openethereum/crates/util/stats/src/lib.rs
adria0.eth 0fcb102f03
Improved metrics (#240)
Added db metrics (kvdb_bytes_read, kvdb_bytes_written, kvdb_reads, kvdb_writes)
Added --metrics-prefix=[prefix]
2021-03-03 22:44:35 +01:00

291 lines
8.7 KiB
Rust

// Copyright 2015-2020 Parity Technologies (UK) Ltd.
// This file is part of OpenEthereum.
// OpenEthereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// OpenEthereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with OpenEthereum. If not, see <http://www.gnu.org/licenses/>.
//! Statistical functions and helpers.
use std::{
iter::FromIterator,
ops::{Add, Deref, Div, Sub},
time::Instant,
};
#[macro_use]
extern crate log;
pub extern crate prometheus;
pub struct PrometheusRegistry {
prefix: String,
registry: prometheus::Registry,
}
impl PrometheusRegistry {
/// Create a new instance with the specified prefix
pub fn new(prefix: String) -> Self {
Self {
prefix,
registry: prometheus::Registry::new(),
}
}
/// Get internal registry
pub fn registry(&self) -> &prometheus::Registry {
&self.registry
}
/// Adds a new prometheus counter with the specified value
pub fn register_counter(&mut self, name: &str, help: &str, value: i64) {
let name = format!("{}{}", self.prefix, name);
let c = prometheus::IntCounter::new(name.as_str(), help)
.expect("name and help must be non-empty");
c.inc_by(value);
self.registry
.register(Box::new(c))
.expect("prometheus identifiers must be unique");
}
/// Adds a new prometheus gauge with the specified gauge
pub fn register_gauge(&mut self, name: &str, help: &str, value: i64) {
let name = format!("{}{}", self.prefix, name);
let g = prometheus::IntGauge::new(name.as_str(), help)
.expect("name and help must be non-empty");
g.set(value);
self.registry
.register(Box::new(g))
.expect("prometheus identifiers must be are unique");
}
/// Adds a new prometheus counter with the time spent in running the specified function
pub fn register_optime<F: Fn() -> T, T>(&mut self, name: &str, f: &F) -> T {
let start = Instant::now();
let t = f();
let elapsed = start.elapsed();
self.register_gauge(
&format!("optime_{}", name),
&format!("Time to perform {}", name),
elapsed.as_millis() as i64,
);
t
}
}
/// Implements a prometheus metrics collector
pub trait PrometheusMetrics {
fn prometheus_metrics(&self, registry: &mut PrometheusRegistry);
}
/// Sorted corpus of data.
#[derive(Debug, Clone, PartialEq)]
pub struct Corpus<T>(Vec<T>);
impl<T: Ord> From<Vec<T>> for Corpus<T> {
fn from(mut data: Vec<T>) -> Self {
data.sort();
Corpus(data)
}
}
impl<T: Ord> FromIterator<T> for Corpus<T> {
fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
iterable.into_iter().collect::<Vec<_>>().into()
}
}
impl<T> Deref for Corpus<T> {
type Target = [T];
fn deref(&self) -> &[T] {
&self.0[..]
}
}
impl<T: Ord> Corpus<T> {
/// Get given percentile (approximated).
pub fn percentile(&self, val: usize) -> Option<&T> {
let len = self.0.len();
let x = val * len / 100;
let x = ::std::cmp::min(x, len);
if x == 0 {
return None;
}
self.0.get(x - 1)
}
/// Get the median element, if it exists.
pub fn median(&self) -> Option<&T> {
self.0.get(self.0.len() / 2)
}
/// Whether the corpus is empty.
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Number of elements in the corpus.
pub fn len(&self) -> usize {
self.0.len()
}
}
impl<T: Ord + Copy + ::std::fmt::Display> Corpus<T>
where
T: Add<Output = T> + Sub<Output = T> + Div<Output = T> + From<usize>,
{
/// Create a histogram of this corpus if it at least spans the buckets. Bounds are left closed.
/// Excludes outliers.
pub fn histogram(&self, bucket_number: usize) -> Option<Histogram<T>> {
// TODO: get outliers properly.
let upto = self.len() - self.len() / 40;
Histogram::create(&self.0[..upto], bucket_number)
}
}
/// Discretised histogram.
