openethereum/ethcore/sync/src/chain/propagator.rs
Afri Schoedon 484ecfaf47
Parity Ethereum 2.0.0 (#9052)
* parity-version: major bump to 2.0.0 🎉

* parity-ethereum: rename crate 🌵

* ethcore: only accept service transactions from parity-ethereum nodes

* parity: fix --identity tests

* rpc: fix sync provider in tests

* rpc: fix parity_net_peers test

* ethcore-sync: accept service transactions from parity and parity-ethereum

* ethcore-sync: fix indentation

* ethcore-sync: split the ifs to reduce code redundancy

* ethcore-sync: fix syntax

* Fix building ethcore

* update cargo.lock

* parity-version: major bump to 2.0.0 tada

* fix merge
2018-07-11 13:35:10 +02:00

644 lines
24 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use bytes::Bytes;
use ethereum_types::H256;
use ethcore::client::BlockChainInfo;
use ethcore::header::BlockNumber;
use network::{PeerId, PacketId};
use rand::Rng;
use rlp::{Encodable, RlpStream};
use sync_io::SyncIo;
use std::cmp;
use std::collections::HashSet;
use transaction::SignedTransaction;
use super::{
random,
ChainSync,
MAX_PEER_LAG_PROPAGATION,
MAX_PEERS_PROPAGATION,
MAX_TRANSACTION_PACKET_SIZE,
MAX_TRANSACTIONS_TO_PROPAGATE,
MAX_TRANSACTIONS_TO_QUERY,
MIN_PEERS_PROPAGATION,
CONSENSUS_DATA_PACKET,
NEW_BLOCK_HASHES_PACKET,
NEW_BLOCK_PACKET,
PRIVATE_TRANSACTION_PACKET,
SIGNED_PRIVATE_TRANSACTION_PACKET,
TRANSACTIONS_PACKET,
};
/// Checks if peer is able to process service transactions
fn accepts_service_transaction(client_id: &str) -> bool {
// Parity versions starting from this will accept service-transactions
const SERVICE_TRANSACTIONS_VERSION: (u32, u32) = (1u32, 6u32);
// Parity client string prefix
const LEGACY_CLIENT_ID_PREFIX: &'static str = "Parity/v";
const PARITY_CLIENT_ID_PREFIX: &'static str = "Parity-Ethereum/v";
let splitted = if client_id.starts_with(LEGACY_CLIENT_ID_PREFIX) {
client_id[LEGACY_CLIENT_ID_PREFIX.len()..].split('.')
} else if client_id.starts_with(PARITY_CLIENT_ID_PREFIX) {
client_id[PARITY_CLIENT_ID_PREFIX.len()..].split('.')
} else {
return false;
};
let ver: Vec<u32> = splitted
.take(2)
.filter_map(|s| s.parse().ok())
.collect();
ver.len() == 2 && (ver[0] > SERVICE_TRANSACTIONS_VERSION.0 || (ver[0] == SERVICE_TRANSACTIONS_VERSION.0 && ver[1] >= SERVICE_TRANSACTIONS_VERSION.1))
}
/// The Chain Sync Propagator: propagates data to peers
pub struct SyncPropagator;
impl SyncPropagator {
/// propagates latest block to a set of peers
pub fn propagate_blocks(sync: &mut ChainSync, chain_info: &BlockChainInfo, io: &mut SyncIo, blocks: &[H256], peers: &[PeerId]) -> usize {
trace!(target: "sync", "Sending NewBlocks to {:?}", peers);
let mut sent = 0;
for peer_id in peers {
if blocks.is_empty() {
let rlp = ChainSync::create_latest_block_rlp(io.chain());
SyncPropagator::send_packet(io, *peer_id, NEW_BLOCK_PACKET, rlp);
} else {
for h in blocks {
let rlp = ChainSync::create_new_block_rlp(io.chain(), h);
SyncPropagator::send_packet(io, *peer_id, NEW_BLOCK_PACKET, rlp);
}
}
if let Some(ref mut peer) = sync.peers.get_mut(peer_id) {
peer.latest_hash = chain_info.best_block_hash.clone();
}
sent += 1;
}
sent
}
/// propagates new known hashes to all peers
pub fn propagate_new_hashes(sync: &mut ChainSync, chain_info: &BlockChainInfo, io: &mut SyncIo, peers: &[PeerId]) -> usize {
trace!(target: "sync", "Sending NewHashes to {:?}", peers);
let mut sent = 0;
let last_parent = *io.chain().best_block_header().parent_hash();
for peer_id in peers {
sent += match ChainSync::create_new_hashes_rlp(io.chain(), &last_parent, &chain_info.best_block_hash) {
Some(rlp) => {
{
if let Some(ref mut peer) = sync.peers.get_mut(peer_id) {
peer.latest_hash = chain_info.best_block_hash.clone();
