openethereum/whisper/src/message.rs

577 lines
16 KiB
Rust

// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
//! Whisper message parsing, handlers, and construction.
use std::{
fmt,
time::{self, Duration, Instant, SystemTime},
};
use ethereum_types::{H256, H512};
use rlp::{self, DecoderError, Rlp, RlpStream};
use smallvec::SmallVec;
use tiny_keccak::{keccak256, Keccak};
#[cfg(not(time_checked_add))]
use time_utils::CheckedSystemTime;
/// Work-factor proved. Takes 3 parameters: size of message, time to live,
/// and hash.
///
/// Panics if size or TTL is zero.
pub fn work_factor_proved(size: u64, ttl: u64, hash: H256) -> f64 {
assert!(size != 0 && ttl != 0);
let leading_zeros = {
let leading_bytes = hash.iter().take_while(|&&x| x == 0).count();
let remaining_leading_bits = hash
.get(leading_bytes)
.map_or(0, |byte| byte.leading_zeros() as usize);
(leading_bytes * 8) + remaining_leading_bits
};
let spacetime = size as f64 * ttl as f64;
2.0_f64.powi(leading_zeros as i32) / spacetime
}
/// A topic of a message.
#[derive(Debug, Default, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Topic(pub [u8; 4]);
impl From<[u8; 4]> for Topic {
fn from(x: [u8; 4]) -> Self {
Topic(x)
}
}
impl Topic {
/// set up to three bits in the 64-byte bloom passed.
///
/// this takes 3 sets of 9 bits, treating each as an index in the range
/// 0..512 into the bloom and setting the corresponding bit in the bloom to 1.
pub fn bloom_into(&self, bloom: &mut H512) {
let data = &self.0;
for i in 0..3 {
let mut idx = data[i] as usize;
if data[3] & (1 << i) != 0 {
idx += 256;
}
debug_assert!(idx <= 511);
bloom[idx / 8] |= 1 << (7 - idx % 8);
}
}
/// Get bloom for single topic.
pub fn bloom(&self) -> H512 {
let mut bloom = Default::default();
self.bloom_into(&mut bloom);
bloom
}
}
impl rlp::Encodable for Topic {
fn rlp_append(&self, s: &mut RlpStream) {
s.encoder().encode_value(&self.0);
}
}
impl rlp::Decodable for Topic {
fn decode(rlp: &Rlp) -> Result<Self, DecoderError> {
use std::cmp;
rlp.decoder()
.decode_value(|bytes| match bytes.len().cmp(&4) {
cmp::Ordering::Less => Err(DecoderError::RlpIsTooShort),
cmp::Ordering::Greater => Err(DecoderError::RlpIsTooBig),
cmp::Ordering::Equal => {
let mut t = [0u8; 4];
t.copy_from_slice(bytes);
Ok(Topic(t))
}
})
}
}
/// Calculate union of blooms for given topics.
pub fn bloom_topics(topics: &[Topic]) -> H512 {
let mut bloom = H512::default();
for topic in topics {
topic.bloom_into(&mut bloom);
}
bloom
}
/// Message errors.
#[derive(Debug)]
pub enum Error {
Decoder(DecoderError),
EmptyTopics,
LivesTooLong,
IssuedInFuture,
TimestampOverflow,
ZeroTTL,
}
impl From<DecoderError> for Error {
fn from(err: DecoderError) -> Self {
Error::Decoder(err)
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Decoder(ref err) => write!(f, "Failed to decode message: {}", err),
Error::LivesTooLong => write!(f, "Message claims to be issued before the unix epoch."),
Error::IssuedInFuture => write!(f, "Message issued in future."),
Error::ZeroTTL => write!(f, "Message live for zero time."),
Error::TimestampOverflow => write!(f, "Timestamp overflow"),
Error::EmptyTopics => write!(f, "Message has no topics."),
}
}
}
fn append_topics<'a>(s: &'a mut RlpStream, topics: &[Topic]) -> &'a mut RlpStream {
if topics.len() == 1 {
s.append(&topics[0])
} else {
s.append_list(&topics)
}
}
fn decode_topics(rlp: Rlp) -> Result<SmallVec<[Topic; 4]>, DecoderError> {
if rlp.is_list() {
rlp.iter().map(|r| r.as_val::<Topic>()).collect()
} else {
rlp.as_val().map(|t| SmallVec::from_slice(&[t]))
}
}
// Raw envelope struct.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Envelope {
/// Expiry timestamp
pub expiry: u64,
/// Time-to-live in seconds
pub ttl: u64,
/// series of 4-byte topics.
pub topics: SmallVec<[Topic; 4]>,
/// The message contained within.
pub data: Vec<u8>,
/// Arbitrary value used to target lower PoW hash.
pub nonce: u64,
}
impl Envelope {
/// Whether the message is multi-topic. Only relay these to Parity peers.
