* NodeHandle does not require Hasher * Node does not require Hasher * change name of the template typo from I to O
1333 lines
43 KiB
Rust
1333 lines
43 KiB
Rust
// Copyright 2015-2018 Parity Technologies (UK) Ltd.
|
|
// This file is part of Parity.
|
|
|
|
// Parity is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// Parity is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
//! In-memory trie representation.
|
|
|
|
use super::{Result, TrieError, TrieMut};
|
|
use super::lookup::Lookup;
|
|
use super::node::Node as EncodedNode;
|
|
use node_codec::NodeCodec;
|
|
use super::node::NodeKey;
|
|
|
|
use bytes::ToPretty;
|
|
use hashdb::{HashDB, Hasher, DBValue};
|
|
use nibbleslice::NibbleSlice;
|
|
|
|
use elastic_array::ElasticArray1024;
|
|
use std::collections::{HashSet, VecDeque};
|
|
use std::marker::PhantomData;
|
|
use std::mem;
|
|
use std::ops::Index;
|
|
use heapsize::HeapSizeOf;
|
|
use std::{fmt::Debug, hash::Hash};
|
|
|
|
// For lookups into the Node storage buffer.
|
|
// This is deliberately non-copyable.
|
|
#[derive(Debug)]
|
|
struct StorageHandle(usize);
|
|
|
|
// Handles to nodes in the trie.
|
|
#[derive(Debug)]
|
|
enum NodeHandle<H> {
|
|
/// Loaded into memory.
|
|
InMemory(StorageHandle),
|
|
/// Either a hash or an inline node
|
|
Hash(H),
|
|
}
|
|
|
|
impl<H> From<StorageHandle> for NodeHandle<H> {
|
|
fn from(handle: StorageHandle) -> Self {
|
|
NodeHandle::InMemory(handle)
|
|
}
|
|
}
|
|
|
|
fn empty_children<H>() -> Box<[Option<NodeHandle<H>>; 16]> {
|
|
Box::new([
|
|
None, None, None, None, None, None, None, None,
|
|
None, None, None, None, None, None, None, None,
|
|
])
|
|
}
|
|
|
|
/// Node types in the Trie.
|
|
#[derive(Debug)]
|
|
enum Node<H> {
|
|
/// Empty node.
|
|
Empty,
|
|
/// A leaf node contains the end of a key and a value.
|
|
/// This key is encoded from a `NibbleSlice`, meaning it contains
|
|
/// a flag indicating it is a leaf.
|
|
Leaf(NodeKey, DBValue),
|
|
/// An extension contains a shared portion of a key and a child node.
|
|
/// The shared portion is encoded from a `NibbleSlice` meaning it contains
|
|
/// a flag indicating it is an extension.
|
|
/// The child node is always a branch.
|
|
Extension(NodeKey, NodeHandle<H>),
|
|
/// A branch has up to 16 children and an optional value.
|
|
Branch(Box<[Option<NodeHandle<H>>; 16]>, Option<DBValue>)
|
|
}
|
|
|
|
impl<O> Node<O> where O: AsRef<[u8]> + AsMut<[u8]> + Default + HeapSizeOf + Debug + PartialEq + Eq + Hash + Send + Sync + Clone + Copy {
|
|
// load an inline node into memory or get the hash to do the lookup later.
|
|
fn inline_or_hash<C, H>(node: &[u8], db: &HashDB<H>, storage: &mut NodeStorage<H::Out>) -> NodeHandle<H::Out>
|
|
where C: NodeCodec<H>,
|
|
H: Hasher<Out = O>,
|
|
{
|
|
C::try_decode_hash(&node)
|
|
.map(NodeHandle::Hash)
|
|
.unwrap_or_else(|| {
|
|
let child = Node::from_encoded::<C, H>(node, db, storage);
|
|
NodeHandle::InMemory(storage.alloc(Stored::New(child)))
|
|
})
|
|
}
|
|
|
|
// decode a node from encoded bytes without getting its children.