}
}
SyncPropagator::send_packet(io, *peer_id, NEW_BLOCK_HASHES_PACKET, rlp);
1
},
None => 0
}
}
sent
}
/// propagates new transactions to all peers
pub fn propagate_new_transactions(sync: &mut ChainSync, io: &mut SyncIo) -> usize {
// Early out if nobody to send to.
if sync.peers.is_empty() {
return 0;
}
let transactions = io.chain().ready_transactions(MAX_TRANSACTIONS_TO_QUERY);
if transactions.is_empty() {
return 0;
}
let (transactions, service_transactions): (Vec<_>, Vec<_>) = transactions.iter()
.map(|tx| tx.signed())
.partition(|tx| !tx.gas_price.is_zero());
// usual transactions could be propagated to all peers
let mut affected_peers = HashSet::new();
if !transactions.is_empty() {
let peers = SyncPropagator::select_peers_for_transactions(sync, |_| true);
affected_peers = SyncPropagator::propagate_transactions_to_peers(sync, io, peers, transactions);
}
// most of times service_transactions will be empty
// => there's no need to merge packets
if !service_transactions.is_empty() {
let service_transactions_peers = SyncPropagator::select_peers_for_transactions(sync, |peer_id| accepts_service_transaction(&io.peer_info(*peer_id)));
let service_transactions_affected_peers = SyncPropagator::propagate_transactions_to_peers(sync, io, service_transactions_peers, service_transactions);
affected_peers.extend(&service_transactions_affected_peers);
}
affected_peers.len()
}
fn propagate_transactions_to_peers(sync: &mut ChainSync, io: &mut SyncIo, peers: Vec<PeerId>, transactions: Vec<&SignedTransaction>) -> HashSet<PeerId> {
let all_transactions_hashes = transactions.iter()
.map(|tx| tx.hash())
.collect::<HashSet<H256>>();
let all_transactions_rlp = {
let mut packet = RlpStream::new_list(transactions.len());
for tx in &transactions { packet.append(&**tx); }
packet.out()
};
// Clear old transactions from stats
sync.transactions_stats.retain(&all_transactions_hashes);
// sqrt(x)/x scaled to max u32
let block_number = io.chain().chain_info().best_block_number;
let lucky_peers = {
peers.into_iter()
.filter_map(|peer_id| {
let stats = &mut sync.transactions_stats;
let peer_info = sync.peers.get_mut(&peer_id)
.expect("peer_id is form peers; peers is result of select_peers_for_transactions; select_peers_for_transactions selects peers from self.peers; qed");
// Send all transactions
if peer_info.last_sent_transactions.is_empty() {
// update stats
for hash in &all_transactions_hashes {
let id = io.peer_session_info(peer_id).and_then(|info| info.id);
stats.propagated(hash, id, block_number);
}
peer_info.last_sent_transactions = all_transactions_hashes.clone();
return Some((peer_id, all_transactions_hashes.len(), all_transactions_rlp.clone()));
}
// Get hashes of all transactions to send to this peer
let to_send = all_transactions_hashes.difference(&peer_info.last_sent_transactions)
.take(MAX_TRANSACTIONS_TO_PROPAGATE)
.cloned()
.collect::<HashSet<_>>();
if to_send.is_empty() {
return None;
}
// Construct RLP
let (packet, to_send) = {
let mut to_send = to_send;
let mut packet = RlpStream::new();
packet.begin_unbounded_list();
let mut pushed = 0;
for tx in &transactions {
let hash = tx.hash();
if to_send.contains(&hash) {
let mut transaction = RlpStream::new();
tx.rlp_append(&mut transaction);
let appended = packet.append_raw_checked(&transaction.drain(), 1, MAX_TRANSACTION_PACKET_SIZE);
if !appended {
// Maximal packet size reached just proceed with sending
debug!("Transaction packet size limit reached. Sending incomplete set of {}/{} transactions.", pushed, to_send.len());
to_send = to_send.into_iter().take(pushed).collect();
break;
}
pushed += 1;
}
}
packet.complete_unbounded_list();
(packet, to_send)
};
// Update stats
