openethereum/util/src/trie/triedb.rs
Tomasz Drwięga bb2a631885 Fixing compilation&clippy warnings (#1531)
* Fixing compilation&clippy warnings

* Adding spaces
2016-07-04 13:53:55 +02:00

383 lines
11 KiB
Rust

// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use common::*;
use hashdb::*;
use nibbleslice::*;
use rlp::*;
use super::trietraits::{Trie, TrieItem};
use super::node::Node;
use super::TrieError;
/// A `Trie` implementation using a generic `HashDB` backing database.
///
/// Use it as a `Trie` trait object. You can use `db()` to get the backing database object, `keys`
/// to get the keys belonging to the trie in the backing database, and `db_items_remaining()` to get
/// which items in the backing database do not belong to this trie. If this is the only trie in the
/// backing database, then `db_items_remaining()` should be empty.
///
/// # Example
/// ```
/// extern crate ethcore_util as util;
/// use util::trie::*;
/// use util::hashdb::*;
/// use util::memorydb::*;
/// use util::hash::*;
/// use util::rlp::*;
///
/// fn main() {
/// let mut memdb = MemoryDB::new();
/// let mut root = H256::new();
/// TrieDBMut::new(&mut memdb, &mut root).insert(b"foo", b"bar");
/// let t = TrieDB::new(&memdb, &root).unwrap();
/// assert!(t.contains(b"foo"));
/// assert_eq!(t.get(b"foo").unwrap(), b"bar");
/// assert!(t.db_items_remaining().is_empty());
/// }
/// ```
pub struct TrieDB<'db> {
db: &'db HashDB,
root: &'db H256,
/// The number of hashes performed so far in operations on this trie.
pub hash_count: usize,
}
#[cfg_attr(feature="dev", allow(wrong_self_convention))]
impl<'db> TrieDB<'db> {
/// Create a new trie with the backing database `db` and `root`
/// Returns an error if `root` does not exist
pub fn new(db: &'db HashDB, root: &'db H256) -> Result<Self, TrieError> {
if !db.contains(root) {
Err(TrieError::InvalidStateRoot)
} else {
Ok(TrieDB {
db: db,
root: root,
hash_count: 0
})
}
}
/// Get the backing database.
pub fn db(&'db self) -> &'db HashDB {
self.db
}
/// Determine all the keys in the backing database that belong to the trie.
pub fn keys(&self) -> Vec<H256> {
let mut ret: Vec<H256> = Vec::new();
ret.push(self.root.clone());
self.accumulate_keys(self.root_node(), &mut ret);
ret
}
/// Convert a vector of hashes to a hashmap of hash to occurances.
pub fn to_map(hashes: Vec<H256>) -> HashMap<H256, u32> {
let mut r: HashMap<H256, u32> = HashMap::new();
for h in hashes.into_iter() {
let c = *r.get(&h).unwrap_or(&0);
r.insert(h, c + 1);
}
r
}
/// Determine occurances of items in the backing database which are not related to this
/// trie.
pub fn db_items_remaining(&self) -> HashMap<H256, i32> {
let mut ret = self.db.keys();
for (k, v) in Self::to_map(self.keys()).into_iter() {
let keycount = *ret.get(&k).unwrap_or(&0);
match keycount <= v as i32 {
true => ret.remove(&k),
_ => ret.insert(k, keycount - v as i32),
};
}
ret
}
/// Recursion helper for `keys`.
fn accumulate_keys(&self, node: Node, acc: &mut Vec<H256>) {
let mut handle_payload = |payload| {
let p = Rlp::new(payload);
if p.is_data() && p.size() == 32 {
acc.push(p.as_val());
}
self.accumulate_keys(self.get_node(payload), acc);
};
match node {
Node::Extension(_, payload) => handle_payload(payload),
Node::Branch(payloads, _) => for payload in &payloads { handle_payload(payload) },
_ => {},
}
}
/// Get the root node's RLP.
fn root_node(&self) -> Node {
Node::decoded(self.root_data())
}
/// Get the data of the root node.
fn root_data(&self) -> &[u8] {
self.db.get(&self.root).expect("Trie root not found!")