|
|
fn from_encoded<C, H>(data: &[u8], db: &HashDB<H>, storage: &mut NodeStorage<H::Out>) -> Self
|
|
where C: NodeCodec<H>,
|
|
H: Hasher<Out = O>,
|
|
{
|
|
match C::decode(data).expect("encoded bytes read from db; qed") {
|
|
EncodedNode::Empty => Node::Empty,
|
|
EncodedNode::Leaf(k, v) => Node::Leaf(k.encoded(true), DBValue::from_slice(&v)),
|
|
EncodedNode::Extension(key, cb) => {
|
|
Node::Extension(
|
|
key.encoded(false),
|
|
Self::inline_or_hash::<C, H>(cb, db, storage))
|
|
}
|
|
EncodedNode::Branch(ref encoded_children, val) => {
|
|
let mut child = |i:usize| {
|
|
let raw = encoded_children[i];
|
|
if !C::is_empty_node(raw) {
|
|
Some(Self::inline_or_hash::<C, H>(raw, db, storage))
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
|
|
let children = Box::new([
|
|
child(0), child(1), child(2), child(3),
|
|
child(4), child(5), child(6), child(7),
|
|
child(8), child(9), child(10), child(11),
|
|
child(12), child(13), child(14), child(15),
|
|
]);
|
|
|
|
Node::Branch(children, val.map(DBValue::from_slice))
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: parallelize
|
|
fn into_encoded<F, C, H>(self, mut child_cb: F) -> ElasticArray1024<u8>
|
|
where
|
|
C: NodeCodec<H>,
|
|
F: FnMut(NodeHandle<H::Out>) -> ChildReference<H::Out>,
|
|
H: Hasher<Out = O>,
|
|
{
|
|
match self {
|
|
Node::Empty => C::empty_node(),
|
|
Node::Leaf(partial, value) => C::leaf_node(&partial, &value),
|
|
Node::Extension(partial, child) => C::ext_node(&partial, child_cb(child)),
|
|
Node::Branch(mut children, value) => {
|
|
C::branch_node(
|
|
// map the `NodeHandle`s from the Branch to `ChildReferences`
|
|
children.iter_mut()
|
|
.map(Option::take)
|
|
.map(|maybe_child|
|
|
maybe_child.map(|child| child_cb(child))
|
|
),
|
|
value
|
|
)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// post-inspect action.
|
|
enum Action<H> {
|
|
// Replace a node with a new one.
|
|
Replace(Node<H>),
|
|
// Restore the original node. This trusts that the node is actually the original.
|
|
Restore(Node<H>),
|
|
// if it is a new node, just clears the storage.
|
|
Delete,
|
|
}
|
|
|
|
// post-insert action. Same as action without delete
|
|
enum InsertAction<H> {
|
|
// Replace a node with a new one.
|
|
Replace(Node<H>),
|
|
// Restore the original node.
|
|
Restore(Node<H>),
|
|
}
|
|
|
|
impl<H> InsertAction<H> {
|
|
fn into_action(self) -> Action<H> {
|
|
match self {
|
|
InsertAction::Replace(n) => Action::Replace(n),
|
|
InsertAction::Restore(n) => Action::Restore(n),
|
|
}
|
|
}
|
|
|
|
// unwrap the node, disregarding replace or restore state.
|
|
fn unwrap_node(self) -> Node<H> {
|
|
match self {
|
|
InsertAction::Replace(n) | InsertAction::Restore(n) => n,
|
|
}
|
|
}
|
|
}
|
|
|
|
// What kind of node is stored here.
|
|
enum Stored<H> {
|
|
// A new node.
|
|
New(Node<H>),
|
|
// A cached node, loaded from the DB.
|
|
Cached(Node<H>, H),
|
|
}
|
|
|
|
/// Used to build a collection of child nodes from a collection of `NodeHandle`s
|
|
pub enum ChildReference<HO> { // `HO` is e.g. `H256`, i.e. the output of a `Hasher`
|
|
Hash(HO),
|
|
Inline(HO, usize), // usize is the length of the node data we store in the `H::Out`
|
|
}
|
|
|
|
/// Compact and cache-friendly storage for Trie nodes.