let id = io.peer_session_info(peer_id).and_then(|info| info.id);
for hash in &to_send {
// update stats
stats.propagated(hash, id, block_number);
}
peer_info.last_sent_transactions = all_transactions_hashes
.intersection(&peer_info.last_sent_transactions)
.chain(&to_send)
.cloned()
.collect();
Some((peer_id, to_send.len(), packet.out()))
})
.collect::<Vec<_>>()
};
// Send RLPs
let mut peers = HashSet::new();
if lucky_peers.len() > 0 {
let mut max_sent = 0;
let lucky_peers_len = lucky_peers.len();
for (peer_id, sent, rlp) in lucky_peers {
peers.insert(peer_id);
SyncPropagator::send_packet(io, peer_id, TRANSACTIONS_PACKET, rlp);
trace!(target: "sync", "{:02} <- Transactions ({} entries)", peer_id, sent);
max_sent = cmp::max(max_sent, sent);
}
debug!(target: "sync", "Sent up to {} transactions to {} peers.", max_sent, lucky_peers_len);
}
peers
}
pub fn propagate_latest_blocks(sync: &mut ChainSync, io: &mut SyncIo, sealed: &[H256]) {
let chain_info = io.chain().chain_info();
if (((chain_info.best_block_number as i64) - (sync.last_sent_block_number as i64)).abs() as BlockNumber) < MAX_PEER_LAG_PROPAGATION {
let mut peers = sync.get_lagging_peers(&chain_info);
if sealed.is_empty() {
let hashes = SyncPropagator::propagate_new_hashes(sync, &chain_info, io, &peers);
peers = ChainSync::select_random_peers(&peers);
let blocks = SyncPropagator::propagate_blocks(sync, &chain_info, io, sealed, &peers);
if blocks != 0 || hashes != 0 {
trace!(target: "sync", "Sent latest {} blocks and {} hashes to peers.", blocks, hashes);
}
} else {
SyncPropagator::propagate_blocks(sync, &chain_info, io, sealed, &peers);
SyncPropagator::propagate_new_hashes(sync, &chain_info, io, &peers);
trace!(target: "sync", "Sent sealed block to all peers");
};
}
sync.last_sent_block_number = chain_info.best_block_number;
}
/// Distribute valid proposed blocks to subset of current peers.
pub fn propagate_proposed_blocks(sync: &mut ChainSync, io: &mut SyncIo, proposed: &[Bytes]) {
let peers = sync.get_consensus_peers();
trace!(target: "sync", "Sending proposed blocks to {:?}", peers);
for block in proposed {
let rlp = ChainSync::create_block_rlp(
block,
io.chain().chain_info().total_difficulty
);
for peer_id in &peers {
SyncPropagator::send_packet(io, *peer_id, NEW_BLOCK_PACKET, rlp.clone());
}
}
}
/// Broadcast consensus message to peers.
pub fn propagate_consensus_packet(sync: &mut ChainSync, io: &mut SyncIo, packet: Bytes) {
let lucky_peers = ChainSync::select_random_peers(&sync.get_consensus_peers());
trace!(target: "sync", "Sending consensus packet to {:?}", lucky_peers);
for peer_id in lucky_peers {
SyncPropagator::send_packet(io, peer_id, CONSENSUS_DATA_PACKET, packet.clone());
}
}
/// Broadcast private transaction message to peers.
pub fn propagate_private_transaction(sync: &mut ChainSync, io: &mut SyncIo, packet: Bytes) {
let lucky_peers = ChainSync::select_random_peers(&sync.get_private_transaction_peers());
trace!(target: "sync", "Sending private transaction packet to {:?}", lucky_peers);
for peer_id in lucky_peers {
SyncPropagator::send_packet(io, peer_id, PRIVATE_TRANSACTION_PACKET, packet.clone());
}
}
/// Broadcast signed private transaction message to peers.
pub fn propagate_signed_private_transaction(sync: &mut ChainSync, io: &mut SyncIo, packet: Bytes) {
let lucky_peers = ChainSync::select_random_peers(&sync.get_private_transaction_peers());
trace!(target: "sync", "Sending signed private transaction packet to {:?}", lucky_peers);
for peer_id in lucky_peers {
SyncPropagator::send_packet(io, peer_id, SIGNED_PRIVATE_TRANSACTION_PACKET, packet.clone());
}
}
fn select_peers_for_transactions<F>(sync: &ChainSync, filter: F) -> Vec<PeerId>