}
/// Get the root node as a `Node`.
fn get_node<'a>(&'a self, node: &'a [u8]) -> Node {
Node::decoded(self.get_raw_or_lookup(node))
}
/// Indentation helper for `formal_all`.
fn fmt_indent(&self, f: &mut fmt::Formatter, size: usize) -> fmt::Result {
for _ in 0..size {
try!(write!(f, " "));
}
Ok(())
}
/// Recursion helper for implementation of formatting trait.
fn fmt_all(&self, node: Node, f: &mut fmt::Formatter, deepness: usize) -> fmt::Result {
match node {
Node::Leaf(slice, value) => try!(writeln!(f, "'{:?}: {:?}.", slice, value.pretty())),
Node::Extension(ref slice, ref item) => {
try!(write!(f, "'{:?} ", slice));
try!(self.fmt_all(self.get_node(item), f, deepness));
},
Node::Branch(ref nodes, ref value) => {
try!(writeln!(f, ""));
if let Some(v) = *value {
try!(self.fmt_indent(f, deepness + 1));
try!(writeln!(f, "=: {:?}", v.pretty()))
}
for i in 0..16 {
match self.get_node(nodes[i]) {
Node::Empty => {},
n => {
try!(self.fmt_indent(f, deepness + 1));
try!(write!(f, "'{:x} ", i));
try!(self.fmt_all(n, f, deepness + 1));
}
}
}
},
// empty
Node::Empty => {
try!(writeln!(f, "<empty>"));
}
};
Ok(())
}
/// Return optional data for a key given as a `NibbleSlice`. Returns `None` if no data exists.
fn do_lookup<'a, 'key>(&'a self, key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
let root_rlp = self.db.get(&self.root).expect("Trie root not found!");
self.get_from_node(&root_rlp, key)
}
/// Recursible function to retrieve the value given a `node` and a partial `key`. `None` if no
/// value exists for the key.
///
/// Note: Not a public API; use Trie trait functions.
fn get_from_node<'a, 'key>(&'a self, node: &'a [u8], key: &NibbleSlice<'key>) -> Option<&'a [u8]> where 'a: 'key {
match Node::decoded(node) {
Node::Leaf(ref slice, ref value) if key == slice => Some(value),
Node::Extension(ref slice, ref item) if key.starts_with(slice) => {
self.get_from_node(self.get_raw_or_lookup(item), &key.mid(slice.len()))
},
Node::Branch(ref nodes, value) => match key.is_empty() {
true => value,
false => self.get_from_node(self.get_raw_or_lookup(nodes[key.at(0) as usize]), &key.mid(1))
},
_ => None
}
}
/// Given some node-describing data `node`, return the actual node RLP.
/// This could be a simple identity operation in the case that the node is sufficiently small, but
/// may require a database lookup.
fn get_raw_or_lookup<'a>(&'a self, node: &'a [u8]) -> &'a [u8] {
// check if its sha3 + len
let r = Rlp::new(node);
match r.is_data() && r.size() == 32 {
true => self.db.get(&r.as_val::<H256>()).unwrap_or_else(|| panic!("Not found! {:?}", r.as_val::<H256>())),
false => node
}
}
}
#[derive(Clone, Eq, PartialEq)]
enum Status {
Entering,
At,
AtChild(usize),
Exiting,
}
#[derive(Clone, Eq, PartialEq)]
struct Crumb<'a> {
node: Node<'a>,
// key: &'a[u8],
status: Status,
}
impl<'a> Crumb<'a> {
/// Move on to next status in the node's sequence.
fn increment(&mut self) {
self.status = match (&self.status, &self.node) {
(_, &Node::Empty) => Status::Exiting,
(&Status::Entering, _) => Status::At,
(&Status::At, &Node::Branch(_, _)) => Status::AtChild(0),
(&Status::AtChild(x), &Node::Branch(_, _)) if x < 15 => Status::AtChild(x + 1),
_ => Status::Exiting,
}
}
}
/// Iterator for going through all values in the trie.
