openethereum/util/src/network/connection.rs
2016-02-05 13:40:41 +01:00

679 lines
21 KiB
Rust

// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use std::sync::Arc;
use std::collections::VecDeque;
use mio::{Handler, Token, EventSet, EventLoop, PollOpt, TryRead, TryWrite};
use mio::tcp::*;
use hash::*;
use sha3::*;
use bytes::*;
use rlp::*;
use std::io::{self, Cursor, Read, Write};
use error::*;
use io::{IoContext, StreamToken};
use network::error::NetworkError;
use network::handshake::Handshake;
use network::stats::NetworkStats;
use crypto;
use rcrypto::blockmodes::*;
use rcrypto::aessafe::*;
use rcrypto::symmetriccipher::*;
use rcrypto::buffer::*;
use tiny_keccak::Keccak;
const ENCRYPTED_HEADER_LEN: usize = 32;
const RECIEVE_PAYLOAD_TIMEOUT: u64 = 30000;
pub trait GenericSocket : Read + Write {
}
impl GenericSocket for TcpStream {
}
pub struct GenericConnection<Socket: GenericSocket> {
/// Connection id (token)
pub token: StreamToken,
/// Network socket
pub socket: Socket,
/// Receive buffer
rec_buf: Bytes,
/// Expected size
rec_size: usize,
/// Send out packets FIFO
send_queue: VecDeque<Cursor<Bytes>>,
/// Event flags this connection expects
interest: EventSet,
/// Shared network statistics
stats: Arc<NetworkStats>,
}
impl<Socket: GenericSocket> GenericConnection<Socket> {
pub fn expect(&mut self, size: usize) {
if self.rec_size != self.rec_buf.len() {
warn!(target:"net", "Unexpected connection read start");
}
unsafe { self.rec_buf.set_len(0) }
self.rec_size = size;
}
/// Readable IO handler. Called when there is some data to be read.
pub fn readable(&mut self) -> io::Result<Option<Bytes>> {
if self.rec_size == 0 || self.rec_buf.len() >= self.rec_size {
warn!(target:"net", "Unexpected connection read");
}
let max = self.rec_size - self.rec_buf.len();
// resolve "multiple applicable items in scope [E0034]" error
let sock_ref = <Socket as Read>::by_ref(&mut self.socket);
match sock_ref.take(max as u64).try_read_buf(&mut self.rec_buf) {
Ok(Some(size)) if size != 0 => {
self.stats.inc_recv(size);
if self.rec_size != 0 && self.rec_buf.len() == self.rec_size {
self.rec_size = 0;
Ok(Some(::std::mem::replace(&mut self.rec_buf, Bytes::new())))
} else { Ok(None) }
},
Ok(_) => Ok(None),
Err(e) => Err(e),
}
}
/// Add a packet to send queue.
pub fn send(&mut self, data: Bytes) {
if !data.is_empty() {
self.send_queue.push_back(Cursor::new(data));
}
if !self.interest.is_writable() {
self.interest.insert(EventSet::writable());
}
}
/// Writable IO handler. Called when the socket is ready to send.
pub fn writable(&mut self) -> io::Result<WriteStatus> {
if self.send_queue.is_empty() {
return Ok(WriteStatus::Complete)
}
{
let buf = self.send_queue.front_mut().unwrap();
let send_size = buf.get_ref().len();
if (buf.position() as usize) >= send_size {
warn!(target:"net", "Unexpected connection data");
return Ok(WriteStatus::Complete)
}
match self.socket.try_write_buf(buf) {
Ok(Some(size)) if (buf.position() as usize) < send_size => {
self.interest.insert(EventSet::writable());
self.stats.inc_send(size);
Ok(WriteStatus::Ongoing)
},
Ok(Some(size)) if (buf.position() as usize) == send_size => {
self.stats.inc_send(size);
Ok(WriteStatus::Complete)
},
Ok(Some(_)) => { panic!("Wrote past buffer");},
Ok(None) => Ok(WriteStatus::Ongoing),
Err(e) => Err(e)
}
}.and_then(|r| {
if r == WriteStatus::Complete {
self.send_queue.pop_front();
}
if self.send_queue.is_empty() {
self.interest.remove(EventSet::writable());
}
else {
self.interest.insert(EventSet::writable());
}
Ok(r)
})
}
}
/// Low level tcp connection
pub type Connection = GenericConnection<TcpStream>;
impl Connection {
/// Create a new connection with given id and socket.
