openethereum/util/src/hash.rs
Nikolay Volf fcc0432856 Merge pull request #675 from ethcore/rpc_unit_tests
fixed U256 and transaction request deserialization
2016-03-11 17:25:13 +03:00

724 lines
18 KiB
Rust

// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! General hash types, a fixed-size raw-data type used as the output of hash functions.
use standard::*;
use math::log2;
use error::UtilError;
use rand::Rng;
use rand::os::OsRng;
use bytes::{BytesConvertable,Populatable};
use from_json::*;
use bigint::uint::{Uint, U256};
use rustc_serialize::hex::ToHex;
use serde;
/// Trait for a fixed-size byte array to be used as the output of hash functions.
///
/// Note: types implementing `FixedHash` must be also `BytesConvertable`.
pub trait FixedHash: Sized + BytesConvertable + Populatable + FromStr + Default {
/// Create a new, zero-initialised, instance.
fn new() -> Self;
/// Synonym for `new()`. Prefer to new as it's more readable.
fn zero() -> Self;
/// Create a new, cryptographically random, instance.
fn random() -> Self;
/// Assign self have a cryptographically random value.
fn randomize(&mut self);
/// Get the size of this object in bytes.
fn len() -> usize;
/// Convert a slice of bytes of length `len()` to an instance of this type.
fn from_slice(src: &[u8]) -> Self;
/// Assign self to be of the same value as a slice of bytes of length `len()`.
fn clone_from_slice(&mut self, src: &[u8]) -> usize;
/// Copy the data of this object into some mutable slice of length `len()`.
fn copy_to(&self, dest: &mut [u8]);
/// When interpreting self as a bloom output, augment (bit-wise OR) with the a bloomed version of `b`.
fn shift_bloomed<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash;
/// Same as `shift_bloomed` except that `self` is consumed and a new value returned.
fn with_bloomed<T>(mut self, b: &T) -> Self where T: FixedHash { self.shift_bloomed(b); self }
/// Bloom the current value using the bloom parameter `m`.
fn bloom_part<T>(&self, m: usize) -> T where T: FixedHash;
/// Check to see whether this hash, interpreted as a bloom, contains the value `b` when bloomed.
fn contains_bloomed<T>(&self, b: &T) -> bool where T: FixedHash;
/// Returns `true` if all bits set in `b` are also set in `self`.
fn contains<'a>(&'a self, b: &'a Self) -> bool;
/// Returns `true` if no bits are set.
fn is_zero(&self) -> bool;
/// Returns the lowest 8 bytes interpreted as a BigEndian integer.
fn low_u64(&self) -> u64;
}
fn clean_0x(s: &str) -> &str {
if s.len() >= 2 && &s[0..2] == "0x" {
&s[2..]
} else {
s
}
}
macro_rules! impl_hash {
($from: ident, $size: expr) => {
#[derive(Eq)]
/// Unformatted binary data of fixed length.
pub struct $from (pub [u8; $size]);
impl Deref for $from {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
&self.0
}
}
impl AsRef<[u8]> for $from {
#[inline]
fn as_ref(&self) -> &[u8] {
&self.0
}
}
impl DerefMut for $from {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
impl FixedHash for $from {
fn new() -> $from {
$from([0; $size])
}
fn zero() -> $from {
$from([0; $size])
}
fn random() -> $from {
let mut hash = $from::new();
hash.randomize();
hash
}
fn randomize(&mut self) {
let mut rng = OsRng::new().unwrap();
rng.fill_bytes(&mut self.0);
}
fn len() -> usize {
$size
}
// TODO: remove once slice::clone_from_slice is stable
#[inline]
fn clone_from_slice(&mut self, src: &[u8]) -> usize {
let min = ::std::cmp::min($size, src.len());
let dst = &mut self.deref_mut()[.. min];
let src = &src[.. min];
for i in 0..min {
dst[i] = src[i];
}
min
}
fn from_slice(src: &[u8]) -> Self {
let mut r = Self::new();
r.clone_from_slice(src);
r
}
fn copy_to(&self, dest: &mut[u8]) {
unsafe {
let min = ::std::cmp::min($size, dest.len());
::std::ptr::copy(self.0.as_ptr(), dest.as_mut_ptr(), min);
}
}
fn shift_bloomed<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash {
let bp: Self = b.bloom_part($size);
let new_self = &bp | self;
// impl |= instead
// TODO: that's done now!