|
|
struct NodeStorage<H> {
|
|
nodes: Vec<Stored<H>>,
|
|
free_indices: VecDeque<usize>,
|
|
}
|
|
|
|
impl<H> NodeStorage<H> {
|
|
/// Create a new storage.
|
|
fn empty() -> Self {
|
|
NodeStorage {
|
|
nodes: Vec::new(),
|
|
free_indices: VecDeque::new(),
|
|
}
|
|
}
|
|
|
|
/// Allocate a new node in the storage.
|
|
fn alloc(&mut self, stored: Stored<H>) -> StorageHandle {
|
|
if let Some(idx) = self.free_indices.pop_front() {
|
|
self.nodes[idx] = stored;
|
|
StorageHandle(idx)
|
|
} else {
|
|
self.nodes.push(stored);
|
|
StorageHandle(self.nodes.len() - 1)
|
|
}
|
|
}
|
|
|
|
/// Remove a node from the storage, consuming the handle and returning the node.
|
|
fn destroy(&mut self, handle: StorageHandle) -> Stored<H> {
|
|
let idx = handle.0;
|
|
|
|
self.free_indices.push_back(idx);
|
|
mem::replace(&mut self.nodes[idx], Stored::New(Node::Empty))
|
|
}
|
|
}
|
|
|
|
impl<'a, H> Index<&'a StorageHandle> for NodeStorage<H> {
|
|
type Output = Node<H>;
|
|
|
|
fn index(&self, handle: &'a StorageHandle) -> &Node<H> {
|
|
match self.nodes[handle.0] {
|
|
Stored::New(ref node) => node,
|
|
Stored::Cached(ref node, _) => node,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A `Trie` implementation using a generic `HashDB` backing database.
|
|
///
|
|
/// Use it as a `TrieMut` trait object. You can use `db()` to get the backing database object.
|
|
/// Note that changes are not committed to the database until `commit` is called.
|
|
/// Querying the root or dropping the trie will commit automatically.
|
|
///
|
|
/// # Example
|
|
/// ```
|
|
/// extern crate patricia_trie as trie;
|
|
/// extern crate patricia_trie_ethereum as ethtrie;
|
|
/// extern crate hashdb;
|
|
/// extern crate keccak_hash;
|
|
/// extern crate keccak_hasher;
|
|
/// extern crate memorydb;
|
|
/// extern crate ethereum_types;
|
|
///
|
|
/// use keccak_hash::KECCAK_NULL_RLP;
|
|
/// use ethtrie::{TrieDBMut, trie::TrieMut};
|
|
/// use hashdb::DBValue;
|
|
/// use keccak_hasher::KeccakHasher;
|
|
/// use memorydb::*;
|
|
/// use ethereum_types::H256;
|
|
///
|
|
/// fn main() {
|
|
/// let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
/// let mut root = H256::new();
|
|
/// let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
/// assert!(t.is_empty());
|
|
/// assert_eq!(*t.root(), KECCAK_NULL_RLP);
|
|
/// t.insert(b"foo", b"bar").unwrap();
|
|
/// assert!(t.contains(b"foo").unwrap());
|
|
/// assert_eq!(t.get(b"foo").unwrap().unwrap(), DBValue::from_slice(b"bar"));
|
|
/// t.remove(b"foo").unwrap();
|
|
/// assert!(!t.contains(b"foo").unwrap());
|
|
/// }
|
|
/// ```
|
|
pub struct TrieDBMut<'a, H, C>
|
|
where
|
|
H: Hasher + 'a,
|
|
C: NodeCodec<H>
|
|
{
|
|
storage: NodeStorage<H::Out>,
|
|
db: &'a mut HashDB<H>,
|
|
root: &'a mut H::Out,
|
|
root_handle: NodeHandle<H::Out>,
|
|
death_row: HashSet<H::Out>,
|
|
/// The number of hash operations this trie has performed.
|
|
/// Note that none are performed until changes are committed.