pub fn new(token: StreamToken, socket: TcpStream, stats: Arc<NetworkStats>) -> Connection {
Connection {
token: token,
socket: socket,
send_queue: VecDeque::new(),
rec_buf: Bytes::new(),
rec_size: 0,
interest: EventSet::hup() | EventSet::readable(),
stats: stats,
}
}
/// Register this connection with the IO event loop.
pub fn register_socket<Host: Handler>(&self, reg: Token, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
trace!(target: "net", "connection register; token={:?}", reg);
event_loop.register(&self.socket, reg, self.interest, PollOpt::edge() | PollOpt::oneshot()).or_else(|e| {
debug!("Failed to register {:?}, {:?}", reg, e);
Ok(())
})
}
/// Update connection registration. Should be called at the end of the IO handler.
pub fn update_socket<Host: Handler>(&self, reg: Token, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
trace!(target: "net", "connection reregister; token={:?}", reg);
event_loop.reregister( &self.socket, reg, self.interest, PollOpt::edge() | PollOpt::oneshot()).or_else(|e| {
debug!("Failed to reregister {:?}, {:?}", reg, e);
Ok(())
})
}
/// Delete connection registration. Should be called at the end of the IO handler.
pub fn deregister_socket<Host: Handler>(&self, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
trace!(target: "net", "connection deregister; token={:?}", self.token);
event_loop.deregister(&self.socket).ok(); // ignore errors here
Ok(())
}
}
/// Connection write status.
#[derive(PartialEq, Eq)]
pub enum WriteStatus {
/// Some data is still pending for current packet
Ongoing,
/// All data sent.
Complete
}
/// RLPx packet
pub struct Packet {
pub protocol: u16,
pub data: Bytes,
}
/// Encrypted connection receiving state.
enum EncryptedConnectionState {
/// Reading a header.
Header,
/// Reading the rest of the packet.
Payload,
}
/// Connection implementing RLPx framing
/// https://github.com/ethereum/devp2p/blob/master/rlpx.md#framing
pub struct EncryptedConnection {
/// Underlying tcp connection
connection: Connection,
/// Egress data encryptor
encoder: CtrMode<AesSafe256Encryptor>,
/// Ingress data decryptor
decoder: CtrMode<AesSafe256Encryptor>,
/// Ingress data decryptor
mac_encoder: EcbEncryptor<AesSafe256Encryptor, EncPadding<NoPadding>>,
/// MAC for egress data
egress_mac: Keccak,
/// MAC for ingress data
ingress_mac: Keccak,
/// Read state
read_state: EncryptedConnectionState,
/// Protocol id for the last received packet
protocol_id: u16,
/// Payload expected to be received for the last header.
payload_len: usize,
}
impl EncryptedConnection {
/// Get socket token
pub fn token(&self) -> StreamToken {
self.connection.token
}
/// Create an encrypted connection out of the handshake. Consumes a handshake object.
