openethereum/accounts/ethkey/src/secret.rs

323 lines
9.2 KiB
Rust

// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of OpenEthereum.
// OpenEthereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// OpenEthereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with OpenEthereum. If not, see <http://www.gnu.org/licenses/>.
use ethereum_types::H256;
use memzero::Memzero;
use rustc_hex::ToHex;
use secp256k1::{constants::SECRET_KEY_SIZE as SECP256K1_SECRET_KEY_SIZE, key};
use std::{fmt, ops::Deref, str::FromStr};
use Error;
use SECP256K1;
#[derive(Clone, PartialEq, Eq)]
pub struct Secret {
inner: Memzero<H256>,
}
impl ToHex for Secret {
fn to_hex(&self) -> String {
format!("{:x}", *self.inner)
}
}
impl fmt::LowerHex for Secret {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
self.inner.fmt(fmt)
}
}
impl fmt::Debug for Secret {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
self.inner.fmt(fmt)
}
}
impl fmt::Display for Secret {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"Secret: 0x{:x}{:x}..{:x}{:x}",
self.inner[0], self.inner[1], self.inner[30], self.inner[31]
)
}
}
impl Secret {
/// Creates a `Secret` from the given slice, returning `None` if the slice length != 32.
pub fn from_slice(key: &[u8]) -> Option<Self> {
if key.len() != 32 {
return None;
}
let mut h = H256::default();
h.copy_from_slice(&key[0..32]);
Some(Secret {
inner: Memzero::from(h),
})
}
/// Creates zero key, which is invalid for crypto operations, but valid for math operation.
pub fn zero() -> Self {
Secret {
inner: Memzero::from(H256::default()),
}
}
/// Imports and validates the key.
pub fn from_unsafe_slice(key: &[u8]) -> Result<Self, Error> {
let secret = key::SecretKey::from_slice(&super::SECP256K1, key)?;
Ok(secret.into())
}
/// Checks validity of this key.
pub fn check_validity(&self) -> Result<(), Error> {
self.to_secp256k1_secret().map(|_| ())
}
/// Inplace add one secret key to another (scalar + scalar)
pub fn add(&mut self, other: &Secret) -> Result<(), Error> {
match (self.is_zero(), other.is_zero()) {
(true, true) | (false, true) => Ok(()),
(true, false) => {
*self = other.clone();
Ok(())
}
(false, false) => {
let mut key_secret = self.to_secp256k1_secret()?;
let other_secret = other.to_secp256k1_secret()?;
key_secret.add_assign(&SECP256K1, &other_secret)?;
*self = key_secret.into();
Ok(())
}
}
}
/// Inplace subtract one secret key from another (scalar - scalar)
pub fn sub(&mut self, other: &Secret) -> Result<(), Error> {
match (self.is_zero(), other.is_zero()) {
(true, true) | (false, true) => Ok(()),
(true, false) => {
*self = other.clone();
self.neg()
}
(false, false) => {
let mut key_secret = self.to_secp256k1_secret()?;
let mut other_secret = other.to_secp256k1_secret()?;
other_secret.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
key_secret.add_assign(&SECP256K1, &other_secret)?;
*self = key_secret.into();
Ok(())
}
}
}
/// Inplace decrease secret key (scalar - 1)
pub fn dec(&mut self) -> Result<(), Error> {
match self.is_zero() {
true => {
*self = key::MINUS_ONE_KEY.into();
Ok(())
}
false => {
let mut key_secret = self.to_secp256k1_secret()?;
key_secret.add_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
*self = key_secret.into();
Ok(())
}
}
}
/// Inplace multiply one secret key to another (scalar * scalar)
pub fn mul(&mut self, other: &Secret) -> Result<(), Error> {
match (self.is_zero(), other.is_zero()) {
(true, true) | (true, false) => Ok(()),
(false, true) => {
*self = Self::zero();
Ok(())
}
(false, false) => {
let mut key_secret = self.to_secp256k1_secret()?;
let other_secret = other.to_secp256k1_secret()?;
key_secret.mul_assign(&SECP256K1, &other_secret)?;
*self = key_secret.into();
Ok(())
}
}
}
/// Inplace negate secret key (-scalar)
pub fn neg(&mut self) -> Result<(), Error> {
match self.is_zero() {
true => Ok(()),
false => {
let mut key_secret = self.to_secp256k1_secret()?;
key_secret.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
*self = key_secret.into();
Ok(())
}
}
}
/// Inplace inverse secret key (1 / scalar)
pub fn inv(&mut self) -> Result<(), Error> {
let mut key_secret = self.to_secp256k1_secret()?;
key_secret.inv_assign(&SECP256K1)?;
*self = key_secret.into();
Ok(())
}
/// Compute power of secret key inplace (secret ^ pow).