where F: Fn(&PeerId) -> bool {
// sqrt(x)/x scaled to max u32
let fraction = ((sync.peers.len() as f64).powf(-0.5) * (u32::max_value() as f64).round()) as u32;
let small = sync.peers.len() < MIN_PEERS_PROPAGATION;
let mut random = random::new();
sync.peers.keys()
.cloned()
.filter(filter)
.filter(|_| small || random.next_u32() < fraction)
.take(MAX_PEERS_PROPAGATION)
.collect()
}
/// Generic packet sender
fn send_packet(sync: &mut SyncIo, peer_id: PeerId, packet_id: PacketId, packet: Bytes) {
if let Err(e) = sync.send(peer_id, packet_id, packet) {
debug!(target:"sync", "Error sending packet: {:?}", e);
sync.disconnect_peer(peer_id);
}
}
}
#[cfg(test)]
mod tests {
use ethcore::client::{BlockInfo, ChainInfo, EachBlockWith, TestBlockChainClient};
use parking_lot::RwLock;
use private_tx::NoopPrivateTxHandler;
use rlp::{Rlp};
use std::collections::{VecDeque};
use tests::helpers::{TestIo};
use tests::snapshot::TestSnapshotService;
use super::{*, super::{*, tests::*}};
#[test]
fn sends_new_hashes_to_lagging_peer() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
let queue = RwLock::new(VecDeque::new());
let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client);
let chain_info = client.chain_info();
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
let peers = sync.get_lagging_peers(&chain_info);
let peer_count = SyncPropagator::propagate_new_hashes(&mut sync, &chain_info, &mut io, &peers);
// 1 message should be send
assert_eq!(1, io.packets.len());
// 1 peer should be updated
assert_eq!(1, peer_count);
// NEW_BLOCK_HASHES_PACKET
assert_eq!(0x01, io.packets[0].packet_id);
}
#[test]
fn sends_latest_block_to_lagging_peer() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
let queue = RwLock::new(VecDeque::new());
let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client);
let chain_info = client.chain_info();
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
let peers = sync.get_lagging_peers(&chain_info);
let peer_count = SyncPropagator::propagate_blocks(&mut sync, &chain_info, &mut io, &[], &peers);
// 1 message should be send
assert_eq!(1, io.packets.len());
// 1 peer should be updated
assert_eq!(1, peer_count);
// NEW_BLOCK_PACKET
assert_eq!(0x07, io.packets[0].packet_id);
}
#[test]
fn sends_sealed_block() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
let queue = RwLock::new(VecDeque::new());
let hash = client.block_hash(BlockId::Number(99)).unwrap();
let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(5), &client);
let chain_info = client.chain_info();
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
let peers = sync.get_lagging_peers(&chain_info);
let peer_count = SyncPropagator::propagate_blocks(&mut sync ,&chain_info, &mut io, &[hash.clone()], &peers);
// 1 message should be send
assert_eq!(1, io.packets.len());
// 1 peer should be updated
assert_eq!(1, peer_count);
// NEW_BLOCK_PACKET
assert_eq!(0x07, io.packets[0].packet_id);
}
#[test]
fn sends_proposed_block() {
let mut client = TestBlockChainClient::new();
client.add_blocks(2, EachBlockWith::Uncle);
let queue = RwLock::new(VecDeque::new());
let block = client.block(BlockId::Latest).unwrap().into_inner();
let mut sync = ChainSync::new(SyncConfig::default(), &client, Arc::new(NoopPrivateTxHandler));
sync.peers.insert(0,
PeerInfo {
// Messaging protocol
protocol_version: 2,
genesis: H256::zero(),
network_id: 0,
latest_hash: client.block_hash_delta_minus(1),
difficulty: None,
asking: PeerAsking::Nothing,
asking_blocks: Vec::new(),
asking_hash: None,
ask_time: Instant::now(),
last_sent_transactions: HashSet::new(),
expired: false,
confirmation: ForkConfirmation::Confirmed,
snapshot_number: None,
snapshot_hash: None,