pub fn new(mut handshake: Handshake) -> Result<EncryptedConnection, UtilError> {
let shared = try!(crypto::ecdh::agree(handshake.ecdhe.secret(), &handshake.remote_public));
let mut nonce_material = H512::new();
if handshake.originated {
handshake.remote_nonce.copy_to(&mut nonce_material[0..32]);
handshake.nonce.copy_to(&mut nonce_material[32..64]);
}
else {
handshake.nonce.copy_to(&mut nonce_material[0..32]);
handshake.remote_nonce.copy_to(&mut nonce_material[32..64]);
}
let mut key_material = H512::new();
shared.copy_to(&mut key_material[0..32]);
nonce_material.sha3_into(&mut key_material[32..64]);
key_material.sha3().copy_to(&mut key_material[32..64]);
key_material.sha3().copy_to(&mut key_material[32..64]);
let iv = vec![0u8; 16];
let encoder = CtrMode::new(AesSafe256Encryptor::new(&key_material[32..64]), iv);
let iv = vec![0u8; 16];
let decoder = CtrMode::new(AesSafe256Encryptor::new(&key_material[32..64]), iv);
key_material.sha3().copy_to(&mut key_material[32..64]);
let mac_encoder = EcbEncryptor::new(AesSafe256Encryptor::new(&key_material[32..64]), NoPadding);
let mut egress_mac = Keccak::new_keccak256();
let mut mac_material = &H256::from_slice(&key_material[32..64]) ^ &handshake.remote_nonce;
egress_mac.update(&mac_material);
egress_mac.update(if handshake.originated { &handshake.auth_cipher } else { &handshake.ack_cipher });
let mut ingress_mac = Keccak::new_keccak256();
mac_material = &H256::from_slice(&key_material[32..64]) ^ &handshake.nonce;
ingress_mac.update(&mac_material);
ingress_mac.update(if handshake.originated { &handshake.ack_cipher } else { &handshake.auth_cipher });
handshake.connection.expect(ENCRYPTED_HEADER_LEN);
Ok(EncryptedConnection {
connection: handshake.connection,
encoder: encoder,
decoder: decoder,
mac_encoder: mac_encoder,
egress_mac: egress_mac,
ingress_mac: ingress_mac,
read_state: EncryptedConnectionState::Header,
protocol_id: 0,
payload_len: 0
})
}
/// Send a packet
pub fn send_packet(&mut self, payload: &[u8]) -> Result<(), UtilError> {
let mut header = RlpStream::new();
let len = payload.len() as usize;
header.append_raw(&[(len >> 16) as u8, (len >> 8) as u8, len as u8], 1);
header.append_raw(&[0xc2u8, 0x80u8, 0x80u8], 1);
//TODO: ger rid of vectors here
let mut header = header.out();
let padding = (16 - (payload.len() % 16)) % 16;
header.resize(16, 0u8);
let mut packet = vec![0u8; (32 + payload.len() + padding + 16)];
self.encoder.encrypt(&mut RefReadBuffer::new(&header), &mut RefWriteBuffer::new(&mut packet), false).expect("Invalid length or padding");
EncryptedConnection::update_mac(&mut self.egress_mac, &mut self.mac_encoder, &packet[0..16]);
self.egress_mac.clone().finalize(&mut packet[16..32]);
self.encoder.encrypt(&mut RefReadBuffer::new(&payload), &mut RefWriteBuffer::new(&mut packet[32..(32 + len)]), padding == 0).expect("Invalid length or padding");
if padding != 0 {
let pad = [0u8; 16];
self.encoder.encrypt(&mut RefReadBuffer::new(&pad[0..padding]), &mut RefWriteBuffer::new(&mut packet[(32 + len)..(32 + len + padding)]), true).expect("Invalid length or padding");
}
self.egress_mac.update(&packet[32..(32 + len + padding)]);
EncryptedConnection::update_mac(&mut self.egress_mac, &mut self.mac_encoder, &[0u8; 0]);
self.egress_mac.clone().finalize(&mut packet[(32 + len + padding)..]);
self.connection.send(packet);
Ok(())
}
/// Decrypt and authenticate an incoming packet header. Prepare for receiving payload.
