openethereum/secret_store/src/key_server.rs
Svyatoslav Nikolsky 6f758bc7b1
SecretStore: service pack 1 (#8435)
* SecretStore: error unify initial commit

SecretStore: pass real error in error messages

SecretStore: is_internal_error -> Error::is_non_fatal

warnings

SecretStore: ConsensusTemporaryUnreachable

fix after merge

removed comments

removed comments

SecretStore: updated HTTP error responses

SecretStore: more ConsensusTemporaryUnreachable tests

fix after rebase

* SecretStore: unified SS contract config options && read

* SecretStore: service pack

SecretStore: service pack (continue)

* fixed grumbles
2018-06-14 10:01:52 +03:00

534 lines
22 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use std::collections::BTreeSet;
use std::thread;
use std::sync::Arc;
use std::sync::mpsc;
use futures::{self, Future};
use parking_lot::Mutex;
use tokio_core::reactor::Core;
use crypto::DEFAULT_MAC;
use ethkey::crypto;
use super::acl_storage::AclStorage;
use super::key_storage::KeyStorage;
use super::key_server_set::KeyServerSet;
use key_server_cluster::{math, ClusterCore};
use traits::{AdminSessionsServer, ServerKeyGenerator, DocumentKeyServer, MessageSigner, KeyServer, NodeKeyPair};
use types::{Error, Public, RequestSignature, Requester, ServerKeyId, EncryptedDocumentKey, EncryptedDocumentKeyShadow,
ClusterConfiguration, MessageHash, EncryptedMessageSignature, NodeId};
use key_server_cluster::{ClusterClient, ClusterConfiguration as NetClusterConfiguration};
/// Secret store key server implementation
pub struct KeyServerImpl {
data: Arc<Mutex<KeyServerCore>>,
}
/// Secret store key server data.
pub struct KeyServerCore {
close: Option<futures::Complete<()>>,
handle: Option<thread::JoinHandle<()>>,
cluster: Arc<ClusterClient>,
}
impl KeyServerImpl {
/// Create new key server instance
pub fn new(config: &ClusterConfiguration, key_server_set: Arc<KeyServerSet>, self_key_pair: Arc<NodeKeyPair>, acl_storage: Arc<AclStorage>, key_storage: Arc<KeyStorage>) -> Result<Self, Error> {
Ok(KeyServerImpl {
data: Arc::new(Mutex::new(KeyServerCore::new(config, key_server_set, self_key_pair, acl_storage, key_storage)?)),
})
}
/// Get cluster client reference.
pub fn cluster(&self) -> Arc<ClusterClient> {
self.data.lock().cluster.clone()
}
}
impl KeyServer for KeyServerImpl {}
impl AdminSessionsServer for KeyServerImpl {
fn change_servers_set(&self, old_set_signature: RequestSignature, new_set_signature: RequestSignature, new_servers_set: BTreeSet<NodeId>) -> Result<(), Error> {
let servers_set_change_session = self.data.lock().cluster
.new_servers_set_change_session(None, None, new_servers_set, old_set_signature, new_set_signature)?;
servers_set_change_session.as_servers_set_change()
.expect("new_servers_set_change_session creates servers_set_change_session; qed")
.wait().map_err(Into::into)
}
}
impl ServerKeyGenerator for KeyServerImpl {
fn generate_key(&self, key_id: &ServerKeyId, author: &Requester, threshold: usize) -> Result<Public, Error> {
// recover requestor' public key from signature
let address = author.address(key_id).map_err(Error::InsufficientRequesterData)?;
// generate server key
let generation_session = self.data.lock().cluster.new_generation_session(key_id.clone(), None, address, threshold)?;
generation_session.wait(None)
.expect("when wait is called without timeout it always returns Some; qed")
.map_err(Into::into)
}
}
impl DocumentKeyServer for KeyServerImpl {
fn store_document_key(&self, key_id: &ServerKeyId, author: &Requester, common_point: Public, encrypted_document_key: Public) -> Result<(), Error> {
// store encrypted key
let encryption_session = self.data.lock().cluster.new_encryption_session(key_id.clone(),
author.clone(), common_point, encrypted_document_key)?;
encryption_session.wait(None).map_err(Into::into)
}
fn generate_document_key(&self, key_id: &ServerKeyId, author: &Requester, threshold: usize) -> Result<EncryptedDocumentKey, Error> {
// recover requestor' public key from signature
let public = author.public(key_id).map_err(Error::InsufficientRequesterData)?;
// generate server key
let server_key = self.generate_key(key_id, author, threshold)?;
// generate random document key
let document_key = math::generate_random_point()?;