#[derive(Debug, PartialEq)]
pub struct Histogram<T> {
/// Bounds of each bucket.
pub bucket_bounds: Vec<T>,
/// Count within each bucket.
pub counts: Vec<usize>,
}
impl<T: Ord + Copy + ::std::fmt::Display> Histogram<T>
where
T: Add<Output = T> + Sub<Output = T> + Div<Output = T> + From<usize>,
{
// Histogram of a sorted corpus if it at least spans the buckets. Bounds are left closed.
fn create(corpus: &[T], bucket_number: usize) -> Option<Histogram<T>> {
if corpus.len() < 1 {
return None;
}
let corpus_end = corpus
.last()
.expect("there is at least 1 element; qed")
.clone();
let corpus_start = corpus
.first()
.expect("there is at least 1 element; qed")
.clone();
trace!(target: "stats", "Computing histogram from {} to {} with {} buckets.", corpus_start, corpus_end, bucket_number);
// Bucket needs to be at least 1 wide.
let bucket_size = {
// Round up to get the entire corpus included.
let raw_bucket_size =
(corpus_end - corpus_start + bucket_number.into()) / bucket_number.into();
if raw_bucket_size == 0.into() {
1.into()
} else {
raw_bucket_size
}
};
let mut bucket_end = corpus_start + bucket_size;
let mut bucket_bounds = vec![corpus_start; bucket_number + 1];
let mut counts = vec![0; bucket_number];
let mut corpus_i = 0;
// Go through the corpus adding to buckets.
for bucket in 0..bucket_number {
while corpus.get(corpus_i).map_or(false, |v| v < &bucket_end) {
// Initialized to size bucket_number above; iterates up to bucket_number; qed
counts[bucket] += 1;
corpus_i += 1;
}
// Initialized to size bucket_number + 1 above; iterates up to bucket_number; subscript is in range; qed
bucket_bounds[bucket + 1] = bucket_end;
bucket_end = bucket_end + bucket_size;
}
Some(Histogram {
bucket_bounds: bucket_bounds,
counts: counts,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn check_corpus() {
let corpus = Corpus::from(vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
assert_eq!(corpus.percentile(0), None);
assert_eq!(corpus.percentile(1), None);
assert_eq!(corpus.percentile(101), Some(&10));
assert_eq!(corpus.percentile(100), Some(&10));
assert_eq!(corpus.percentile(50), Some(&5));
assert_eq!(corpus.percentile(60), Some(&6));
assert_eq!(corpus.median(), Some(&6));
}
#[test]
fn check_histogram() {
let hist = Histogram::create(
&[
643, 689, 1408, 2000, 2296, 2512, 4250, 4320, 4842, 4958, 5804, 6065, 6098, 6354,
7002, 7145, 7845, 8589, 8593, 8895,
],
5,
)
.unwrap();
let correct_bounds: Vec<usize> = vec![643, 2294, 3945, 5596, 7247, 8898];
assert_eq!(
Histogram {
bucket_bounds: correct_bounds,
counts: vec![4, 2, 4, 6, 4]
},
hist
);
}
#[test]
fn smaller_data_range_than_bucket_range() {
assert_eq!(
Histogram::create(&[1, 2, 2], 3),
Some(Histogram {
bucket_bounds: vec![1, 2, 3, 4],
counts: vec![1, 2, 0]
})
);
}
#[test]
fn data_range_is_not_multiple_of_bucket_range() {
assert_eq!(
Histogram::create(&[1, 2, 5], 2),
Some(Histogram {
bucket_bounds: vec![1, 4, 7],
counts: vec![2, 1]
})
);
}
#[test]
fn data_range_is_multiple_of_bucket_range() {
assert_eq!(
Histogram::create(&[1, 2, 6], 2),
Some(Histogram {
bucket_bounds: vec![1, 4, 7],
counts: vec![2, 1]
})
);
}
#[test]
fn none_when_too_few_data() {
assert!(Histogram::<usize>::create(&[], 1).is_none());
}
}