openethereum/ethcore/native_contracts/generator/src/lib.rs

374 lines
13 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Rust code contract generator.
//! The code generated will require a dependence on the `ethcore-ethereum_types`,
//! `ethabi`, `byteorder`, and `futures` crates.
//! This currently isn't hygienic, so compilation of generated code may fail
//! due to missing crates or name collisions. This will change when
//! it can be ported to a procedural macro.
extern crate ethabi;
extern crate heck;
use ethabi::{Contract, ParamType};
use heck::SnakeCase;
/// Errors in generation.
#[derive(Debug)]
pub enum Error {
/// Bad ABI.
Abi(ethabi::Error),
/// Unsupported parameter type in given function.
UnsupportedType(String, ParamType),
}
/// Given an ABI string, generate code for a a Rust module containing
/// a struct which can be used to call it.
// TODO: make this a proc macro when that's possible.
pub fn generate_module(struct_name: &str, abi: &str) -> Result<String, Error> {
let contract = Contract::load(abi.as_bytes()).map_err(Error::Abi)?;
let functions = generate_functions(&contract)?;
Ok(format!(r##"
use byteorder::{{BigEndian, ByteOrder}};
use futures::{{future, Future, IntoFuture}};
use ethabi::{{Bytes, Contract, Token, Event}};
use ethereum_types;
type BoxFuture<A, B> = Box<Future<Item = A, Error = B> + Send>;
/// Generated Rust bindings to an Ethereum contract.
#[derive(Clone, Debug)]
pub struct {name} {{
contract: Contract,
/// Address to make calls to.
pub address: ethereum_types::H160,
}}
const ABI: &'static str = r#"{abi_str}"#;
impl {name} {{
/// Create a new instance of `{name}` with an address.
/// Calls can be made, given a callback for dispatching calls asynchronously.
pub fn new(address: ethereum_types::H160) -> Self {{
let contract = Contract::load(ABI.as_bytes())
.expect("ABI checked at generation-time; qed");
{name} {{
contract: contract,
address: address,
}}
}}
/// Access the underlying `ethabi` contract.
pub fn contract(this: &Self) -> &Contract {{
&this.contract
}}
{functions}
}}
"##,
name = struct_name,
abi_str = abi,
functions = functions,
))
}
// generate function bodies from the ABI.
fn generate_functions(contract: &Contract) -> Result<String, Error> {
let mut functions = String::new();
for function in contract.functions() {
let name = &function.name;
let snake_name = name.to_snake_case();
let inputs: Vec<_> = function.inputs.iter().map(|i| i.kind.clone()).collect();
let outputs: Vec<_> = function.outputs.iter().map(|i| i.kind.clone()).collect();
let (input_params, input_names, to_tokens) = input_params_codegen(&inputs)
.map_err(|bad_type| Error::UnsupportedType(name.clone(), bad_type))?;
let (output_type, decode_outputs) = output_params_codegen(&outputs)
.map_err(|bad_type| Error::UnsupportedType(name.clone(), bad_type))?;
functions.push_str(&format!(r##"
/// Call the function "{abi_name}" on the contract.
///
/// Inputs: {abi_inputs:?}
/// Outputs: {abi_outputs:?}
pub fn {snake_name}<F, U>(&self, call: F, {params}) -> BoxFuture<{output_type}, String>
where
F: FnOnce(ethereum_types::H160, Vec<u8>) -> U,
U: IntoFuture<Item=Vec<u8>, Error=String>,
U::Future: Send + 'static
{{
let call_addr = self.address;
let call_future = match self.encode_{snake_name}_input({params_names}) {{
Ok(call_data) => (call)(call_addr, call_data),
Err(e) => return Box::new(future::err(e)),
}};
let function = self.contract.function(r#"{abi_name}"#)
.expect("function existence checked at compile-time; qed").clone();
Box::new(call_future
.into_future()
.and_then(move |out| function.decode_output(&out).map_err(|e| format!("{{:?}}", e)))
.map(Vec::into_iter)
.and_then(|mut outputs| {decode_outputs}))
}}
/// Encode "{abi_name}" function arguments.
/// Arguments: {abi_inputs:?}
pub fn encode_{snake_name}_input(&self, {params}) -> Result<Vec<u8>, String> {{
self.contract.function(r#"{abi_name}"#)
.expect("function existence checked at compile-time; qed")
.encode_input(&{to_tokens})
.map_err(|e| format!("Error encoding call: {{:?}}", e))
}}
"##,
abi_name = name,
abi_inputs = inputs,
abi_outputs = outputs,
snake_name = snake_name,
params = input_params,
params_names = input_names,
output_type = output_type,
to_tokens = to_tokens,
decode_outputs = decode_outputs,
))
}
Ok(functions)
}
// generate code for params in function signature and turning them into tokens.