let encrypted_document_key = math::encrypt_secret(&document_key, &server_key)?;
// store document key in the storage
self.store_document_key(key_id, author, encrypted_document_key.common_point, encrypted_document_key.encrypted_point)?;
// encrypt document key with requestor public key
let document_key = crypto::ecies::encrypt(&public, &DEFAULT_MAC, &document_key)
.map_err(|err| Error::Internal(format!("Error encrypting document key: {}", err)))?;
Ok(document_key)
}
fn restore_document_key(&self, key_id: &ServerKeyId, requester: &Requester) -> Result<EncryptedDocumentKey, Error> {
// recover requestor' public key from signature
let public = requester.public(key_id).map_err(Error::InsufficientRequesterData)?;
// decrypt document key
let decryption_session = self.data.lock().cluster.new_decryption_session(key_id.clone(),
None, requester.clone(), None, false, false)?;
let document_key = decryption_session.wait(None)
.expect("when wait is called without timeout it always returns Some; qed")?
.decrypted_secret;
// encrypt document key with requestor public key
let document_key = crypto::ecies::encrypt(&public, &DEFAULT_MAC, &document_key)
.map_err(|err| Error::Internal(format!("Error encrypting document key: {}", err)))?;
Ok(document_key)
}
fn restore_document_key_shadow(&self, key_id: &ServerKeyId, requester: &Requester) -> Result<EncryptedDocumentKeyShadow, Error> {
let decryption_session = self.data.lock().cluster.new_decryption_session(key_id.clone(),
None, requester.clone(), None, true, false)?;
decryption_session.wait(None)
.expect("when wait is called without timeout it always returns Some; qed")
.map_err(Into::into)
}
}
impl MessageSigner for KeyServerImpl {
fn sign_message_schnorr(&self, key_id: &ServerKeyId, requester: &Requester, message: MessageHash) -> Result<EncryptedMessageSignature, Error> {
// recover requestor' public key from signature
let public = requester.public(key_id).map_err(Error::InsufficientRequesterData)?;
// sign message
let signing_session = self.data.lock().cluster.new_schnorr_signing_session(key_id.clone(),
requester.clone().into(), None, message)?;
let message_signature = signing_session.wait()?;
// compose two message signature components into single one
let mut combined_signature = [0; 64];
combined_signature[..32].clone_from_slice(&**message_signature.0);
combined_signature[32..].clone_from_slice(&**message_signature.1);
// encrypt combined signature with requestor public key
let message_signature = crypto::ecies::encrypt(&public, &DEFAULT_MAC, &combined_signature)
.map_err(|err| Error::Internal(format!("Error encrypting message signature: {}", err)))?;
Ok(message_signature)
}
fn sign_message_ecdsa(&self, key_id: &ServerKeyId, requester: &Requester, message: MessageHash) -> Result<EncryptedMessageSignature, Error> {
// recover requestor' public key from signature
let public = requester.public(key_id).map_err(Error::InsufficientRequesterData)?;
// sign message
let signing_session = self.data.lock().cluster.new_ecdsa_signing_session(key_id.clone(),
requester.clone().into(), None, message)?;
let message_signature = signing_session.wait()?;
// encrypt combined signature with requestor public key
let message_signature = crypto::ecies::encrypt(&public, &DEFAULT_MAC, &*message_signature)
.map_err(|err| Error::Internal(format!("Error encrypting message signature: {}", err)))?;
Ok(message_signature)
}
}
impl KeyServerCore {
pub fn new(config: &ClusterConfiguration, key_server_set: Arc<KeyServerSet>, self_key_pair: Arc<NodeKeyPair>, acl_storage: Arc<AclStorage>, key_storage: Arc<KeyStorage>) -> Result<Self, Error> {
let config = NetClusterConfiguration {
threads: config.threads,
self_key_pair: self_key_pair.clone(),
listen_address: (config.listener_address.address.clone(), config.listener_address.port),
key_server_set: key_server_set,
allow_connecting_to_higher_nodes: config.allow_connecting_to_higher_nodes,
acl_storage: acl_storage,
key_storage: key_storage,
admin_public: config.admin_public.clone(),
auto_migrate_enabled: config.auto_migrate_enabled,
};
let (stop, stopped) = futures::oneshot();
let (tx, rx) = mpsc::channel();
let handle = thread::Builder::new().name("KeyServerLoop".into()).spawn(move || {
