openethereum/ethcore/src/blockchain/extras.rs

245 lines
5.5 KiB
Rust

// Copyright 2015, 2016 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Blockchain DB extras.
use bloomchain;
use util::*;
use rlp::*;
use header::BlockNumber;
use receipt::Receipt;
use db::Key;
use blooms::{GroupPosition, BloomGroup};
/// Represents index of extra data in database
#[derive(Copy, Debug, Hash, Eq, PartialEq, Clone)]
pub enum ExtrasIndex {
/// Block details index
BlockDetails = 0,
/// Block hash index
BlockHash = 1,
/// Transaction address index
TransactionAddress = 2,
/// Block blooms index
BlocksBlooms = 3,
/// Block receipts index
BlockReceipts = 4,
}
fn with_index(hash: &H256, i: ExtrasIndex) -> H264 {
let mut result = H264::default();
result[0] = i as u8;
(*result)[1..].clone_from_slice(hash);
result
}
pub struct BlockNumberKey([u8; 5]);
impl Deref for BlockNumberKey {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl Key<H256> for BlockNumber {
type Target = BlockNumberKey;
fn key(&self) -> Self::Target {
let mut result = [0u8; 5];
result[0] = ExtrasIndex::BlockHash as u8;
result[1] = (self >> 24) as u8;
result[2] = (self >> 16) as u8;
result[3] = (self >> 8) as u8;
result[4] = *self as u8;
BlockNumberKey(result)
}
}
impl Key<BlockDetails> for H256 {
type Target = H264;
fn key(&self) -> H264 {
with_index(self, ExtrasIndex::BlockDetails)
}
}
pub struct LogGroupKey([u8; 6]);
impl Deref for LogGroupKey {
type Target = [u8];
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct LogGroupPosition(GroupPosition);
impl From<bloomchain::group::GroupPosition> for LogGroupPosition {
fn from(position: bloomchain::group::GroupPosition) -> Self {
LogGroupPosition(From::from(position))
}
}
impl HeapSizeOf for LogGroupPosition {
fn heap_size_of_children(&self) -> usize {
self.0.heap_size_of_children()
}
}
impl Key<BloomGroup> for LogGroupPosition {
type Target = LogGroupKey;
fn key(&self) -> Self::Target {
let mut result = [0u8; 6];
result[0] = ExtrasIndex::BlocksBlooms as u8;
result[1] = self.0.level;
result[2] = (self.0.index >> 24) as u8;
result[3] = (self.0.index >> 16) as u8;
result[4] = (self.0.index >> 8) as u8;
result[5] = self.0.index as u8;
LogGroupKey(result)
}
}
impl Key<TransactionAddress> for H256 {
type Target = H264;
fn key(&self) -> H264 {
with_index(self, ExtrasIndex::TransactionAddress)
}
}
impl Key<BlockReceipts> for H256 {
type Target = H264;
fn key(&self) -> H264 {
with_index(self, ExtrasIndex::BlockReceipts)
}
}
/// Familial details concerning a block
#[derive(Debug, Clone)]
pub struct BlockDetails {
/// Block number
pub number: BlockNumber,
/// Total difficulty of the block and all its parents
pub total_difficulty: U256,
/// Parent block hash
pub parent: H256,
/// List of children block hashes
pub children: Vec<H256>
}
impl HeapSizeOf for BlockDetails {
fn heap_size_of_children(&self) -> usize {
self.children.heap_size_of_children()
}
}
impl Decodable for BlockDetails {
fn decode<D>(decoder: &D) -> Result<Self, DecoderError> where D: Decoder {
let d = decoder.as_rlp();
let details = BlockDetails {
number: try!(d.val_at(0)),
total_difficulty: try!(d.val_at(1)),
parent: try!(d.val_at(2)),
children: try!(d.val_at(3)),
};
Ok(details)
}
}
impl Encodable for BlockDetails {
fn rlp_append(&self, s: &mut RlpStream) {
s.begin_list(4);
s.append(&self.number);
s.append(&self.total_difficulty);
s.append(&self.parent);
s.append(&self.children);
}
}
/// Represents address of certain transaction within block
#[derive(Debug, PartialEq, Clone)]
pub struct TransactionAddress {
/// Block hash
pub block_hash: H256,
/// Transaction index within the block
pub index: usize
}
impl HeapSizeOf for TransactionAddress {
fn heap_size_of_children(&self) -> usize { 0 }
}
impl Decodable for TransactionAddress {
fn decode<D>(decoder: &D) -> Result<Self, DecoderError> where D: Decoder {
let d = decoder.as_rlp();
let tx_address = TransactionAddress {
block_hash: try!(d.val_at(0)),
index: try!(d.val_at(1)),
};
Ok(tx_address)
}
}
impl Encodable for TransactionAddress {
fn rlp_append(&self, s: &mut RlpStream) {
s.begin_list(2);
s.append(&self.block_hash);
s.append(&self.index);
}
}
/// Contains all block receipts.
#[derive(Clone)]
pub struct BlockReceipts {
pub receipts: Vec<Receipt>,
}
impl BlockReceipts {
pub fn new(receipts: Vec<Receipt>) -> Self {
BlockReceipts {
receipts: receipts
}
}
}
impl Decodable for BlockReceipts {
fn decode<D>(decoder: &D) -> Result<Self, DecoderError> where D: Decoder {
Ok(BlockReceipts {
receipts: try!(Decodable::decode(decoder))
})
}
}
impl Encodable for BlockReceipts {
fn rlp_append(&self, s: &mut RlpStream) {
s.append(&self.receipts);
}
}
impl HeapSizeOf for BlockReceipts {
fn heap_size_of_children(&self) -> usize {
self.receipts.heap_size_of_children()
}
}