unsafe {
use std::{mem, ptr};
ptr::copy(new_self.0.as_ptr(), self.0.as_mut_ptr(), mem::size_of::<Self>());
}
self
}
fn bloom_part<T>(&self, m: usize) -> T where T: FixedHash {
// numbers of bits
// TODO: move it to some constant
let p = 3;
let bloom_bits = m * 8;
let mask = bloom_bits - 1;
let bloom_bytes = (log2(bloom_bits) + 7) / 8;
//println!("bb: {}", bloom_bytes);
// must be a power of 2
assert_eq!(m & (m - 1), 0);
// out of range
assert!(p * bloom_bytes <= $size);
// return type
let mut ret = T::new();
// 'ptr' to out slice
let mut ptr = 0;
// set p number of bits,
// p is equal 3 according to yellowpaper
for _ in 0..p {
let mut index = 0 as usize;
for _ in 0..bloom_bytes {
index = (index << 8) | self.0[ptr] as usize;
ptr += 1;
}
index &= mask;
ret.as_slice_mut()[m - 1 - index / 8] |= 1 << (index % 8);
}
ret
}
fn contains_bloomed<T>(&self, b: &T) -> bool where T: FixedHash {
let bp: Self = b.bloom_part($size);
self.contains(&bp)
}
fn contains<'a>(&'a self, b: &'a Self) -> bool {
&(b & self) == b
}
fn is_zero(&self) -> bool {
self.eq(&Self::new())
}
fn low_u64(&self) -> u64 {
let mut ret = 0u64;
for i in 0..min($size, 8) {
ret |= (self.0[$size - 1 - i] as u64) << (i * 8);
}
ret
}
}
impl FromStr for $from {
type Err = UtilError;
fn from_str(s: &str) -> Result<$from, UtilError> {
let a = try!(s.from_hex());
if a.len() != $size { return Err(UtilError::BadSize); }
let mut ret = $from([0;$size]);
for i in 0..$size {
ret.0[i] = a[i];
}
Ok(ret)
}
}
impl serde::Serialize for $from {
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
where S: serde::Serializer {
let mut hex = "0x".to_owned();
hex.push_str(self.to_hex().as_ref());
serializer.serialize_str(hex.as_ref())
}
}
impl serde::Deserialize for $from {
fn deserialize<D>(deserializer: &mut D) -> Result<$from, D::Error>
where D: serde::Deserializer {
struct HashVisitor;
impl serde::de::Visitor for HashVisitor {
type Value = $from;
fn visit_str<E>(&mut self, value: &str) -> Result<Self::Value, E> where E: serde::Error {
// 0x + len
if value.len() != 2 + $size * 2 {
return Err(serde::Error::custom("Invalid length."));
}
value[2..].from_hex().map(|ref v| $from::from_slice(v)).map_err(|_| serde::Error::custom("Invalid hex value."))