#[derive(Clone)]
pub struct TrieDBIterator<'a> {
db: &'a TrieDB<'a>,
trail: Vec<Crumb<'a>>,
key_nibbles: Bytes,
}
impl<'a> TrieDBIterator<'a> {
/// Create a new iterator.
pub fn new(db: &'a TrieDB) -> TrieDBIterator<'a> {
let mut r = TrieDBIterator {
db: db,
trail: vec![],
key_nibbles: Vec::new(),
};
r.descend(db.root_data());
r
}
/// Descend into a payload.
fn descend(&mut self, d: &'a [u8]) {
self.trail.push(Crumb {
status: Status::Entering,
node: self.db.get_node(d)
});
match self.trail.last().unwrap().node {
Node::Leaf(n, _) | Node::Extension(n, _) => { self.key_nibbles.extend(n.iter()); },
_ => {}
}
}
/// Descend into a payload and get the next item.
fn descend_next(&mut self, d: &'a [u8]) -> Option<(Bytes, &'a [u8])> { self.descend(d); self.next() }
/// The present key.
fn key(&self) -> Bytes {
// collapse the key_nibbles down to bytes.
self.key_nibbles.iter().step(2).zip(self.key_nibbles.iter().skip(1).step(2)).map(|(h, l)| h * 16 + l).collect()
}
}
impl<'a> Iterator for TrieDBIterator<'a> {
type Item = (Bytes, &'a [u8]);
fn next(&mut self) -> Option<Self::Item> {
let b = match self.trail.last_mut() {
Some(mut b) => { b.increment(); b.clone() },
None => return None
};
match (b.status, b.node) {
(Status::Exiting, n) => {
match n {
Node::Leaf(n, _) | Node::Extension(n, _) => {
let l = self.key_nibbles.len();
self.key_nibbles.truncate(l - n.len());
},
Node::Branch(_, _) => { self.key_nibbles.pop(); },
_ => {}
}
self.trail.pop();
self.next()
},
(Status::At, Node::Leaf(_, v)) | (Status::At, Node::Branch(_, Some(v))) => Some((self.key(), v)),
(Status::At, Node::Extension(_, d)) => self.descend_next(d),
(Status::At, Node::Branch(_, _)) => self.next(),
(Status::AtChild(i), Node::Branch(children, _)) if children[i].len() > 0 => {
match i {
0 => self.key_nibbles.push(0),
i => *self.key_nibbles.last_mut().unwrap() = i as u8,
}
self.descend_next(children[i])
},
(Status::AtChild(i), Node::Branch(_, _)) => {
if i == 0 { self.key_nibbles.push(0); }
self.next()
},
_ => panic!() // Should never see Entering or AtChild without a Branch here.
}
}
}
impl<'db> TrieDB<'db> {
/// Get all keys/values stored in the trie.
pub fn iter(&self) -> TrieDBIterator {
TrieDBIterator::new(self)
}
}
impl<'db> Trie for TrieDB<'db> {
fn iter<'a>(&'a self) -> Box<Iterator<Item = TrieItem> + 'a> {
Box::new(TrieDB::iter(self))
}
fn root(&self) -> &H256 { &self.root }
fn contains(&self, key: &[u8]) -> bool {
self.get(key).is_some()
}
fn get<'a, 'key>(&'a self, key: &'key [u8]) -> Option<&'a [u8]> where 'a: 'key {
self.do_lookup(&NibbleSlice::new(key))
}
}
impl<'db> fmt::Debug for TrieDB<'db> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(writeln!(f, "c={:?} [", self.hash_count));
let root_rlp = self.db.get(&self.root).expect("Trie root not found!");
try!(self.fmt_all(Node::decoded(root_rlp), f, 0));
writeln!(f, "]")
}
}
#[test]
fn iterator() {
use super::trietraits::TrieMut;
use memorydb::*;
use super::triedbmut::*;
let d = vec![ &b"A"[..], &b"AA"[..], &b"AB"[..], &b"B"[..] ];
let mut memdb = MemoryDB::new();
let mut root = H256::new();
{
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for x in &d {
t.insert(&x, &x);
}
}
assert_eq!(d.iter().map(|i|i.to_vec()).collect::<Vec<_>>(), TrieDB::new(&memdb, &root).unwrap().iter().map(|x|x.0).collect::<Vec<_>>());
assert_eq!(d, TrieDB::new(&memdb, &root).unwrap().iter().map(|x|x.1).collect::<Vec<_>>());
}