|
|
hash_count: usize,
|
|
marker: PhantomData<C>, // TODO: rpheimer: "we could have the NodeCodec trait take &self to its methods and then we don't need PhantomData. we can just store an instance of C: NodeCodec in the trie struct. If it's a ZST it won't have any additional overhead anyway"
|
|
}
|
|
|
|
impl<'a, H, C> TrieDBMut<'a, H, C>
|
|
where
|
|
H: Hasher,
|
|
C: NodeCodec<H>
|
|
{
|
|
/// Create a new trie with backing database `db` and empty `root`.
|
|
pub fn new(db: &'a mut HashDB<H>, root: &'a mut H::Out) -> Self {
|
|
*root = C::HASHED_NULL_NODE;
|
|
let root_handle = NodeHandle::Hash(C::HASHED_NULL_NODE);
|
|
|
|
TrieDBMut {
|
|
storage: NodeStorage::empty(),
|
|
db: db,
|
|
root: root,
|
|
root_handle: root_handle,
|
|
death_row: HashSet::new(),
|
|
hash_count: 0,
|
|
marker: PhantomData,
|
|
}
|
|
}
|
|
|
|
/// Create a new trie with the backing database `db` and `root.
|
|
/// Returns an error if `root` does not exist.
|
|
pub fn from_existing(db: &'a mut HashDB<H>, root: &'a mut H::Out) -> Result<Self, H::Out, C::Error> {
|
|
if !db.contains(root) {
|
|
return Err(Box::new(TrieError::InvalidStateRoot(*root)));
|
|
}
|
|
|
|
let root_handle = NodeHandle::Hash(*root);
|
|
Ok(TrieDBMut {
|
|
storage: NodeStorage::empty(),
|
|
db: db,
|
|
root: root,
|
|
root_handle: root_handle,
|
|
death_row: HashSet::new(),
|
|
hash_count: 0,
|
|
marker: PhantomData,
|
|
})
|
|
}
|
|
/// Get the backing database.
|
|
pub fn db(&self) -> &HashDB<H> {
|
|
self.db
|
|
}
|
|
|
|
/// Get the backing database mutably.
|
|
pub fn db_mut(&mut self) -> &mut HashDB<H> {
|
|
self.db
|
|
}
|
|
|
|
// cache a node by hash
|
|
fn cache(&mut self, hash: H::Out) -> Result<StorageHandle, H::Out, C::Error> {
|
|
let node_encoded = self.db.get(&hash).ok_or_else(|| Box::new(TrieError::IncompleteDatabase(hash)))?;
|
|
let node = Node::from_encoded::<C, H>(
|
|
&node_encoded,
|
|
&*self.db,
|
|
&mut self.storage
|
|
);
|
|
Ok(self.storage.alloc(Stored::Cached(node, hash)))
|
|
}
|
|
|
|
// inspect a node, choosing either to replace, restore, or delete it.
|
|
// if restored or replaced, returns the new node along with a flag of whether it was changed.
|
|
fn inspect<F>(&mut self, stored: Stored<H::Out>, inspector: F) -> Result<Option<(Stored<H::Out>, bool)>, H::Out, C::Error>
|
|
where F: FnOnce(&mut Self, Node<H::Out>) -> Result<Action<H::Out>, H::Out, C::Error> {
|
|
Ok(match stored {
|
|
Stored::New(node) => match inspector(self, node)? {
|
|
Action::Restore(node) => Some((Stored::New(node), false)),
|
|
Action::Replace(node) => Some((Stored::New(node), true)),
|
|
Action::Delete => None,
|
|
},
|
|
Stored::Cached(node, hash) => match inspector(self, node)? {
|
|
Action::Restore(node) => Some((Stored::Cached(node, hash), false)),
|
|
Action::Replace(node) => {
|
|
self.death_row.insert(hash);
|
|
Some((Stored::New(node), true))
|
|
}
|
|
Action::Delete => {
|
|
self.death_row.insert(hash);
|
|
None
|
|
}
|
|
},
|
|
})
|
|
}
|
|
|
|
// walk the trie, attempting to find the key's node.
