226 lines
6.0 KiB
Rust
226 lines
6.0 KiB
Rust
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
|
|
// This file is part of Parity.
|
|
|
|
// Parity is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// Parity is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
use std::fmt;
|
|
use std::ops::Deref;
|
|
use std::str::FromStr;
|
|
use rustc_hex::ToHex;
|
|
use secp256k1::key;
|
|
use bigint::hash::H256;
|
|
use {Error, SECP256K1};
|
|
|
|
#[derive(Clone, PartialEq, Eq)]
|
|
pub struct Secret {
|
|
inner: H256,
|
|
}
|
|
|
|
impl ToHex for Secret {
|
|
fn to_hex(&self) -> String {
|
|
self.inner.to_hex()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for Secret {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(fmt, "Secret: 0x{:x}{:x}..{:x}{:x}", self.inner[0], self.inner[1], self.inner[30], self.inner[31])
|
|
}
|
|
}
|
|
|
|
impl Secret {
|
|
pub fn from_slice(key: &[u8]) -> Self {
|
|
assert_eq!(32, key.len(), "Caller should provide 32-byte length slice");
|
|
|
|
let mut h = H256::default();
|
|
h.copy_from_slice(&key[0..32]);
|
|
Secret { inner: h }
|
|
}
|
|
|
|
/// Imports and validates the key.
|
|
pub fn from_unsafe_slice(key: &[u8]) -> Result<Self, Error> {
|
|
let secret = key::SecretKey::from_slice(&super::SECP256K1, key)?;
|
|
Ok(secret.into())
|
|
}
|
|
|
|
/// Checks validity of this key.
|
|
pub fn check_validity(&self) -> Result<(), Error> {
|
|
self.to_secp256k1_secret().map(|_| ())
|
|
}
|
|
|
|
/// Inplace add one secret key to another (scalar + scalar)
|
|
pub fn add(&mut self, other: &Secret) -> Result<(), Error> {
|
|
let mut key_secret = self.to_secp256k1_secret()?;
|
|
let other_secret = other.to_secp256k1_secret()?;
|
|
key_secret.add_assign(&SECP256K1, &other_secret)?;
|
|
|
|
*self = key_secret.into();
|
|
Ok(())
|
|
}
|
|
|
|
/// Inplace subtract one secret key from another (scalar - scalar)
|
|
pub fn sub(&mut self, other: &Secret) -> Result<(), Error> {
|
|
let mut key_secret = self.to_secp256k1_secret()?;
|
|
let mut other_secret = other.to_secp256k1_secret()?;
|
|
other_secret.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
|
|
key_secret.add_assign(&SECP256K1, &other_secret)?;
|
|
|
|
*self = key_secret.into();
|
|
Ok(())
|
|
}
|
|
|
|
/// Inplace decrease secret key (scalar - 1)
|
|
pub fn dec(&mut self) -> Result<(), Error> {
|
|
let mut key_secret = self.to_secp256k1_secret()?;
|
|
key_secret.add_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
|
|
|
|
*self = key_secret.into();
|
|
Ok(())
|
|
}
|
|
|
|
/// Inplace multiply one secret key to another (scalar * scalar)
|
|
pub fn mul(&mut self, other: &Secret) -> Result<(), Error> {
|
|
let mut key_secret = self.to_secp256k1_secret()?;
|
|
let other_secret = other.to_secp256k1_secret()?;
|
|
key_secret.mul_assign(&SECP256K1, &other_secret)?;
|
|
|
|
*self = key_secret.into();
|
|
Ok(())
|
|
}
|
|
|
|
/// Inplace negate secret key (-scalar)
|
|
pub fn neg(&mut self) -> Result<(), Error> {
|
|
let mut key_secret = self.to_secp256k1_secret()?;
|
|
key_secret.mul_assign(&SECP256K1, &key::MINUS_ONE_KEY)?;
|
|
|
|
*self = key_secret.into();
|
|
Ok(())
|
|
}
|
|
|
|
/// Inplace inverse secret key (1 / scalar)
|
|
pub fn inv(&mut self) -> Result<(), Error> {
|
|
let mut key_secret = self.to_secp256k1_secret()?;
|
|
key_secret.inv_assign(&SECP256K1)?;
|
|
|
|
*self = key_secret.into();
|
|
Ok(())
|
|
}
|
|
|
|
/// Compute power of secret key inplace (secret ^ pow).
