openethereum/rpc/src/v1/impls/light/parity.rs
Tomasz Drwięga 69d7c4f519 Expose default gas price percentile configuration in CLI (#7497)
* Expose gas price percentile.

* Fix light eth_call.

* fix gas_price in light client
2018-01-09 12:43:36 +01:00

419 lines
12 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Parity-specific rpc implementation.
use std::sync::Arc;
use std::collections::{BTreeMap, HashSet};
use version::version_data;
use crypto::{ecies, DEFAULT_MAC};
use ethkey::{Brain, Generator};
use ethstore::random_phrase;
use ethsync::LightSyncProvider;
use ethcore::account_provider::AccountProvider;
use ethcore_logger::RotatingLogger;
use node_health::{NodeHealth, Health};
use light::client::LightChainClient;
use jsonrpc_core::{Result, BoxFuture};
use jsonrpc_core::futures::Future;
use jsonrpc_macros::Trailing;
use v1::helpers::{self, errors, ipfs, SigningQueue, SignerService, NetworkSettings};
use v1::helpers::dispatch::LightDispatcher;
use v1::helpers::light_fetch::LightFetch;
use v1::metadata::Metadata;
use v1::traits::Parity;
use v1::types::{
Bytes, U256, U64, H160, H256, H512, CallRequest,
Peers, Transaction, RpcSettings, Histogram,
TransactionStats, LocalTransactionStatus,
BlockNumber, ConsensusCapability, VersionInfo,
OperationsInfo, DappId, ChainStatus,
AccountInfo, HwAccountInfo, Header, RichHeader,
};
use Host;
/// Parity implementation for light client.
pub struct ParityClient {
client: Arc<LightChainClient>,
light_dispatch: Arc<LightDispatcher>,
accounts: Arc<AccountProvider>,
logger: Arc<RotatingLogger>,
settings: Arc<NetworkSettings>,
health: NodeHealth,
signer: Option<Arc<SignerService>>,
dapps_address: Option<Host>,
ws_address: Option<Host>,
eip86_transition: u64,
gas_price_percentile: usize,
}
impl ParityClient {
/// Creates new `ParityClient`.
pub fn new(
client: Arc<LightChainClient>,
light_dispatch: Arc<LightDispatcher>,
accounts: Arc<AccountProvider>,
logger: Arc<RotatingLogger>,
settings: Arc<NetworkSettings>,
health: NodeHealth,
signer: Option<Arc<SignerService>>,
dapps_address: Option<Host>,
ws_address: Option<Host>,
gas_price_percentile: usize,
) -> Self {
ParityClient {
light_dispatch,
accounts,
logger,
settings,
health,
signer,
dapps_address,
ws_address,
eip86_transition: client.eip86_transition(),
client,
gas_price_percentile,
}
}
/// Create a light blockchain data fetcher.
fn fetcher(&self) -> LightFetch {
LightFetch {
client: self.light_dispatch.client.clone(),
on_demand: self.light_dispatch.on_demand.clone(),
sync: self.light_dispatch.sync.clone(),
cache: self.light_dispatch.cache.clone(),
gas_price_percentile: self.gas_price_percentile,
}
}
}
impl Parity for ParityClient {
type Metadata = Metadata;
fn accounts_info(&self, dapp: Trailing<DappId>) -> Result<BTreeMap<H160, AccountInfo>> {
let dapp = dapp.unwrap_or_default();
let store = &self.accounts;
let dapp_accounts = store
.note_dapp_used(dapp.clone().into())
.and_then(|_| store.dapp_addresses(dapp.into()))
.map_err(|e| errors::account("Could not fetch accounts.", e))?
.into_iter().collect::<HashSet<_>>();
let info = store.accounts_info().map_err(|e| errors::account("Could not fetch account info.", e))?;
let other = store.addresses_info();
Ok(info
.into_iter()
.chain(other.into_iter())
.filter(|&(ref a, _)| dapp_accounts.contains(a))
.map(|(a, v)| (H160::from(a), AccountInfo { name: v.name }))
.collect()
)
}
fn hardware_accounts_info(&self) -> Result<BTreeMap<H160, HwAccountInfo>> {
let store = &self.accounts;
let info = store.hardware_accounts_info().map_err(|e| errors::account("Could not fetch account info.", e))?;
Ok(info
.into_iter()
.map(|(a, v)| (H160::from(a), HwAccountInfo { name: v.name, manufacturer: v.meta }))
.collect()
)
}
fn locked_hardware_accounts_info(&self) -> Result<Vec<String>> {
let store = &self.accounts;
Ok(store.locked_hardware_accounts().map_err(|e| errors::account("Error communicating with hardware wallet.", e))?)