|
|
fn lookup<'x, 'key>(&'x self, mut partial: NibbleSlice<'key>, handle: &NodeHandle<H::Out>) -> Result<Option<DBValue>, H::Out, C::Error>
|
|
where 'x: 'key
|
|
{
|
|
let mut handle = handle;
|
|
loop {
|
|
let (mid, child) = match *handle {
|
|
NodeHandle::Hash(ref hash) => return Lookup{
|
|
db: &*self.db,
|
|
query: DBValue::from_slice,
|
|
hash: hash.clone(),
|
|
marker: PhantomData::<C>,
|
|
}.look_up(partial),
|
|
NodeHandle::InMemory(ref handle) => match self.storage[handle] {
|
|
Node::Empty => return Ok(None),
|
|
Node::Leaf(ref key, ref value) => {
|
|
if NibbleSlice::from_encoded(key).0 == partial {
|
|
return Ok(Some(DBValue::from_slice(value)));
|
|
} else {
|
|
return Ok(None);
|
|
}
|
|
}
|
|
Node::Extension(ref slice, ref child) => {
|
|
let slice = NibbleSlice::from_encoded(slice).0;
|
|
if partial.starts_with(&slice) {
|
|
(slice.len(), child)
|
|
} else {
|
|
return Ok(None);
|
|
}
|
|
}
|
|
Node::Branch(ref children, ref value) => {
|
|
if partial.is_empty() {
|
|
return Ok(value.as_ref().map(|v| DBValue::from_slice(v)));
|
|
} else {
|
|
let idx = partial.at(0);
|
|
match children[idx as usize].as_ref() {
|
|
Some(child) => (1, child),
|
|
None => return Ok(None),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
partial = partial.mid(mid);
|
|
handle = child;
|
|
}
|
|
}
|
|
|
|
/// insert a key-value pair into the trie, creating new nodes if necessary.
|
|
fn insert_at(&mut self, handle: NodeHandle<H::Out>, partial: NibbleSlice, value: DBValue, old_val: &mut Option<DBValue>) -> Result<(StorageHandle, bool), H::Out, C::Error> {
|
|
let h = match handle {
|
|
NodeHandle::InMemory(h) => h,
|
|
NodeHandle::Hash(h) => self.cache(h)?,
|
|
};
|
|
let stored = self.storage.destroy(h);
|
|
let (new_stored, changed) = self.inspect(stored, move |trie, stored| {
|
|
trie.insert_inspector(stored, partial, value, old_val).map(|a| a.into_action())
|
|
})?.expect("Insertion never deletes.");
|
|
|
|
Ok((self.storage.alloc(new_stored), changed))
|
|
}
|
|
|
|
/// the insertion inspector.
|
|
fn insert_inspector(&mut self, node: Node<H::Out>, partial: NibbleSlice, value: DBValue, old_val: &mut Option<DBValue>) -> Result<InsertAction<H::Out>, H::Out, C::Error> {
|
|
trace!(target: "trie", "augmented (partial: {:?}, value: {:?})", partial, value.pretty());
|
|
|
|
Ok(match node {
|
|
Node::Empty => {
|
|
trace!(target: "trie", "empty: COMPOSE");
|
|
InsertAction::Replace(Node::Leaf(partial.encoded(true), value))
|
|
}
|
|
Node::Branch(mut children, stored_value) => {
|
|
trace!(target: "trie", "branch: ROUTE,AUGMENT");
|
|
|
|
if partial.is_empty() {
|
|
let unchanged = stored_value.as_ref() == Some(&value);
|
|
let branch = Node::Branch(children, Some(value));
|
|
*old_val = stored_value;
|
|
|
|
match unchanged {
|
|
true => InsertAction::Restore(branch),
|
|
false => InsertAction::Replace(branch),
|
|
}
|
|
} else {
|
|
let idx = partial.at(0) as usize;
|
|
let partial = partial.mid(1);
|
|
if let Some(child) = children[idx].take() {
|
|
// original had something there. recurse down into it.
|
|
let (new_child, changed) = self.insert_at(child, partial, value, old_val)?;
|
|
children[idx] = Some(new_child.into());
|
|
if !changed {
|
|
// the new node we composed didn't change. that means our branch is untouched too.
