openethereum/rpc/src/v1/impls/light/parity.rs

404 lines
12 KiB
Rust

// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
//! Parity-specific rpc implementation.
use std::sync::Arc;
use std::collections::BTreeMap;
use version::version_data;
use crypto::DEFAULT_MAC;
use ethkey::{crypto::ecies, Brain, Generator};
use ethstore::random_phrase;
use sync::{LightSyncInfo, LightSyncProvider, LightNetworkDispatcher, ManageNetwork};
use updater::VersionInfo as UpdaterVersionInfo;
use ethereum_types::{H64, H160, H256, H512, U64, U256};
use ethcore_logger::RotatingLogger;
use jsonrpc_core::{Result, BoxFuture};
use jsonrpc_core::futures::{future, Future};
use v1::helpers::{self, errors, ipfs, NetworkSettings, verify_signature};
use v1::helpers::external_signer::{SignerService, SigningQueue};
use v1::helpers::dispatch::LightDispatcher;
use v1::helpers::light_fetch::{LightFetch, light_all_transactions};
use v1::metadata::Metadata;
use v1::traits::Parity;
use v1::types::{
Bytes, CallRequest,
Peers, Transaction, RpcSettings, Histogram,
TransactionStats, LocalTransactionStatus,
LightBlockNumber, ChainStatus, Receipt,
BlockNumber, ConsensusCapability, VersionInfo,
OperationsInfo, Header, RichHeader, RecoveredAccount,
Log, Filter,
};
use Host;
/// Parity implementation for light client.
pub struct ParityClient<S: LightSyncProvider + LightNetworkDispatcher + ManageNetwork + 'static> {
light_dispatch: Arc<LightDispatcher<S>>,
logger: Arc<RotatingLogger>,
settings: Arc<NetworkSettings>,
signer: Option<Arc<SignerService>>,
ws_address: Option<Host>,
gas_price_percentile: usize,
}
impl<S> ParityClient<S>
where
S: LightSyncProvider + LightNetworkDispatcher + ManageNetwork + 'static
{
/// Creates new `ParityClient`.
pub fn new(
light_dispatch: Arc<LightDispatcher<S>>,
logger: Arc<RotatingLogger>,
settings: Arc<NetworkSettings>,
signer: Option<Arc<SignerService>>,
ws_address: Option<Host>,
gas_price_percentile: usize,
) -> Self {
ParityClient {
light_dispatch,
logger,
settings,
signer,
ws_address,
gas_price_percentile,
}
}
/// Create a light blockchain data fetcher.
fn fetcher(&self) -> LightFetch<S>
{
LightFetch {
client: self.light_dispatch.client.clone(),
on_demand: self.light_dispatch.on_demand.clone(),
sync: self.light_dispatch.sync.clone(),
cache: self.light_dispatch.cache.clone(),
gas_price_percentile: self.gas_price_percentile,
}
}
}
impl<S> Parity for ParityClient<S>
where
S: LightSyncInfo + LightSyncProvider + LightNetworkDispatcher + ManageNetwork + 'static
{
type Metadata = Metadata;
fn transactions_limit(&self) -> Result<usize> {
Ok(usize::max_value())
}
fn min_gas_price(&self) -> Result<U256> {
Ok(U256::default())
}
fn extra_data(&self) -> Result<Bytes> {
Ok(Bytes::default())
}
fn gas_floor_target(&self) -> Result<U256> {
Ok(U256::default())
}
fn gas_ceil_target(&self) -> Result<U256> {
Ok(U256::default())
}
fn dev_logs(&self) -> Result<Vec<String>> {
let logs = self.logger.logs();
Ok(logs.as_slice().to_owned())
}
fn dev_logs_levels(&self) -> Result<String> {
Ok(self.logger.levels().to_owned())
}
fn net_chain(&self) -> Result<String> {
Ok(self.settings.chain.clone())
}
fn net_peers(&self) -> Result<Peers> {
let peers = self.light_dispatch.sync.peers().into_iter().map(Into::into).collect();
let peer_numbers = self.light_dispatch.sync.peer_numbers();
Ok(Peers {
active: peer_numbers.active,
connected: peer_numbers.connected,
max: peer_numbers.max as u32,
peers,
})
}
fn net_port(&self) -> Result<u16> {