fn read_header(&mut self, header: &[u8]) -> Result<(), UtilError> {
if header.len() != ENCRYPTED_HEADER_LEN {
return Err(From::from(NetworkError::Auth));
}
EncryptedConnection::update_mac(&mut self.ingress_mac, &mut self.mac_encoder, &header[0..16]);
let mac = &header[16..];
let mut expected = H256::new();
self.ingress_mac.clone().finalize(&mut expected);
if mac != &expected[0..16] {
return Err(From::from(NetworkError::Auth));
}
let mut hdec = H128::new();
self.decoder.decrypt(&mut RefReadBuffer::new(&header[0..16]), &mut RefWriteBuffer::new(&mut hdec), false).expect("Invalid length or padding");
let length = ((((hdec[0] as u32) << 8) + (hdec[1] as u32)) << 8) + (hdec[2] as u32);
let header_rlp = UntrustedRlp::new(&hdec[3..6]);
let protocol_id = try!(header_rlp.val_at::<u16>(0));
self.payload_len = length as usize;
self.protocol_id = protocol_id;
self.read_state = EncryptedConnectionState::Payload;
let padding = (16 - (length % 16)) % 16;
let full_length = length + padding + 16;
self.connection.expect(full_length as usize);
Ok(())
}
/// Decrypt and authenticate packet payload.
fn read_payload(&mut self, payload: &[u8]) -> Result<Packet, UtilError> {
let padding = (16 - (self.payload_len % 16)) % 16;
let full_length = self.payload_len + padding + 16;
if payload.len() != full_length {
return Err(From::from(NetworkError::Auth));
}
self.ingress_mac.update(&payload[0..payload.len() - 16]);
EncryptedConnection::update_mac(&mut self.ingress_mac, &mut self.mac_encoder, &[0u8; 0]);
let mac = &payload[(payload.len() - 16)..];
let mut expected = H128::new();
self.ingress_mac.clone().finalize(&mut expected);
if mac != &expected[..] {
return Err(From::from(NetworkError::Auth));
}
let mut packet = vec![0u8; self.payload_len];
self.decoder.decrypt(&mut RefReadBuffer::new(&payload[0..self.payload_len]), &mut RefWriteBuffer::new(&mut packet), false).expect("Invalid length or padding");
let mut pad_buf = [0u8; 16];
self.decoder.decrypt(&mut RefReadBuffer::new(&payload[self.payload_len..(payload.len() - 16)]), &mut RefWriteBuffer::new(&mut pad_buf), false).expect("Invalid length or padding");
Ok(Packet {
protocol: self.protocol_id,
data: packet
})
}
/// Update MAC after reading or writing any data.
fn update_mac(mac: &mut Keccak, mac_encoder: &mut EcbEncryptor<AesSafe256Encryptor, EncPadding<NoPadding>>, seed: &[u8]) {
let mut prev = H128::new();
mac.clone().finalize(&mut prev);
let mut enc = H128::new();
mac_encoder.encrypt(&mut RefReadBuffer::new(&prev), &mut RefWriteBuffer::new(&mut enc), true).unwrap();
mac_encoder.reset();
enc = enc ^ if seed.is_empty() { prev } else { H128::from_slice(seed) };
mac.update(&enc);
}
/// Readable IO handler. Tracker receive status and returns decoded packet if avaialable.
pub fn readable<Message>(&mut self, io: &IoContext<Message>) -> Result<Option<Packet>, UtilError> where Message: Send + Clone{
io.clear_timer(self.connection.token).unwrap();
match self.read_state {
EncryptedConnectionState::Header => {
if let Some(data) = try!(self.connection.readable()) {
try!(self.read_header(&data));
try!(io.register_timer(self.connection.token, RECIEVE_PAYLOAD_TIMEOUT));
}
Ok(None)
},
EncryptedConnectionState::Payload => {
match try!(self.connection.readable()) {
Some(data) => {
self.read_state = EncryptedConnectionState::Header;
self.connection.expect(ENCRYPTED_HEADER_LEN);
Ok(Some(try!(self.read_payload(&data))))
},
None => Ok(None)
}
}
}
}
/// Writable IO handler. Processes send queeue.