let mut el = match Core::new() {
Ok(el) => el,
Err(e) => {
tx.send(Err(Error::Internal(format!("error initializing event loop: {}", e)))).expect("Rx is blocking upper thread.");
return;
},
};
let cluster = ClusterCore::new(el.handle(), config);
let cluster_client = cluster.and_then(|c| c.run().map(|_| c.client()));
tx.send(cluster_client.map_err(Into::into)).expect("Rx is blocking upper thread.");
let _ = el.run(futures::empty().select(stopped));
trace!(target: "secretstore_net", "{}: KeyServerLoop thread stopped", self_key_pair.public());
}).map_err(|e| Error::Internal(format!("{}", e)))?;
let cluster = rx.recv().map_err(|e| Error::Internal(format!("error initializing event loop: {}", e)))??;
Ok(KeyServerCore {
close: Some(stop),
handle: Some(handle),
cluster: cluster,
})
}
}
impl Drop for KeyServerCore {
fn drop(&mut self) {
self.close.take().map(|v| v.send(()));
self.handle.take().map(|h| h.join());
}
}
#[cfg(test)]
pub mod tests {
use std::collections::BTreeSet;
use std::time;
use std::sync::Arc;
use std::net::SocketAddr;
use std::collections::BTreeMap;
use crypto::DEFAULT_MAC;
use ethkey::{self, crypto, Secret, Random, Generator, verify_public};
use acl_storage::DummyAclStorage;
use key_storage::KeyStorage;
use key_storage::tests::DummyKeyStorage;
use node_key_pair::PlainNodeKeyPair;
use key_server_set::tests::MapKeyServerSet;
use key_server_cluster::math;
use ethereum_types::{H256, H520};
use types::{Error, Public, ClusterConfiguration, NodeAddress, RequestSignature, ServerKeyId,
EncryptedDocumentKey, EncryptedDocumentKeyShadow, MessageHash, EncryptedMessageSignature,
Requester, NodeId};
use traits::{AdminSessionsServer, ServerKeyGenerator, DocumentKeyServer, MessageSigner, KeyServer};
use super::KeyServerImpl;
#[derive(Default)]
pub struct DummyKeyServer;
impl KeyServer for DummyKeyServer {}
impl AdminSessionsServer for DummyKeyServer {
fn change_servers_set(&self, _old_set_signature: RequestSignature, _new_set_signature: RequestSignature, _new_servers_set: BTreeSet<NodeId>) -> Result<(), Error> {
unimplemented!("test-only")
}
}
impl ServerKeyGenerator for DummyKeyServer {
fn generate_key(&self, _key_id: &ServerKeyId, _author: &Requester, _threshold: usize) -> Result<Public, Error> {
unimplemented!("test-only")
}
}
impl DocumentKeyServer for DummyKeyServer {
fn store_document_key(&self, _key_id: &ServerKeyId, _author: &Requester, _common_point: Public, _encrypted_document_key: Public) -> Result<(), Error> {
unimplemented!("test-only")
}
fn generate_document_key(&self, _key_id: &ServerKeyId, _author: &Requester, _threshold: usize) -> Result<EncryptedDocumentKey, Error> {
unimplemented!("test-only")
}
fn restore_document_key(&self, _key_id: &ServerKeyId, _requester: &Requester) -> Result<EncryptedDocumentKey, Error> {
unimplemented!("test-only")
}
fn restore_document_key_shadow(&self, _key_id: &ServerKeyId, _requester: &Requester) -> Result<EncryptedDocumentKeyShadow, Error> {
unimplemented!("test-only")
}
}
impl MessageSigner for DummyKeyServer {
fn sign_message_schnorr(&self, _key_id: &ServerKeyId, _requester: &Requester, _message: MessageHash) -> Result<EncryptedMessageSignature, Error> {
unimplemented!("test-only")
}
fn sign_message_ecdsa(&self, _key_id: &ServerKeyId, _requester: &Requester, _message: MessageHash) -> Result<EncryptedMessageSignature, Error> {
unimplemented!("test-only")
}
}
fn make_key_servers(start_port: u16, num_nodes: usize) -> (Vec<KeyServerImpl>, Vec<Arc<DummyKeyStorage>>) {
let key_pairs: Vec<_> = (0..num_nodes).map(|_| Random.generate().unwrap()).collect();
let configs: Vec<_> = (0..num_nodes).map(|i| ClusterConfiguration {
threads: 1,
listener_address: NodeAddress {
address: "127.0.0.1".into(),
port: start_port + (i as u16),
},
nodes: key_pairs.iter().enumerate().map(|(j, kp)| (kp.public().clone(),
NodeAddress {
address: "127.0.0.1".into(),
port: start_port + (j as u16),
})).collect(),
key_server_set_contract_address: None,
allow_connecting_to_higher_nodes: false,
admin_public: None,
auto_migrate_enabled: false,
}).collect();
let key_servers_set: BTreeMap<Public, SocketAddr> = configs[0].nodes.iter()
.map(|(k, a)| (k.clone(), format!("{}:{}", a.address, a.port).parse().unwrap()))
.collect();