/// This function is not intended to be used with large powers.
pub fn pow(&mut self, pow: usize) -> Result<(), Error> {
if self.is_zero() {
return Ok(());
}
match pow {
0 => *self = key::ONE_KEY.into(),
1 => (),
_ => {
let c = self.clone();
for _ in 1..pow {
self.mul(&c)?;
}
}
}
Ok(())
}
/// Create `secp256k1::key::SecretKey` based on this secret
pub fn to_secp256k1_secret(&self) -> Result<key::SecretKey, Error> {
Ok(key::SecretKey::from_slice(&SECP256K1, &self[..])?)
}
}
impl FromStr for Secret {
type Err = Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Ok(H256::from_str(s)
.map_err(|e| Error::Custom(format!("{:?}", e)))?
.into())
}
}
impl From<[u8; 32]> for Secret {
fn from(k: [u8; 32]) -> Self {
Secret {
inner: Memzero::from(H256(k)),
}
}
}
impl From<H256> for Secret {
fn from(s: H256) -> Self {
s.0.into()
}
}
impl From<&'static str> for Secret {
fn from(s: &'static str) -> Self {
s.parse().expect(&format!(
"invalid string literal for {}: '{}'",
stringify!(Self),
s
))
}
}
impl From<key::SecretKey> for Secret {
fn from(key: key::SecretKey) -> Self {
let mut a = [0; SECP256K1_SECRET_KEY_SIZE];
a.copy_from_slice(&key[0..SECP256K1_SECRET_KEY_SIZE]);
a.into()
}
}
impl Deref for Secret {
type Target = H256;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
#[cfg(test)]
mod tests {
use super::{
super::{Generator, Random},
Secret,
};
use std::str::FromStr;
#[test]
fn multiplicating_secret_inversion_with_secret_gives_one() {
let secret = Random.generate().unwrap().secret().clone();
let mut inversion = secret.clone();
inversion.inv().unwrap();
inversion.mul(&secret).unwrap();
assert_eq!(
inversion,
Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001")
.unwrap()
);
}
#[test]
fn secret_inversion_is_reversible_with_inversion() {
let secret = Random.generate().unwrap().secret().clone();
let mut inversion = secret.clone();
inversion.inv().unwrap();
inversion.inv().unwrap();
assert_eq!(inversion, secret);
}
#[test]
fn secret_pow() {
let secret = Random.generate().unwrap().secret().clone();
let mut pow0 = secret.clone();
pow0.pow(0).unwrap();
assert_eq!(
pow0,
Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001")
.unwrap()
);
let mut pow1 = secret.clone();
pow1.pow(1).unwrap();
assert_eq!(pow1, secret);
let mut pow2 = secret.clone();
pow2.pow(2).unwrap();
let mut pow2_expected = secret.clone();
pow2_expected.mul(&secret).unwrap();
assert_eq!(pow2, pow2_expected);
let mut pow3 = secret.clone();
pow3.pow(3).unwrap();
let mut pow3_expected = secret.clone();
pow3_expected.mul(&secret).unwrap();
pow3_expected.mul(&secret).unwrap();
assert_eq!(pow3, pow3_expected);
}
}