Ok(self.settings.network_port)
}
fn node_name(&self) -> Result<String> {
Ok(self.settings.name.clone())
}
fn registry_address(&self) -> Result<Option<H160>> {
let reg = self.light_dispatch.client.engine().params().registrar;
if reg == Default::default() {
Ok(None)
} else {
Ok(Some(reg))
}
}
fn rpc_settings(&self) -> Result<RpcSettings> {
Ok(RpcSettings {
enabled: self.settings.rpc_enabled,
interface: self.settings.rpc_interface.clone(),
port: self.settings.rpc_port as u64,
})
}
fn default_extra_data(&self) -> Result<Bytes> {
Ok(Bytes::new(version_data()))
}
fn gas_price_histogram(&self) -> BoxFuture<Histogram> {
Box::new(self.light_dispatch.gas_price_corpus()
.and_then(|corpus| corpus.histogram(10).ok_or_else(errors::not_enough_data))
.map(Into::into))
}
fn unsigned_transactions_count(&self) -> Result<usize> {
match self.signer {
None => Err(errors::signer_disabled()),
Some(ref signer) => Ok(signer.len()),
}
}
fn generate_secret_phrase(&self) -> Result<String> {
Ok(random_phrase(12))
}
fn phrase_to_address(&self, phrase: String) -> Result<H160> {
Ok(Brain::new(phrase).generate().expect("Brain::generate always returns Ok; qed").address())
}
fn list_accounts(&self, _: u64, _: Option<H160>, _: Option<BlockNumber>) -> Result<Option<Vec<H160>>> {
Err(errors::light_unimplemented(None))
}
fn list_storage_keys(&self, _: H160, _: u64, _: Option<H256>, _: Option<BlockNumber>) -> Result<Option<Vec<H256>>> {
Err(errors::light_unimplemented(None))
}
fn encrypt_message(&self, key: H512, phrase: Bytes) -> Result<Bytes> {
ecies::encrypt(&key, &DEFAULT_MAC, &phrase.0)
.map_err(errors::encryption)
.map(Into::into)
}
fn pending_transactions(&self, limit: Option<usize>) -> Result<Vec<Transaction>> {
let txq = self.light_dispatch.transaction_queue.read();
let chain_info = self.light_dispatch.client.chain_info();
Ok(
txq.ready_transactions(chain_info.best_block_number, chain_info.best_block_timestamp)
.into_iter()
.take(limit.unwrap_or_else(usize::max_value))
.map(Transaction::from_pending)
.collect::<Vec<_>>()
)
}
fn all_transactions(&self) -> Result<Vec<Transaction>> {
Ok(
light_all_transactions(&self.light_dispatch)
.map(Transaction::from_pending)
.collect()
)
}
fn all_transaction_hashes(&self) -> Result<Vec<H256>> {
Ok(
light_all_transactions(&self.light_dispatch)
.map(|tx| tx.transaction.hash())
.collect()
)
}
fn future_transactions(&self) -> Result<Vec<Transaction>> {
let txq = self.light_dispatch.transaction_queue.read();
let chain_info = self.light_dispatch.client.chain_info();
Ok(
txq.future_transactions(chain_info.best_block_number, chain_info.best_block_timestamp)
.into_iter()
.map(Transaction::from_pending)
.collect::<Vec<_>>()
)
}
fn pending_transactions_stats(&self) -> Result<BTreeMap<H256, TransactionStats>> {
let stats = self.light_dispatch.sync.transactions_stats();
Ok(stats.into_iter()
.map(|(hash, stats)| (hash, stats.into()))
.collect()
)
}
fn local_transactions(&self) -> Result<BTreeMap<H256, LocalTransactionStatus>> {
let mut map = BTreeMap::new();
let chain_info = self.light_dispatch.client.chain_info();
let (best_num, best_tm) = (chain_info.best_block_number, chain_info.best_block_timestamp);
let txq = self.light_dispatch.transaction_queue.read();
for pending in txq.ready_transactions(best_num, best_tm) {
map.insert(pending.hash(), LocalTransactionStatus::Pending);
}
for future in txq.future_transactions(best_num, best_tm) {
map.insert(future.hash(), LocalTransactionStatus::Future);
}
// TODO: other types?