let key_storages = (0..num_nodes).map(|_| Arc::new(DummyKeyStorage::default())).collect::<Vec<_>>();
let key_servers: Vec<_> = configs.into_iter().enumerate().map(|(i, cfg)|
KeyServerImpl::new(&cfg, Arc::new(MapKeyServerSet::new(false, key_servers_set.clone())),
Arc::new(PlainNodeKeyPair::new(key_pairs[i].clone())),
Arc::new(DummyAclStorage::default()),
key_storages[i].clone()).unwrap()
).collect();
// wait until connections are established. It is fast => do not bother with events here
let start = time::Instant::now();
let mut tried_reconnections = false;
loop {
if key_servers.iter().all(|ks| ks.cluster().cluster_state().connected.len() == num_nodes - 1) {
break;
}
let old_tried_reconnections = tried_reconnections;
let mut fully_connected = true;
for key_server in &key_servers {
if key_server.cluster().cluster_state().connected.len() != num_nodes - 1 {
fully_connected = false;
if !old_tried_reconnections {
tried_reconnections = true;
key_server.cluster().connect();
}
}
}
if fully_connected {
break;
}
if time::Instant::now() - start > time::Duration::from_millis(1000) {
panic!("connections are not established in 1000ms");
}
}
(key_servers, key_storages)
}
#[test]
fn document_key_generation_and_retrievement_works_over_network_with_single_node() {
//::logger::init_log();
let (key_servers, _) = make_key_servers(6070, 1);
// generate document key
let threshold = 0;
let document = Random.generate().unwrap().secret().clone();
let secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&secret, &document).unwrap();
let generated_key = key_servers[0].generate_document_key(&document, &signature.clone().into(), threshold).unwrap();
let generated_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &generated_key).unwrap();
// now let's try to retrieve key back
for key_server in key_servers.iter() {
let retrieved_key = key_server.restore_document_key(&document, &signature.clone().into()).unwrap();
let retrieved_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &retrieved_key).unwrap();
assert_eq!(retrieved_key, generated_key);
}
}
#[test]
fn document_key_generation_and_retrievement_works_over_network_with_3_nodes() {
//::logger::init_log();
let (key_servers, key_storages) = make_key_servers(6080, 3);
let test_cases = [0, 1, 2];
for threshold in &test_cases {
// generate document key
let document = Random.generate().unwrap().secret().clone();
let secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&secret, &document).unwrap();
let generated_key = key_servers[0].generate_document_key(&document, &signature.clone().into(), *threshold).unwrap();
let generated_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &generated_key).unwrap();
// now let's try to retrieve key back
for (i, key_server) in key_servers.iter().enumerate() {
let retrieved_key = key_server.restore_document_key(&document, &signature.clone().into()).unwrap();
let retrieved_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &retrieved_key).unwrap();
assert_eq!(retrieved_key, generated_key);
let key_share = key_storages[i].get(&document).unwrap().unwrap();
assert!(key_share.common_point.is_some());
assert!(key_share.encrypted_point.is_some());
}
}
}
#[test]
fn server_key_generation_and_storing_document_key_works_over_network_with_3_nodes() {
//::logger::init_log();
let (key_servers, _) = make_key_servers(6090, 3);
let test_cases = [0, 1, 2];
for threshold in &test_cases {
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&requestor_secret, &server_key_id).unwrap();
let server_public = key_servers[0].generate_key(&server_key_id, &signature.clone().into(), *threshold).unwrap();
// generate document key (this is done by KS client so that document key is unknown to any KS)
let generated_key = Random.generate().unwrap().public().clone();
let encrypted_document_key = math::encrypt_secret(&generated_key, &server_public).unwrap();
// store document key
key_servers[0].store_document_key(&server_key_id, &signature.clone().into(),
encrypted_document_key.common_point, encrypted_document_key.encrypted_point).unwrap();
// now let's try to retrieve key back
for key_server in key_servers.iter() {
let retrieved_key = key_server.restore_document_key(&server_key_id, &signature.clone().into()).unwrap();