pub fn writable<Message>(&mut self, io: &IoContext<Message>) -> Result<(), UtilError> where Message: Send + Clone {
io.clear_timer(self.connection.token).unwrap();
try!(self.connection.writable());
Ok(())
}
/// Update connection registration. This should be called at the end of the event loop.
pub fn update_socket<Host:Handler>(&self, reg: Token, event_loop: &mut EventLoop<Host>) -> Result<(), UtilError> {
try!(self.connection.update_socket(reg, event_loop));
Ok(())
}
/// Delete connection registration. This should be called at the end of the event loop.
pub fn deregister_socket<Host:Handler>(&self, event_loop: &mut EventLoop<Host>) -> Result<(), UtilError> {
try!(self.connection.deregister_socket(event_loop));
Ok(())
}
}
#[test]
pub fn test_encryption() {
use hash::*;
use std::str::FromStr;
let key = H256::from_str("2212767d793a7a3d66f869ae324dd11bd17044b82c9f463b8a541a4d089efec5").unwrap();
let before = H128::from_str("12532abaec065082a3cf1da7d0136f15").unwrap();
let before2 = H128::from_str("7e99f682356fdfbc6b67a9562787b18a").unwrap();
let after = H128::from_str("89464c6b04e7c99e555c81d3f7266a05").unwrap();
let after2 = H128::from_str("85c070030589ef9c7a2879b3a8489316").unwrap();
let mut got = H128::new();
let mut encoder = EcbEncryptor::new(AesSafe256Encryptor::new(&key), NoPadding);
encoder.encrypt(&mut RefReadBuffer::new(&before), &mut RefWriteBuffer::new(&mut got), true).unwrap();
encoder.reset();
assert_eq!(got, after);
got = H128::new();
encoder.encrypt(&mut RefReadBuffer::new(&before2), &mut RefWriteBuffer::new(&mut got), true).unwrap();
encoder.reset();
assert_eq!(got, after2);
}
#[cfg(test)]
mod tests {
use super::*;
use std::sync::*;
use super::super::stats::*;
use std::io::{Read, Write, Error, Cursor, ErrorKind};
use std::cmp;
use mio::{EventSet};
use std::collections::VecDeque;
use bytes::*;
struct TestSocket {
read_buffer: Vec<u8>,
write_buffer: Vec<u8>,
cursor: usize,
buf_size: usize,
}
impl TestSocket {
fn new() -> TestSocket {
TestSocket {
read_buffer: vec![],
write_buffer: vec![],
cursor: 0,
buf_size: 0,
}
}
fn new_buf(buf_size: usize) -> TestSocket {
TestSocket {
read_buffer: vec![],
write_buffer: vec![],
cursor: 0,
buf_size: buf_size,
}
}
}
impl Read for TestSocket {
fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
let end_position = cmp::min(self.read_buffer.len(), self.cursor+buf.len());
let len = cmp::max(end_position - self.cursor, 0);
match len {
0 => Ok(0),
_ => {
for i in self.cursor..end_position {
buf[i-self.cursor] = self.read_buffer[i];
}
self.cursor = self.cursor + buf.len();
Ok(len)
}
}
}
}
impl Write for TestSocket {
fn write(&mut self, buf: &[u8]) -> Result<usize, Error> {
if self.buf_size == 0 || buf.len() < self.buf_size {
self.write_buffer.extend(buf.iter().cloned());
Ok(buf.len())
}
else {
self.write_buffer.extend(buf.iter().take(self.buf_size).cloned());
Ok(self.buf_size)
}
}
fn flush(&mut self) -> Result<(), Error> {
unimplemented!();
}
}
impl GenericSocket for TestSocket {}
struct TestBrokenSocket {
error: String
}
impl Read for TestBrokenSocket {
fn read(&mut self, _: &mut [u8]) -> Result<usize, Error> {
Err(Error::new(ErrorKind::Other, self.error.clone()))
}
}
impl Write for TestBrokenSocket {
fn write(&mut self, _: &[u8]) -> Result<usize, Error> {
