ref()
);
}
#[cfg(feature = "to-pod-full")]
#[test]
fn should_get_full_pod_storage_values() {
use trie::{TrieFactory, TrieSpec};
let a = 10.into();
let db = get_temp_state_db();
let factories = Factories {
vm: Default::default(),
trie: TrieFactory::new(TrieSpec::Fat),
accountdb: Default::default(),
};
let get_pod_state_val = |pod_state: &PodState, ak, k| {
pod_state
.get()
.get(ak)
.unwrap()
.storage
.get(&k)
.unwrap()
.clone()
};
let storage_address = H256::from(&U256::from(1u64));
let (root, db) = {
let mut state = State::new(db, U256::from(0), factories.clone());
state
.set_storage(&a, storage_address.clone(), H256::from(&U256::from(20u64)))
.unwrap();
let dump = state.to_pod_full().unwrap();
assert_eq!(
get_pod_state_val(&dump, &a, storage_address.clone()),
H256::from(&U256::from(20u64))
);
state.commit().unwrap();
let dump = state.to_pod_full().unwrap();
assert_eq!(
get_pod_state_val(&dump, &a, storage_address.clone()),
H256::from(&U256::from(20u64))
);
state.drop()
};
let mut state = State::from_existing(db, root, U256::from(0u8), factories).unwrap();
let dump = state.to_pod_full().unwrap();
assert_eq!(
get_pod_state_val(&dump, &a, storage_address.clone()),
H256::from(&U256::from(20u64))
);
state
.set_storage(&a, storage_address.clone(), H256::from(&U256::from(21u64)))
.unwrap();
let dump = state.to_pod_full().unwrap();
assert_eq!(
get_pod_state_val(&dump, &a, storage_address.clone()),
H256::from(&U256::from(21u64))
);
state.commit().unwrap();
state
.set_storage(&a, storage_address.clone(), H256::from(&U256::from(0u64)))
.unwrap();
let dump = state.to_pod_full().unwrap();
assert_eq!(
get_pod_state_val(&dump, &a, storage_address.clone()),
H256::from(&U256::from(0u64))
);
}
}