//
// three pieces of code are generated: the first gives input types for the function signature,
// the second one gives input parameter names to pass to another method,
// and the third gives code to tokenize those inputs.
//
// params of form `param_0: type_0, param_1: type_1, ...`
// tokenizing code of form `{let mut tokens = Vec::new(); tokens.push({param_X}); tokens }`
//
// returns any unsupported param type encountered.
fn input_params_codegen(inputs: &[ParamType]) -> Result<(String, String, String), ParamType> {
let mut params = String::new();
let mut params_names = String::new();
let mut to_tokens = "{ let mut tokens = Vec::new();".to_string();
for (index, param_type) in inputs.iter().enumerate() {
let param_name = format!("param_{}", index);
let rust_type = rust_type(param_type.clone())?;
let (needs_mut, tokenize_code) = tokenize(&param_name, param_type.clone());
params.push_str(&format!("{}{}: {}, ",
if needs_mut { "mut " } else { "" }, param_name, rust_type));
params_names.push_str(&format!("{}, ", param_name));
to_tokens.push_str(&format!("tokens.push({{ {} }});", tokenize_code));
}
to_tokens.push_str(" tokens }");
Ok((params, params_names, to_tokens))
}
// generate code for outputs of the function and detokenizing them.
//
// two pieces of code are generated: the first gives an output type for the function signature
// as a tuple, and the second gives code to get that tuple from a deque of tokens.
//
// produce output type of the form (type_1, type_2, ...) without trailing comma.
// produce code for getting this output type from `outputs: Vec<Token>::IntoIter`, where
// an `Err(String)` can be returned.
//
// returns any unsupported param type encountered.
fn output_params_codegen(outputs: &[ParamType]) -> Result<(String, String), ParamType> {
let mut output_type = "(".to_string();
let mut decode_outputs = "Ok((".to_string();
for (index, output) in outputs.iter().cloned().enumerate() {
let rust_type = rust_type(output.clone())?;
output_type.push_str(&rust_type);
decode_outputs.push_str(&format!(
r#"
outputs
.next()
.and_then(|output| {{ {} }})
.ok_or_else(|| "Wrong output type".to_string())?
"#,
detokenize("output", output)
));
// don't append trailing commas for the last element
// so we can reuse the same code for single-output contracts,
// since T == (T) != (T,)
if index < outputs.len() - 1 {
output_type.push_str(", ");
decode_outputs.push_str(", ");
}
}
output_type.push_str(")");
decode_outputs.push_str("))");
Ok((output_type, decode_outputs))
}
// create code for an argument type from param type.
fn rust_type(input: ParamType) -> Result<String, ParamType> {
Ok(match input {
ParamType::Address => "ethereum_types::H160".into(),
ParamType::FixedBytes(len) if len <= 32 => format!("ethereum_types::H{}", len * 8),
ParamType::Bytes | ParamType::FixedBytes(_) => "Vec<u8>".into(),
ParamType::Int(width) => match width {
8 | 16 | 32 | 64 => format!("i{}", width),
_ => return Err(ParamType::Int(width)),
},
ParamType::Uint(width) => match width {
8 | 16 | 32 | 64 => format!("u{}", width),
128 | 160 | 256 => format!("ethereum_types::U{}", width),
_ => return Err(ParamType::Uint(width)),
},
ParamType::Bool => "bool".into(),
ParamType::String => "String".into(),
ParamType::Array(kind) => format!("Vec<{}>", rust_type(*kind)?),
other => return Err(other),
})
}
// create code for tokenizing this parameter.
// returns (needs_mut, code), where needs_mut indicates mutability required.
// panics on unsupported types.