}
fn default_account(&self, meta: Self::Metadata) -> Result<H160> {
let dapp_id = meta.dapp_id();
Ok(self.accounts
.dapp_addresses(dapp_id.into())
.ok()
.and_then(|accounts| accounts.get(0).cloned())
.map(|acc| acc.into())
.unwrap_or_default())
}
fn transactions_limit(&self) -> Result<usize> {
Ok(usize::max_value())
}
fn min_gas_price(&self) -> Result<U256> {
Ok(U256::default())
}
fn extra_data(&self) -> Result<Bytes> {
Ok(Bytes::default())
}
fn gas_floor_target(&self) -> Result<U256> {
Ok(U256::default())
}
fn gas_ceil_target(&self) -> Result<U256> {
Ok(U256::default())
}
fn dev_logs(&self) -> Result<Vec<String>> {
let logs = self.logger.logs();
Ok(logs.as_slice().to_owned())
}
fn dev_logs_levels(&self) -> Result<String> {
Ok(self.logger.levels().to_owned())
}
fn net_chain(&self) -> Result<String> {
Ok(self.settings.chain.clone())
}
fn net_peers(&self) -> Result<Peers> {
let peers = self.light_dispatch.sync.peers().into_iter().map(Into::into).collect();
let peer_numbers = self.light_dispatch.sync.peer_numbers();
Ok(Peers {
active: peer_numbers.active,
connected: peer_numbers.connected,
max: peer_numbers.max as u32,
peers: peers,
})
}
fn net_port(&self) -> Result<u16> {
Ok(self.settings.network_port)
}
fn node_name(&self) -> Result<String> {
Ok(self.settings.name.clone())
}
fn registry_address(&self) -> Result<Option<H160>> {
Err(errors::light_unimplemented(None))
}
fn rpc_settings(&self) -> Result<RpcSettings> {
Ok(RpcSettings {
enabled: self.settings.rpc_enabled,
interface: self.settings.rpc_interface.clone(),
port: self.settings.rpc_port as u64,
})
}
fn default_extra_data(&self) -> Result<Bytes> {
Ok(Bytes::new(version_data()))
}
fn gas_price_histogram(&self) -> BoxFuture<Histogram> {
Box::new(self.light_dispatch.gas_price_corpus()
.and_then(|corpus| corpus.histogram(10).ok_or_else(errors::not_enough_data))
.map(Into::into))
}
fn unsigned_transactions_count(&self) -> Result<usize> {
match self.signer {
None => Err(errors::signer_disabled()),
Some(ref signer) => Ok(signer.len()),
}
}
fn generate_secret_phrase(&self) -> Result<String> {
Ok(random_phrase(12))
}
fn phrase_to_address(&self, phrase: String) -> Result<H160> {
Ok(Brain::new(phrase).generate().unwrap().address().into())
}
fn list_accounts(&self, _: u64, _: Option<H160>, _: Trailing<BlockNumber>) -> Result<Option<Vec<H160>>> {
Err(errors::light_unimplemented(None))
}
fn list_storage_keys(&self, _: H160, _: u64, _: Option<H256>, _: Trailing<BlockNumber>) -> Result<Option<Vec<H256>>> {
Err(errors::light_unimplemented(None))
}
fn encrypt_message(&self, key: H512, phrase: Bytes) -> Result<Bytes> {
ecies::encrypt(&key.into(), &DEFAULT_MAC, &phrase.0)
.map_err(errors::encryption)
.map(Into::into)
}
fn pending_transactions(&self) -> Result<Vec<Transaction>> {
let txq = self.light_dispatch.transaction_queue.read();
let chain_info = self.light_dispatch.client.chain_info();
Ok(
txq.ready_transactions(chain_info.best_block_number, chain_info.best_block_timestamp)
.into_iter()
.map(|tx| Transaction::from_pending(tx, chain_info.best_block_number, self.eip86_transition))
.collect::<Vec<_>>()
)
}
fn future_transactions(&self) -> Result<Vec<Transaction>> {
let txq = self.light_dispatch.transaction_queue.read();
let chain_info = self.light_dispatch.client.chain_info();
Ok(
txq.future_transactions(chain_info.best_block_number, chain_info.best_block_timestamp)
.into_iter()
.map(|tx| Transaction::from_pending(tx, chain_info.best_block_number, self.eip86_transition))
.collect::<Vec<_>>()
)
}
fn pending_transactions_stats(&self) -> Result<BTreeMap<H256, TransactionStats>> {
let stats = self.light_dispatch.sync.transactions_stats();
Ok(stats.into_iter()
.map(|(hash, stats)| (hash.into(), stats.into()))
.collect()
)
}
fn local_transactions(&self) -> Result<BTreeMap<H256, LocalTransactionStatus>> {
let mut map = BTreeMap::new();
let chain_info = self.light_dispatch.client.chain_info();
let (best_num, best_tm) = (chain_info.best_block_number, chain_info.best_block_timestamp);
let txq = self.light_dispatch.transaction_queue.read();
for pending in txq.ready_transactions(best_num, best_tm) {
map.insert(pending.hash().into(), LocalTransactionStatus::Pending);
}
for future in txq.future_transactions(best_num, best_tm) {
map.insert(future.hash().into(), LocalTransactionStatus::Future);
}
// TODO: other types?