pub fn is_multitopic(&self) -> bool {
self.topics.len() != 1
}
fn proving_hash(&self) -> H256 {
use byteorder::{BigEndian, ByteOrder};
let mut buf = [0; 32];
let mut stream = RlpStream::new_list(4);
stream.append(&self.expiry).append(&self.ttl);
append_topics(&mut stream, &self.topics).append(&self.data);
let mut digest = Keccak::new_keccak256();
digest.update(&*stream.drain());
digest.update(&{
let mut nonce_bytes = [0u8; 8];
BigEndian::write_u64(&mut nonce_bytes, self.nonce);
nonce_bytes
});
digest.finalize(&mut buf);
H256(buf)
}
}
impl rlp::Encodable for Envelope {
fn rlp_append(&self, s: &mut RlpStream) {
s.begin_list(5).append(&self.expiry).append(&self.ttl);
append_topics(s, &self.topics)
.append(&self.data)
.append(&self.nonce);
}
}
impl rlp::Decodable for Envelope {
fn decode(rlp: &Rlp) -> Result<Self, DecoderError> {
if rlp.item_count()? != 5 {
return Err(DecoderError::RlpIncorrectListLen);
}
Ok(Envelope {
expiry: rlp.val_at(0)?,
ttl: rlp.val_at(1)?,
topics: decode_topics(rlp.at(2)?)?,
data: rlp.val_at(3)?,
nonce: rlp.val_at(4)?,
})
}
}
/// Message creation parameters.
/// Pass this to `Message::create` to make a message.
pub struct CreateParams {
/// time-to-live in seconds.
pub ttl: u64,
/// payload data.
pub payload: Vec<u8>,
/// Topics. May not be empty.
pub topics: Vec<Topic>,
/// How many milliseconds to spend proving work.
pub work: u64,
}
/// A whisper message. This is a checked message carrying around metadata.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Message {
envelope: Envelope,
bloom: H512,
hash: H256,
encoded_size: usize,
}
impl Message {
/// Create a message from creation parameters.
/// Panics if TTL is 0.
pub fn create(params: CreateParams) -> Result<Self, Error> {
use byteorder::{BigEndian, ByteOrder};
use rand::{Rng, SeedableRng, XorShiftRng};
if params.topics.is_empty() {
return Err(Error::EmptyTopics);
}
let mut rng = {
let mut thread_rng = ::rand::thread_rng();
XorShiftRng::from_seed(thread_rng.gen::<[u32; 4]>())
};
assert!(params.ttl > 0);
let expiry = {
let since_epoch = SystemTime::now()
.checked_add(Duration::from_secs(params.ttl))
.and_then(|t| t.checked_add(Duration::from_millis(params.work)))
.ok_or(Error::TimestampOverflow)?
.duration_since(time::UNIX_EPOCH)
.expect("time after now is after unix epoch; qed");
// round up the sub-second to next whole second.
since_epoch.as_secs()
+ if since_epoch.subsec_nanos() == 0 {
0
} else {
1
}
};
let start_digest = {
let mut stream = RlpStream::new_list(4);
stream.append(&expiry).append(&params.ttl);
append_topics(&mut stream, &params.topics).append(&params.payload);
let mut digest = Keccak::new_keccak256();
digest.update(&*stream.drain());
digest
};
let mut buf = [0; 32];
let mut try_nonce = move |nonce: &[u8; 8]| {
let mut digest = start_digest.clone();
digest.update(&nonce[..]);
digest.finalize(&mut buf[..]);
buf.clone()
};
let mut nonce: [u8; 8] = rng.gen();
let mut best_found = try_nonce(&nonce);
let start = Instant::now();
while start.elapsed() <= Duration::from_millis(params.work) {
let temp_nonce = rng.gen();
let hash = try_nonce(&temp_nonce);
if hash < best_found {
nonce = temp_nonce;
best_found = hash;
}
}
let envelope = Envelope {
expiry: expiry,
ttl: params.ttl,
topics: params.topics.into_iter().collect(),
data: params.payload,
nonce: BigEndian::read_u64(&nonce[..]),
};
debug_assert_eq!(H256(best_found.clone()), envelope.proving_hash());
let encoded = ::rlp::encode(&envelope);
Ok(Message::from_components(
envelope,
encoded.len(),
H256(keccak256(&encoded)),
SystemTime::now(),
)
.expect("Message generated here known to be valid; qed"))
}
/// Decode message from RLP and check for validity against system time.
pub fn decode(rlp: Rlp, now: SystemTime) -> Result<Self, Error> {
let envelope: Envelope = rlp.as_val()?;
let encoded_size = rlp.as_raw().len();
let hash = H256(keccak256(rlp.as_raw()));
Message::from_components(envelope, encoded_size, hash, now)
}
// create message from envelope, hash, and encoded size.