Err(Error::new(ErrorKind::Other, self.error.clone()))
}
fn flush(&mut self) -> Result<(), Error> {
unimplemented!();
}
}
impl GenericSocket for TestBrokenSocket {}
type TestConnection = GenericConnection<TestSocket>;
impl TestConnection {
pub fn new() -> TestConnection {
TestConnection {
token: 999998888usize,
socket: TestSocket::new(),
send_queue: VecDeque::new(),
rec_buf: Bytes::new(),
rec_size: 0,
interest: EventSet::hup() | EventSet::readable(),
stats: Arc::<NetworkStats>::new(NetworkStats::new()),
}
}
}
type TestBrokenConnection = GenericConnection<TestBrokenSocket>;
impl TestBrokenConnection {
pub fn new() -> TestBrokenConnection {
TestBrokenConnection {
token: 999998888usize,
socket: TestBrokenSocket { error: "test broken socket".to_owned() },
send_queue: VecDeque::new(),
rec_buf: Bytes::new(),
rec_size: 0,
interest: EventSet::hup() | EventSet::readable(),
stats: Arc::<NetworkStats>::new(NetworkStats::new()),
}
}
}
#[test]
fn connection_expect() {
let mut connection = TestConnection::new();
connection.expect(1024);
assert_eq!(1024, connection.rec_size);
}
#[test]
fn connection_write_empty() {
let mut connection = TestConnection::new();
let status = connection.writable();
assert!(status.is_ok());
assert!(WriteStatus::Complete == status.unwrap());
}
#[test]
fn connection_write() {
let mut connection = TestConnection::new();
let data = Cursor::new(vec![0; 10240]);
connection.send_queue.push_back(data);
let status = connection.writable();
assert!(status.is_ok());
assert!(WriteStatus::Complete == status.unwrap());
assert_eq!(10240, connection.socket.write_buffer.len());
}
#[test]
fn connection_write_is_buffered() {
let mut connection = TestConnection::new();
connection.socket = TestSocket::new_buf(1024);
let data = Cursor::new(vec![0; 10240]);
connection.send_queue.push_back(data);
let status = connection.writable();
assert!(status.is_ok());
assert!(WriteStatus::Ongoing == status.unwrap());
assert_eq!(1024, connection.socket.write_buffer.len());
}
#[test]
fn connection_write_to_broken() {
let mut connection = TestBrokenConnection::new();
let data = Cursor::new(vec![0; 10240]);
connection.send_queue.push_back(data);
let status = connection.writable();
assert!(!status.is_ok());
assert_eq!(1, connection.send_queue.len());
}
#[test]
fn connection_read() {
let mut connection = TestConnection::new();
connection.rec_size = 2048;
connection.rec_buf = vec![10; 1024];
connection.socket.read_buffer = vec![99; 2048];
let status = connection.readable();
assert!(status.is_ok());
assert_eq!(1024, connection.socket.cursor);
}
#[test]
fn connection_read_from_broken() {
let mut connection = TestBrokenConnection::new();
connection.rec_size = 2048;
let status = connection.readable();
assert!(!status.is_ok());
assert_eq!(0, connection.rec_buf.len());
}
#[test]
fn connection_read_nothing() {
let mut connection = TestConnection::new();
connection.rec_size = 2048;
let status = connection.readable();
assert!(status.is_ok());
assert_eq!(0, connection.rec_buf.len());
}
#[test]
fn connection_read_full() {
let mut connection = TestConnection::new();
connection.rec_size = 1024;
connection.rec_buf = vec![76;1024];
let status = connection.readable();
assert!(status.is_ok());
assert_eq!(0, connection.socket.cursor);
}
}