Ok(map)
}
fn ws_url(&self) -> Result<String> {
helpers::to_url(&self.ws_address)
.ok_or_else(errors::ws_disabled)
}
fn next_nonce(&self, address: H160) -> BoxFuture<U256> {
Box::new(self.light_dispatch.next_nonce(address))
}
fn mode(&self) -> Result<String> {
Err(errors::light_unimplemented(None))
}
fn chain(&self) -> Result<String> {
Ok(self.settings.chain.clone())
}
fn enode(&self) -> Result<String> {
self.light_dispatch.sync.enode().ok_or_else(errors::network_disabled)
}
fn consensus_capability(&self) -> Result<ConsensusCapability> {
Err(errors::light_unimplemented(None))
}
fn version_info(&self) -> Result<VersionInfo> {
Ok(UpdaterVersionInfo::this().into())
}
fn releases_info(&self) -> Result<Option<OperationsInfo>> {
Err(errors::light_unimplemented(None))
}
fn chain_status(&self) -> Result<ChainStatus> {
let chain_info = self.light_dispatch.client.chain_info();
let gap = chain_info.ancient_block_number.map(|x| U256::from(x + 1))
.and_then(|first| chain_info.first_block_number.map(|last| (first, U256::from(last))));
Ok(ChainStatus {
block_gap: gap,
})
}
fn node_kind(&self) -> Result<::v1::types::NodeKind> {
use ::v1::types::{NodeKind, Availability, Capability};
Ok(NodeKind {
availability: Availability::Personal,
capability: Capability::Light,
})
}
fn block_header(&self, number: Option<BlockNumber>) -> BoxFuture<RichHeader> {
use types::encoded;
let engine = self.light_dispatch.client.engine().clone();
let from_encoded = move |encoded: encoded::Header| {
let header = encoded.decode().map_err(errors::decode)?;
let extra_info = engine.extra_info(&header);
Ok(RichHeader {
inner: Header {
hash: Some(header.hash()),
size: Some(encoded.rlp().as_raw().len().into()),
parent_hash: *header.parent_hash(),
uncles_hash: *header.uncles_hash(),
author: *header.author(),
miner: *header.author(),
state_root: *header.state_root(),
transactions_root: *header.transactions_root(),
receipts_root: *header.receipts_root(),
number: Some(header.number().into()),
gas_used: *header.gas_used(),
gas_limit: *header.gas_limit(),
logs_bloom: *header.log_bloom(),
timestamp: header.timestamp().into(),
difficulty: *header.difficulty(),
seal_fields: header.seal().iter().cloned().map(Into::into).collect(),
extra_data: Bytes::new(header.extra_data().clone()),
},
extra_info,
})
};
let id = number.unwrap_or_default().to_block_id();
Box::new(self.fetcher().header(id).and_then(from_encoded))
}
fn block_receipts(&self, number: Option<BlockNumber>) -> BoxFuture<Vec<Receipt>> {
let id = number.unwrap_or_default().to_block_id();
Box::new(self.fetcher().receipts(id).and_then(|receipts| Ok(receipts.into_iter().map(Into::into).collect())))
}
fn ipfs_cid(&self, content: Bytes) -> Result<String> {
ipfs::cid(content)
}
fn call(&self, _requests: Vec<CallRequest>, _block: Option<BlockNumber>) -> Result<Vec<Bytes>> {
Err(errors::light_unimplemented(None))
}
fn submit_work_detail(&self, _nonce: H64, _pow_hash: H256, _mix_hash: H256) -> Result<H256> {
Err(errors::light_unimplemented(None))
}
fn status(&self) -> Result<()> {
let has_peers = self.settings.is_dev_chain || self.light_dispatch.sync.peer_numbers().connected > 0;
let is_importing = (*self.light_dispatch.sync).is_major_importing();
if has_peers && !is_importing {
Ok(())
} else {
Err(errors::status_error(has_peers))
}
}
fn logs_no_tx_hash(&self, filter: Filter) -> BoxFuture<Vec<Log>> {
let filter = match filter.try_into() {
Ok(value) => value,
Err(err) => return Box::new(future::err(err)),
};
Box::new(self.fetcher().logs_no_tx_hash(filter)) as BoxFuture<_>
}
fn verify_signature(&self, is_prefixed: bool, message: Bytes, r: H256, s: H256, v: U64) -> Result<RecoveredAccount> {
verify_signature(is_prefixed, message, r, s, v, self.light_dispatch.client.signing_chain_id())
}
}