asking_snapshot_data: None,
block_set: None,
});
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
SyncPropagator::propagate_proposed_blocks(&mut sync, &mut io, &[block]);
// 1 message should be sent
assert_eq!(1, io.packets.len());
// NEW_BLOCK_PACKET
assert_eq!(0x07, io.packets[0].packet_id);
}
#[test]
fn propagates_transactions() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
client.insert_transaction_to_queue();
let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(1), &client);
let queue = RwLock::new(VecDeque::new());
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
let peer_count = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
// Try to propagate same transactions for the second time
let peer_count2 = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
// Even after new block transactions should not be propagated twice
sync.chain_new_blocks(&mut io, &[], &[], &[], &[], &[], &[]);
// Try to propagate same transactions for the third time
let peer_count3 = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
// 1 message should be send
assert_eq!(1, io.packets.len());
// 1 peer should be updated but only once
assert_eq!(1, peer_count);
assert_eq!(0, peer_count2);
assert_eq!(0, peer_count3);
// TRANSACTIONS_PACKET
assert_eq!(0x02, io.packets[0].packet_id);
}
#[test]
fn does_not_propagate_new_transactions_after_new_block() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
client.insert_transaction_to_queue();
let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(1), &client);
let queue = RwLock::new(VecDeque::new());
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
let peer_count = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
io.chain.insert_transaction_to_queue();
// New block import should not trigger propagation.
// (we only propagate on timeout)
sync.chain_new_blocks(&mut io, &[], &[], &[], &[], &[], &[]);
// 2 message should be send
assert_eq!(1, io.packets.len());
// 1 peer should receive the message
assert_eq!(1, peer_count);
// TRANSACTIONS_PACKET
assert_eq!(0x02, io.packets[0].packet_id);
}
#[test]
fn does_not_fail_for_no_peers() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
client.insert_transaction_to_queue();
// Sync with no peers
let mut sync = ChainSync::new(SyncConfig::default(), &client, Arc::new(NoopPrivateTxHandler));
let queue = RwLock::new(VecDeque::new());
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
let peer_count = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
sync.chain_new_blocks(&mut io, &[], &[], &[], &[], &[], &[]);
// Try to propagate same transactions for the second time
let peer_count2 = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
assert_eq!(0, io.packets.len());
assert_eq!(0, peer_count);
assert_eq!(0, peer_count2);
}
#[test]
fn propagates_transactions_without_alternating() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
client.insert_transaction_to_queue();
let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(1), &client);
let queue = RwLock::new(VecDeque::new());
let ss = TestSnapshotService::new();
// should sent some
{
let mut io = TestIo::new(&mut client, &ss, &queue, None);
let peer_count = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
assert_eq!(1, io.packets.len());
assert_eq!(1, peer_count);
}
// Insert some more
client.insert_transaction_to_queue();
let (peer_count2, peer_count3) = {
let mut io = TestIo::new(&mut client, &ss, &queue, None);
// Propagate new transactions
let peer_count2 = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
// And now the peer should have all transactions
let peer_count3 = SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
(peer_count2, peer_count3)
};