// does checks for validity.
fn from_components(
envelope: Envelope,
size: usize,
hash: H256,
now: SystemTime,
) -> Result<Self, Error> {
const LEEWAY_SECONDS: u64 = 2;
if envelope.expiry <= envelope.ttl {
return Err(Error::LivesTooLong);
}
if envelope.ttl == 0 {
return Err(Error::ZeroTTL);
}
if envelope.topics.is_empty() {
return Err(Error::EmptyTopics);
}
let issue_time_adjusted =
Duration::from_secs((envelope.expiry - envelope.ttl).saturating_sub(LEEWAY_SECONDS));
let issue_time_adjusted = time::UNIX_EPOCH
.checked_add(issue_time_adjusted)
.ok_or(Error::TimestampOverflow)?;
if issue_time_adjusted > now {
return Err(Error::IssuedInFuture);
}
// other validity checks?
let bloom = bloom_topics(&envelope.topics);
Ok(Message {
envelope: envelope,
bloom: bloom,
hash: hash,
encoded_size: size,
})
}
/// Get a reference to the envelope.
pub fn envelope(&self) -> &Envelope {
&self.envelope
}
/// Get the encoded size of the envelope.
pub fn encoded_size(&self) -> usize {
self.encoded_size
}
/// Get a uniquely identifying hash for the message.
pub fn hash(&self) -> &H256 {
&self.hash
}
/// Get the bloom filter of the topics
pub fn bloom(&self) -> &H512 {
&self.bloom
}
/// Get the work proved by the hash.
pub fn work_proved(&self) -> f64 {
let proving_hash = self.envelope.proving_hash();
work_factor_proved(self.encoded_size as _, self.envelope.ttl, proving_hash)
}
/// Get the expiry time.
pub fn expiry(&self) -> Option<SystemTime> {
time::UNIX_EPOCH.checked_add(Duration::from_secs(self.envelope.expiry))
}
/// Get the topics.
pub fn topics(&self) -> &[Topic] {
&self.envelope.topics
}
/// Get the message data.
pub fn data(&self) -> &[u8] {
&self.envelope.data
}
}
#[cfg(test)]
mod tests {
use super::*;
use ethereum_types::H256;
use rlp::Rlp;
use smallvec::SmallVec;
use std::time::{self, Duration, SystemTime};
fn unix_time(x: u64) -> SystemTime {
time::UNIX_EPOCH + Duration::from_secs(x)
}
#[test]
fn create_message() {
assert!(Message::create(CreateParams {
ttl: 100,
payload: vec![1, 2, 3, 4],
topics: vec![Topic([1, 2, 1, 2])],
work: 50,
})
.is_ok());
}
#[test]
fn round_trip() {
let envelope = Envelope {
expiry: 100_000,
ttl: 30,
data: vec![9; 256],
topics: SmallVec::from_slice(&[Default::default()]),
nonce: 1010101,
};
let encoded = ::rlp::encode(&envelope);
let decoded = ::rlp::decode(&encoded).expect("failure decoding Envelope");
assert_eq!(envelope, decoded)
}
#[test]
fn round_trip_multitopic() {
let envelope = Envelope {
expiry: 100_000,
ttl: 30,
data: vec![9; 256],
topics: SmallVec::from_slice(&[Default::default(), Topic([1, 2, 3, 4])]),
nonce: 1010101,
};
let encoded = ::rlp::encode(&envelope);
let decoded = ::rlp::decode(&encoded).expect("failure decoding Envelope");
assert_eq!(envelope, decoded)
}
#[test]
fn passes_checks() {
let envelope = Envelope {
expiry: 100_000,
ttl: 30,
data: vec![9; 256],
topics: SmallVec::from_slice(&[Default::default()]),
nonce: 1010101,
};
let encoded = ::rlp::encode(&envelope);
for i in 0..30 {
let now = unix_time(100_000 - i);
Message::decode(Rlp::new(&*encoded), now).unwrap();
}
}
#[test]
#[should_panic]
fn future_message() {
let envelope = Envelope {
expiry: 100_000,
ttl: 30,
data: vec![9; 256],
topics: SmallVec::from_slice(&[Default::default()]),
nonce: 1010101,
};
let encoded = ::rlp::encode(&envelope);
let now = unix_time(100_000 - 1_000);
Message::decode(Rlp::new(&*encoded), now).unwrap();
}
#[test]
#[should_panic]
fn pre_epoch() {
let envelope = Envelope {
expiry: 100_000,
ttl: 200_000,
data: vec![9; 256],
topics: SmallVec::from_slice(&[Default::default()]),
nonce: 1010101,
};
let encoded = ::rlp::encode(&envelope);
let now = unix_time(95_000);
Message::decode(Rlp::new(&*encoded), now).unwrap();
}
#[test]
fn work_factor() {
// 256 leading zeros -> 2^256 / 1
assert_eq!(
work_factor_proved(1, 1, H256::from(0)),
115792089237316200000000000000000000000000000000000000000000000000000000000000.0
);
// 255 leading zeros -> 2^255 / 1
assert_eq!(
work_factor_proved(1, 1, H256::from(1)),
57896044618658100000000000000000000000000000000000000000000000000000000000000.0
);
// 0 leading zeros -> 2^0 / 1
assert_eq!(
work_factor_proved(
1,
1,
serde_json::from_str::<H256>(
"\"0xff00000000000000000000000000000000000000000000000000000000000000\""
)
.unwrap()
),
1.0
);
}
}