}
fn visit_string<E>(&mut self, value: String) -> Result<Self::Value, E> where E: serde::Error {
self.visit_str(value.as_ref())
}
}
deserializer.deserialize(HashVisitor)
}
}
impl FromJson for $from {
fn from_json(json: &Json) -> Self {
match *json {
Json::String(ref s) => {
match s.len() % 2 {
0 => FromStr::from_str(clean_0x(s)).unwrap(),
_ => FromStr::from_str(&("0".to_owned() + &(clean_0x(s).to_owned()))[..]).unwrap()
}
},
_ => Default::default(),
}
}
}
impl fmt::Debug for $from {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for i in &self.0[..] {
try!(write!(f, "{:02x}", i));
}
Ok(())
}
}
impl fmt::Display for $from {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for i in &self.0[0..2] {
try!(write!(f, "{:02x}", i));
}
try!(write!(f, ""));
for i in &self.0[$size - 2..$size] {
try!(write!(f, "{:02x}", i));
}
Ok(())
}
}
impl Copy for $from {}
#[cfg_attr(feature="dev", allow(expl_impl_clone_on_copy))]
impl Clone for $from {
fn clone(&self) -> $from {
unsafe {
use std::{mem, ptr};
let mut ret: $from = mem::uninitialized();
ptr::copy(self.0.as_ptr(), ret.0.as_mut_ptr(), mem::size_of::<$from>());
ret
}
}
}
impl PartialEq for $from {
fn eq(&self, other: &Self) -> bool {
for i in 0..$size {
if self.0[i] != other.0[i] {
return false;
}
}
true
}
}
impl Ord for $from {
fn cmp(&self, other: &Self) -> Ordering {
for i in 0..$size {
if self.0[i] > other.0[i] {
return Ordering::Greater;
} else if self.0[i] < other.0[i] {
return Ordering::Less;
}
}
Ordering::Equal
}
}
impl PartialOrd for $from {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Hash for $from {
fn hash<H>(&self, state: &mut H) where H: Hasher {
state.write(&self.0);
state.finish();
}
}
impl Index<usize> for $from {
type Output = u8;
fn index(&self, index: usize) -> &u8 {
&self.0[index]
}
}
impl IndexMut<usize> for $from {
fn index_mut(&mut self, index: usize) -> &mut u8 {
&mut self.0[index]
}
}
impl Index<ops::Range<usize>> for $from {
type Output = [u8];
fn index(&self, index: ops::Range<usize>) -> &[u8] {
&self.0[index]
}
}
impl IndexMut<ops::Range<usize>> for $from {
fn index_mut(&mut self, index: ops::Range<usize>) -> &mut [u8] {
&mut self.0[index]
}
}
impl Index<ops::RangeFull> for $from {
type Output = [u8];
fn index(&self, _index: ops::RangeFull) -> &[u8] {
&self.0
}
}
impl IndexMut<ops::RangeFull> for $from {
fn index_mut(&mut self, _index: ops::RangeFull) -> &mut [u8] {
&mut self.0
}
}
/// BitOr on references
impl<'a> BitOr for &'a $from {
type Output = $from;
fn bitor(self, rhs: Self) -> Self::Output {
unsafe {
use std::mem;
let mut ret: $from = mem::uninitialized();
for i in 0..$size {
ret.0[i] = self.0[i] | rhs.0[i];
}
ret
}
}
}
/// Moving BitOr
impl BitOr for $from {
type Output = $from;
fn bitor(self, rhs: Self) -> Self::Output {
&self | &rhs
}
}
/// BitAnd on references
impl <'a> BitAnd for &'a $from {
type Output = $from;
fn bitand(self, rhs: Self) -> Self::Output {
unsafe {
use std::mem;
let mut ret: $from = mem::uninitialized();
for i in 0..$size {
ret.0[i] = self.0[i] & rhs.0[i];
}
ret
}
}
}
/// Moving BitAnd
impl BitAnd for $from {
type Output = $from;
fn bitand(self, rhs: Self) -> Self::Output {
&self & &rhs
}
}
/// BitXor on references
impl <'a> BitXor for &'a $from {
type Output = $from;
fn bitxor(self, rhs: Self) -> Self::Output {
unsafe {
use std::mem;
let mut ret: $from = mem::uninitialized();
for i in 0..$size {
ret.0[i] = self.0[i] ^ rhs.0[i];
}
ret
}
}
}
/// Moving BitXor
impl BitXor for $from {
type Output = $from;
fn bitxor(self, rhs: Self) -> Self::Output {
&self ^ &rhs
}
}
impl $from {
/// Get a hex representation.