fn tokenize(name: &str, input: ParamType) -> (bool, String) {
let mut needs_mut = false;
let code = match input {
ParamType::Address => format!("Token::Address({}.0)", name),
ParamType::Bytes => format!("Token::Bytes({})", name),
ParamType::FixedBytes(len) if len <= 32 =>
format!("Token::FixedBytes({}.0.to_vec())", name),
ParamType::FixedBytes(len) => {
needs_mut = true;
format!("{}.resize({}, 0); Token::FixedBytes({})", name, len, name)
}
ParamType::Int(width) => match width {
8 => format!("let mut r = [0xff; 32]; r[31] = {}; Token::Int(r)", name),
16 | 32 | 64 =>
format!("let mut r = [0xff; 32]; BigEndian::write_i{}(&mut r[{}..], {}); Token::Int(r))",
width, 32 - (width / 8), name),
_ => panic!("Signed int with more than 64 bits not supported."),
},
ParamType::Uint(width) => format!(
"let mut r = [0; 32]; {}.to_big_endian(&mut r); Token::Uint(r)",
if width <= 64 { format!("ethereum_types::U256::from({} as u64)", name) }
else { format!("ethereum_types::U256::from({})", name) }
),
ParamType::Bool => format!("Token::Bool({})", name),
ParamType::String => format!("Token::String({})", name),
ParamType::Array(kind) => {
let (needs_mut, code) = tokenize("i", *kind);
format!("Token::Array({}.into_iter().map(|{}i| {{ {} }}).collect())",
name, if needs_mut { "mut " } else { "" }, code)
}
ParamType::FixedArray(_, _) => panic!("Fixed-length arrays not supported."),
};
(needs_mut, code)
}
// create code for detokenizing this parameter.
// takes an output type and the identifier of a token.
// expands to code that evaluates to a Option<concrete type>
// panics on unsupported types.
fn detokenize(name: &str, output_type: ParamType) -> String {
match output_type {
ParamType::Address => format!("{}.to_address().map(ethereum_types::H160)", name),
ParamType::Bytes => format!("{}.to_bytes()", name),
ParamType::FixedBytes(len) if len <= 32 => {
// ensure no panic on slice too small.
let read_hash = format!("b.resize({}, 0); ethereum_types::H{}::from_slice(&b[..{}])",
len, len * 8, len);
format!("{}.to_fixed_bytes().map(|mut b| {{ {} }})",
name, read_hash)
}
ParamType::FixedBytes(_) => format!("{}.to_fixed_bytes()", name),
ParamType::Int(width) => {
let read_int = match width {
8 => "i[31] as i8".into(),
16 | 32 | 64 => format!("BigEndian::read_i{}(&i[{}..])", width, 32 - (width / 8)),
_ => panic!("Signed integers over 64 bytes not allowed."),
};
format!("{}.to_int().map(|i| {})", name, read_int)
}
ParamType::Uint(width) => {
let read_uint = match width {
8 => "u[31] as u8".into(),
16 | 32 | 64 => format!("BigEndian::read_u{}(&u[{}..])", width, 32 - (width / 8)),
_ => format!("ethereum_types::U{}::from(&u[..])", width),
};
format!("{}.to_uint().map(|u| {})", name, read_uint)
}
ParamType::Bool => format!("{}.to_bool()", name),
ParamType::String => format!("{}.to_string()", name),
ParamType::Array(kind) => {
let read_array = format!("x.into_iter().map(|a| {{ {} }}).collect::<Option<Vec<_>>>()",
detokenize("a", *kind));
format!("{}.to_array().and_then(|x| {{ {} }})",
name, read_array)
}
ParamType::FixedArray(_, _) => panic!("Fixed-length arrays not supported.")
}
}
#[cfg(test)]
mod tests {
use ethabi::ParamType;
#[test]
fn input_types() {
assert_eq!(::input_params_codegen(&[]).unwrap().0, "");
assert_eq!(::input_params_codegen(&[ParamType::Address]).unwrap().0, "param_0: ethereum_types::H160, ");
assert_eq!(::input_params_codegen(&[ParamType::Address, ParamType::Bytes]).unwrap().0,
"param_0: ethereum_types::H160, param_1: Vec<u8>, ");
}
#[test]
fn output_types() {
assert_eq!(::output_params_codegen(&[]).unwrap().0, "()");
assert_eq!(::output_params_codegen(&[ParamType::Address]).unwrap().0, "(ethereum_types::H160)");
assert_eq!(::output_params_codegen(&[ParamType::Address, ParamType::Array(Box::new(ParamType::Bytes))]).unwrap().0,
"(ethereum_types::H160, Vec<Vec<u8>>)");
}
#[test]
fn rust_type() {
assert_eq!(::rust_type(ParamType::FixedBytes(32)).unwrap(), "ethereum_types::H256");
assert_eq!(::rust_type(ParamType::Array(Box::new(ParamType::FixedBytes(32)))).unwrap(),
"Vec<ethereum_types::H256>");
assert_eq!(::rust_type(ParamType::Uint(64)).unwrap(), "u64");
assert!(::rust_type(ParamType::Uint(63)).is_err());
assert_eq!(::rust_type(ParamType::Int(32)).unwrap(), "i32");
assert_eq!(::rust_type(ParamType::Uint(256)).unwrap(), "ethereum_types::U256");
}
// codegen tests will need bootstrapping of some kind.
}