let retrieved_key = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &retrieved_key).unwrap();
let retrieved_key = Public::from_slice(&retrieved_key);
assert_eq!(retrieved_key, generated_key);
}
}
}
#[test]
fn server_key_generation_and_message_signing_works_over_network_with_3_nodes() {
//::logger::init_log();
let (key_servers, _) = make_key_servers(6100, 3);
let test_cases = [0, 1, 2];
for threshold in &test_cases {
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&requestor_secret, &server_key_id).unwrap();
let server_public = key_servers[0].generate_key(&server_key_id, &signature.clone().into(), *threshold).unwrap();
// sign message
let message_hash = H256::from(42);
let combined_signature = key_servers[0].sign_message_schnorr(&server_key_id, &signature.into(), message_hash.clone()).unwrap();
let combined_signature = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &combined_signature).unwrap();
let signature_c = Secret::from_slice(&combined_signature[..32]).unwrap();
let signature_s = Secret::from_slice(&combined_signature[32..]).unwrap();
// check signature
assert_eq!(math::verify_schnorr_signature(&server_public, &(signature_c, signature_s), &message_hash), Ok(true));
}
}
#[test]
fn decryption_session_is_delegated_when_node_does_not_have_key_share() {
//::logger::init_log();
let (key_servers, _) = make_key_servers(6110, 3);
// generate document key
let threshold = 0;
let document = Random.generate().unwrap().secret().clone();
let secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&secret, &document).unwrap();
let generated_key = key_servers[0].generate_document_key(&document, &signature.clone().into(), threshold).unwrap();
let generated_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &generated_key).unwrap();
// remove key from node0
key_servers[0].cluster().key_storage().remove(&document).unwrap();
// now let's try to retrieve key back by requesting it from node0, so that session must be delegated
let retrieved_key = key_servers[0].restore_document_key(&document, &signature.into()).unwrap();
let retrieved_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &retrieved_key).unwrap();
assert_eq!(retrieved_key, generated_key);
}
#[test]
fn schnorr_signing_session_is_delegated_when_node_does_not_have_key_share() {
//::logger::init_log();
let (key_servers, _) = make_key_servers(6114, 3);
let threshold = 1;
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&requestor_secret, &server_key_id).unwrap();
let server_public = key_servers[0].generate_key(&server_key_id, &signature.clone().into(), threshold).unwrap();
// remove key from node0
key_servers[0].cluster().key_storage().remove(&server_key_id).unwrap();
// sign message
let message_hash = H256::from(42);
let combined_signature = key_servers[0].sign_message_schnorr(&server_key_id, &signature.into(), message_hash.clone()).unwrap();
let combined_signature = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &combined_signature).unwrap();
let signature_c = Secret::from_slice(&combined_signature[..32]).unwrap();
let signature_s = Secret::from_slice(&combined_signature[32..]).unwrap();
// check signature
assert_eq!(math::verify_schnorr_signature(&server_public, &(signature_c, signature_s), &message_hash), Ok(true));
}
#[test]
fn ecdsa_signing_session_is_delegated_when_node_does_not_have_key_share() {
//::logger::init_log();
let (key_servers, _) = make_key_servers(6117, 4);
let threshold = 1;
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&requestor_secret, &server_key_id).unwrap();
let server_public = key_servers[0].generate_key(&server_key_id, &signature.clone().into(), threshold).unwrap();
// remove key from node0
key_servers[0].cluster().key_storage().remove(&server_key_id).unwrap();
// sign message
let message_hash = H256::random();
let signature = key_servers[0].sign_message_ecdsa(&server_key_id, &signature.into(), message_hash.clone()).unwrap();
let signature = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &signature).unwrap();
let signature: H520 = signature[0..65].into();
// check signature
assert!(verify_public(&server_public, &signature.into(), &message_hash).unwrap());
}
#[test]
fn servers_set_change_session_works_over_network() {
// TODO [Test]
}
}