pub fn hex(&self) -> String {
format!("{:?}", self)
}
/// Construct new instance equal to the bloomed value of `b`.
pub fn from_bloomed<T>(b: &T) -> Self where T: FixedHash { b.bloom_part($size) }
}
impl Default for $from {
fn default() -> Self { $from::new() }
}
impl From<u64> for $from {
fn from(mut value: u64) -> $from {
let mut ret = $from::new();
for i in 0..8 {
if i < $size {
ret.0[$size - i - 1] = (value & 0xff) as u8;
value >>= 8;
}
}
ret
}
}
impl<'_> From<&'_ str> for $from {
fn from(s: &'_ str) -> $from {
use std::str::FromStr;
if s.len() % 2 == 1 {
$from::from_str(&("0".to_owned() + &(clean_0x(s).to_owned()))[..]).unwrap_or_else(|_| $from::new())
} else {
$from::from_str(clean_0x(s)).unwrap_or_else(|_| $from::new())
}
}
}
}
}
impl From<U256> for H256 {
fn from(value: U256) -> H256 {
unsafe {
let mut ret: H256 = ::std::mem::uninitialized();
value.to_bytes(&mut ret);
ret
}
}
}
impl<'_> From<&'_ U256> for H256 {
fn from(value: &'_ U256) -> H256 {
unsafe {
let mut ret: H256 = ::std::mem::uninitialized();
value.to_bytes(&mut ret);
ret
}
}
}
impl From<H256> for U256 {
fn from(value: H256) -> U256 {
U256::from(value.bytes())
}
}
impl<'_> From<&'_ H256> for U256 {
fn from(value: &'_ H256) -> U256 {
U256::from(value.bytes())
}
}
impl From<H256> for Address {
fn from(value: H256) -> Address {
unsafe {
let mut ret: Address = ::std::mem::uninitialized();
::std::ptr::copy(value.as_ptr().offset(12), ret.as_mut_ptr(), 20);
ret
}
}
}
impl From<H256> for H64 {
fn from(value: H256) -> H64 {
unsafe {
let mut ret: H64 = ::std::mem::uninitialized();
::std::ptr::copy(value.as_ptr().offset(20), ret.as_mut_ptr(), 8);
ret
}
}
}
/*
impl<'_> From<&'_ H256> for Address {
fn from(value: &'_ H256) -> Address {
unsafe {
let mut ret: Address = ::std::mem::uninitialized();
::std::ptr::copy(value.as_ptr().offset(12), ret.as_mut_ptr(), 20);
ret
}
}
}
*/
impl From<Address> for H256 {
fn from(value: Address) -> H256 {
unsafe {
let mut ret = H256::new();
::std::ptr::copy(value.as_ptr(), ret.as_mut_ptr().offset(12), 20);
ret
}
}
}
impl<'_> From<&'_ Address> for H256 {
fn from(value: &'_ Address) -> H256 {
unsafe {
let mut ret = H256::new();
::std::ptr::copy(value.as_ptr(), ret.as_mut_ptr().offset(12), 20);
ret
}
}
}
/// Convert string `s` to an `H256`. Will panic if `s` is not 64 characters long or if any of
/// those characters are not 0-9, a-z or A-Z.
pub fn h256_from_hex(s: &str) -> H256 {
use std::str::FromStr;
H256::from_str(s).unwrap()
}
/// Convert `n` to an `H256`, setting the rightmost 8 bytes.
pub fn h256_from_u64(n: u64) -> H256 {
use bigint::uint::U256;
H256::from(&U256::from(n))
}
/// Convert string `s` to an `Address`. Will panic if `s` is not 40 characters long or if any of
/// those characters are not 0-9, a-z or A-Z.
pub fn address_from_hex(s: &str) -> Address {
use std::str::FromStr;
Address::from_str(s).unwrap()
}
/// Convert `n` to an `Address`, setting the rightmost 8 bytes.