Ok(map)
}
fn dapps_url(&self) -> Result<String> {
helpers::to_url(&self.dapps_address)
.ok_or_else(|| errors::dapps_disabled())
}
fn ws_url(&self) -> Result<String> {
helpers::to_url(&self.ws_address)
.ok_or_else(|| errors::ws_disabled())
}
fn next_nonce(&self, address: H160) -> BoxFuture<U256> {
Box::new(self.light_dispatch.next_nonce(address.into()).map(Into::into))
}
fn mode(&self) -> Result<String> {
Err(errors::light_unimplemented(None))
}
fn chain_id(&self) -> Result<Option<U64>> {
Ok(self.client.signing_chain_id().map(U64::from))
}
fn chain(&self) -> Result<String> {
Ok(self.settings.chain.clone())
}
fn enode(&self) -> Result<String> {
self.light_dispatch.sync.enode().ok_or_else(errors::network_disabled)
}
fn consensus_capability(&self) -> Result<ConsensusCapability> {
Err(errors::light_unimplemented(None))
}
fn version_info(&self) -> Result<VersionInfo> {
Err(errors::light_unimplemented(None))
}
fn releases_info(&self) -> Result<Option<OperationsInfo>> {
Err(errors::light_unimplemented(None))
}
fn chain_status(&self) -> Result<ChainStatus> {
let chain_info = self.light_dispatch.client.chain_info();
let gap = chain_info.ancient_block_number.map(|x| U256::from(x + 1))
.and_then(|first| chain_info.first_block_number.map(|last| (first, U256::from(last))));
Ok(ChainStatus {
block_gap: gap.map(|(x, y)| (x.into(), y.into())),
})
}
fn node_kind(&self) -> Result<::v1::types::NodeKind> {
use ::v1::types::{NodeKind, Availability, Capability};
Ok(NodeKind {
availability: Availability::Personal,
capability: Capability::Light,
})
}
fn block_header(&self, number: Trailing<BlockNumber>) -> BoxFuture<RichHeader> {
use ethcore::encoded;
let engine = self.light_dispatch.client.engine().clone();
let from_encoded = move |encoded: encoded::Header| {
let header = encoded.decode();
let extra_info = engine.extra_info(&header);
RichHeader {
inner: Header {
hash: Some(header.hash().into()),
size: Some(encoded.rlp().as_raw().len().into()),
parent_hash: header.parent_hash().clone().into(),
uncles_hash: header.uncles_hash().clone().into(),
author: header.author().clone().into(),
miner: header.author().clone().into(),
state_root: header.state_root().clone().into(),
transactions_root: header.transactions_root().clone().into(),
receipts_root: header.receipts_root().clone().into(),
number: Some(header.number().into()),
gas_used: header.gas_used().clone().into(),
gas_limit: header.gas_limit().clone().into(),
logs_bloom: header.log_bloom().clone().into(),
timestamp: header.timestamp().into(),
difficulty: header.difficulty().clone().into(),
seal_fields: header.seal().iter().cloned().map(Into::into).collect(),
extra_data: Bytes::new(header.extra_data().clone()),
},
extra_info: extra_info,
}
};
Box::new(self.fetcher().header(number.unwrap_or_default().into()).map(from_encoded))
}
fn ipfs_cid(&self, content: Bytes) -> Result<String> {
ipfs::cid(content)
}
fn call(&self, _meta: Self::Metadata, _requests: Vec<CallRequest>, _block: Trailing<BlockNumber>) -> Result<Vec<Bytes>> {
Err(errors::light_unimplemented(None))
}
fn node_health(&self) -> BoxFuture<Health> {
Box::new(self.health.health()
.map_err(|err| errors::internal("Health API failure.", err)))
}
}