|
|
/// This function is not intended to be used with large powers.
|
|
pub fn pow(&mut self, pow: usize) -> Result<(), Error> {
|
|
match pow {
|
|
0 => *self = key::ONE_KEY.into(),
|
|
1 => (),
|
|
_ => {
|
|
let c = self.clone();
|
|
for _ in 1..pow {
|
|
self.mul(&c)?;
|
|
}
|
|
},
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Create `secp256k1::key::SecretKey` based on this secret
|
|
pub fn to_secp256k1_secret(&self) -> Result<key::SecretKey, Error> {
|
|
Ok(key::SecretKey::from_slice(&SECP256K1, &self[..])?)
|
|
}
|
|
}
|
|
|
|
impl FromStr for Secret {
|
|
type Err = Error;
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
Ok(H256::from_str(s).map_err(|e| Error::Custom(format!("{:?}", e)))?.into())
|
|
}
|
|
}
|
|
|
|
impl From<H256> for Secret {
|
|
fn from(s: H256) -> Self {
|
|
Secret::from_slice(&s)
|
|
}
|
|
}
|
|
|
|
impl From<&'static str> for Secret {
|
|
fn from(s: &'static str) -> Self {
|
|
s.parse().expect(&format!("invalid string literal for {}: '{}'", stringify!(Self), s))
|
|
}
|
|
}
|
|
|
|
impl From<key::SecretKey> for Secret {
|
|
fn from(key: key::SecretKey) -> Self {
|
|
Self::from_slice(&key[0..32])
|
|
}
|
|
}
|
|
|
|
impl Deref for Secret {
|
|
type Target = H256;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
&self.inner
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::str::FromStr;
|
|
use super::super::{Random, Generator};
|
|
use super::Secret;
|
|
|
|
#[test]
|
|
fn multiplicating_secret_inversion_with_secret_gives_one() {
|
|
let secret = Random.generate().unwrap().secret().clone();
|
|
let mut inversion = secret.clone();
|
|
inversion.inv().unwrap();
|
|
inversion.mul(&secret).unwrap();
|
|
assert_eq!(inversion, Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001").unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn secret_inversion_is_reversible_with_inversion() {
|
|
let secret = Random.generate().unwrap().secret().clone();
|
|
let mut inversion = secret.clone();
|
|
inversion.inv().unwrap();
|
|
inversion.inv().unwrap();
|
|
assert_eq!(inversion, secret);
|
|
}
|
|
|
|
#[test]
|
|
fn secret_pow() {
|
|
let secret = Random.generate().unwrap().secret().clone();
|
|
|
|
let mut pow0 = secret.clone();
|
|
pow0.pow(0).unwrap();
|
|
assert_eq!(pow0, Secret::from_str("0000000000000000000000000000000000000000000000000000000000000001").unwrap());
|
|
|
|
let mut pow1 = secret.clone();
|
|
pow1.pow(1).unwrap();
|
|
assert_eq!(pow1, secret);
|
|
|
|
let mut pow2 = secret.clone();
|
|
pow2.pow(2).unwrap();
|
|
let mut pow2_expected = secret.clone();
|
|
pow2_expected.mul(&secret).unwrap();
|
|
assert_eq!(pow2, pow2_expected);
|
|
|
|
let mut pow3 = secret.clone();
|
|
pow3.pow(3).unwrap();
|
|
let mut pow3_expected = secret.clone();
|
|
pow3_expected.mul(&secret).unwrap();
|
|
pow3_expected.mul(&secret).unwrap();
|
|
assert_eq!(pow3, pow3_expected);
|
|
}
|
|
}
|