// 2 message should be send (in total)
assert_eq!(2, queue.read().len());
// 1 peer should be updated but only once after inserting new transaction
assert_eq!(1, peer_count2);
assert_eq!(0, peer_count3);
// TRANSACTIONS_PACKET
assert_eq!(0x02, queue.read()[0].packet_id);
assert_eq!(0x02, queue.read()[1].packet_id);
}
#[test]
fn should_maintain_transations_propagation_stats() {
let mut client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Uncle);
client.insert_transaction_to_queue();
let mut sync = dummy_sync_with_peer(client.block_hash_delta_minus(1), &client);
let queue = RwLock::new(VecDeque::new());
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
let stats = sync.transactions_stats();
assert_eq!(stats.len(), 1, "Should maintain stats for single transaction.")
}
#[test]
fn should_propagate_service_transaction_to_selected_peers_only() {
let mut client = TestBlockChainClient::new();
client.insert_transaction_with_gas_price_to_queue(U256::zero());
let block_hash = client.block_hash_delta_minus(1);
let mut sync = ChainSync::new(SyncConfig::default(), &client, Arc::new(NoopPrivateTxHandler));
let queue = RwLock::new(VecDeque::new());
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
// when peer#1 is Geth
insert_dummy_peer(&mut sync, 1, block_hash);
io.peers_info.insert(1, "Geth".to_owned());
// and peer#2 is Parity, accepting service transactions
insert_dummy_peer(&mut sync, 2, block_hash);
io.peers_info.insert(2, "Parity-Ethereum/v2.6".to_owned());
// and peer#3 is Parity, discarding service transactions
insert_dummy_peer(&mut sync, 3, block_hash);
io.peers_info.insert(3, "Parity/v1.5".to_owned());
// and peer#4 is Parity, accepting service transactions
insert_dummy_peer(&mut sync, 4, block_hash);
io.peers_info.insert(4, "Parity-Ethereum/v2.7.3-ABCDEFGH".to_owned());
// and new service transaction is propagated to peers
SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
// peer#2 && peer#4 are receiving service transaction
assert!(io.packets.iter().any(|p| p.packet_id == 0x02 && p.recipient == 2)); // TRANSACTIONS_PACKET
assert!(io.packets.iter().any(|p| p.packet_id == 0x02 && p.recipient == 4)); // TRANSACTIONS_PACKET
assert_eq!(io.packets.len(), 2);
}
#[test]
fn should_propagate_service_transaction_is_sent_as_separate_message() {
let mut client = TestBlockChainClient::new();
let tx1_hash = client.insert_transaction_to_queue();
let tx2_hash = client.insert_transaction_with_gas_price_to_queue(U256::zero());
let block_hash = client.block_hash_delta_minus(1);
let mut sync = ChainSync::new(SyncConfig::default(), &client, Arc::new(NoopPrivateTxHandler));
let queue = RwLock::new(VecDeque::new());
let ss = TestSnapshotService::new();
let mut io = TestIo::new(&mut client, &ss, &queue, None);
// when peer#1 is Parity, accepting service transactions
insert_dummy_peer(&mut sync, 1, block_hash);
io.peers_info.insert(1, "Parity-Ethereum/v2.6".to_owned());
// and service + non-service transactions are propagated to peers
SyncPropagator::propagate_new_transactions(&mut sync, &mut io);
// two separate packets for peer are queued:
// 1) with non-service-transaction
// 2) with service transaction
let sent_transactions: Vec<UnverifiedTransaction> = io.packets.iter()
.filter_map(|p| {
if p.packet_id != 0x02 || p.recipient != 1 { // TRANSACTIONS_PACKET
return None;
}
let rlp = Rlp::new(&*p.data);
let item_count = rlp.item_count().unwrap_or(0);
if item_count != 1 {
return None;
}
rlp.at(0).ok().and_then(|r| r.as_val().ok())
})
.collect();
assert_eq!(sent_transactions.len(), 2);
assert!(sent_transactions.iter().any(|tx| tx.hash() == tx1_hash));
assert!(sent_transactions.iter().any(|tx| tx.hash() == tx2_hash));
}
}