pub fn address_from_u64(n: u64) -> Address {
let h256 = h256_from_u64(n);
From::from(h256)
}
impl_hash!(H32, 4);
impl_hash!(H64, 8);
impl_hash!(H128, 16);
impl_hash!(Address, 20);
impl_hash!(H256, 32);
impl_hash!(H264, 33);
impl_hash!(H512, 64);
impl_hash!(H520, 65);
impl_hash!(H1024, 128);
impl_hash!(H2048, 256);
/// Constant address for point 0. Often used as a default.
pub static ZERO_ADDRESS: Address = Address([0x00; 20]);
/// Constant 256-bit datum for 0. Often used as a default.
pub static ZERO_H256: H256 = H256([0x00; 32]);
#[cfg(test)]
mod tests {
use hash::*;
use bigint::uint::*;
use std::str::FromStr;
#[test]
#[cfg_attr(feature="dev", allow(eq_op))]
fn hash() {
let h = H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
assert_eq!(H64::from_str("0123456789abcdef").unwrap(), h);
assert_eq!(format!("{}", h), "0123…cdef");
assert_eq!(format!("{:?}", h), "0123456789abcdef");
assert_eq!(h.hex(), "0123456789abcdef");
assert!(h == h);
assert!(h != H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xee]));
assert!(h != H64([0; 8]));
}
#[test]
fn hash_bitor() {
let a = H64([1; 8]);
let b = H64([2; 8]);
let c = H64([3; 8]);
// borrow
assert_eq!(&a | &b, c);
// move
assert_eq!(a | b, c);
}
#[test]
fn shift_bloomed() {
use sha3::Hashable;
let bloom = H2048::from_str("00000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002020000000000000000000000000000000000000000000008000000001000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
let address = Address::from_str("ef2d6d194084c2de36e0dabfce45d046b37d1106").unwrap();
let topic = H256::from_str("02c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let mut my_bloom = H2048::new();
assert!(!my_bloom.contains_bloomed(&address.sha3()));
assert!(!my_bloom.contains_bloomed(&topic.sha3()));
my_bloom.shift_bloomed(&address.sha3());
assert!(my_bloom.contains_bloomed(&address.sha3()));
assert!(!my_bloom.contains_bloomed(&topic.sha3()));
my_bloom.shift_bloomed(&topic.sha3());
assert_eq!(my_bloom, bloom);
assert!(my_bloom.contains_bloomed(&address.sha3()));
assert!(my_bloom.contains_bloomed(&topic.sha3()));
}
#[test]
fn from_and_to_address() {
let address = Address::from_str("ef2d6d194084c2de36e0dabfce45d046b37d1106").unwrap();
let h = H256::from(address.clone());
let a = Address::from(h);
assert_eq!(address, a);
}
#[test]
fn from_u64() {
assert_eq!(H128::from(0x1234567890abcdef), H128::from_str("00000000000000001234567890abcdef").unwrap());
assert_eq!(H64::from(0x1234567890abcdef), H64::from_str("1234567890abcdef").unwrap());
assert_eq!(H32::from(0x1234567890abcdef), H32::from_str("90abcdef").unwrap());
}
#[test]
fn from_str() {
assert_eq!(H64::from(0x1234567890abcdef), H64::from("0x1234567890abcdef"));
assert_eq!(H64::from(0x1234567890abcdef), H64::from("1234567890abcdef"));
assert_eq!(H64::from(0x234567890abcdef), H64::from("0x234567890abcdef"));
// too short.
assert_eq!(H64::from(0), H64::from("0x34567890abcdef"));
}
#[test]
fn from_and_to_u256() {
let u: U256 = x!(0x123456789abcdef0u64);
let h = H256::from(u);
assert_eq!(H256::from(u), H256::from("000000000000000000000000000000000000000000000000123456789abcdef0"));
let h_ref = H256::from(&u);
assert_eq!(h, h_ref);
let r_ref: U256 = From::from(&h);
assert_eq!(r_ref, u);
let r: U256 = From::from(h);
assert_eq!(r, u);
}
}