|
|
return Ok(InsertAction::Restore(Node::Branch(children, stored_value)));
|
|
}
|
|
} else {
|
|
// original had nothing there. compose a leaf.
|
|
let leaf = self.storage.alloc(Stored::New(Node::Leaf(partial.encoded(true), value)));
|
|
children[idx] = Some(leaf.into());
|
|
}
|
|
|
|
InsertAction::Replace(Node::Branch(children, stored_value))
|
|
}
|
|
}
|
|
Node::Leaf(encoded, stored_value) => {
|
|
let existing_key = NibbleSlice::from_encoded(&encoded).0;
|
|
let cp = partial.common_prefix(&existing_key);
|
|
if cp == existing_key.len() && cp == partial.len() {
|
|
trace!(target: "trie", "equivalent-leaf: REPLACE");
|
|
// equivalent leaf.
|
|
let unchanged = stored_value == value;
|
|
*old_val = Some(stored_value);
|
|
|
|
match unchanged {
|
|
// unchanged. restore
|
|
true => InsertAction::Restore(Node::Leaf(encoded.clone(), value)),
|
|
false => InsertAction::Replace(Node::Leaf(encoded.clone(), value)),
|
|
}
|
|
} else if cp == 0 {
|
|
trace!(target: "trie", "no-common-prefix, not-both-empty (exist={:?}; new={:?}): TRANSMUTE,AUGMENT", existing_key.len(), partial.len());
|
|
|
|
// one of us isn't empty: transmute to branch here
|
|
let mut children = empty_children();
|
|
let branch = if existing_key.is_empty() {
|
|
// always replace since branch isn't leaf.
|
|
Node::Branch(children, Some(stored_value))
|
|
} else {
|
|
let idx = existing_key.at(0) as usize;
|
|
let new_leaf = Node::Leaf(existing_key.mid(1).encoded(true), stored_value);
|
|
children[idx] = Some(self.storage.alloc(Stored::New(new_leaf)).into());
|
|
|
|
Node::Branch(children, None)
|
|
};
|
|
|
|
// always replace because whatever we get out here is not the branch we started with.
|
|
let branch_action = self.insert_inspector(branch, partial, value, old_val)?.unwrap_node();
|
|
InsertAction::Replace(branch_action)
|
|
} else if cp == existing_key.len() {
|
|
trace!(target: "trie", "complete-prefix (cp={:?}): AUGMENT-AT-END", cp);
|
|
|
|
// fully-shared prefix for an extension.
|
|
// make a stub branch and an extension.
|
|
let branch = Node::Branch(empty_children(), Some(stored_value));
|
|
// augment the new branch.
|
|
let branch = self.insert_inspector(branch, partial.mid(cp), value, old_val)?.unwrap_node();
|
|
|
|
// always replace since we took a leaf and made an extension.
|
|
let branch_handle = self.storage.alloc(Stored::New(branch)).into();
|
|
InsertAction::Replace(Node::Extension(existing_key.encoded(false), branch_handle))
|
|
} else {
|
|
trace!(target: "trie", "partially-shared-prefix (exist={:?}; new={:?}; cp={:?}): AUGMENT-AT-END", existing_key.len(), partial.len(), cp);
|
|
|
|
// partially-shared prefix for an extension.
|
|
// start by making a leaf.
|
|
let low = Node::Leaf(existing_key.mid(cp).encoded(true), stored_value);
|
|
|
|
// augment it. this will result in the Leaf -> cp == 0 routine,
|
|
// which creates a branch.
|
|
let augmented_low = self.insert_inspector(low, partial.mid(cp), value, old_val)?.unwrap_node();
|
|
|
|
// make an extension using it. this is a replacement.
|
|
InsertAction::Replace(Node::Extension(
|
|
existing_key.encoded_leftmost(cp, false),
|
|
self.storage.alloc(Stored::New(augmented_low)).into()
|
|
))
|
|
}
|
|
}
|
|
Node::Extension(encoded, child_branch) => {
|
|
let existing_key = NibbleSlice::from_encoded(&encoded).0;
|
|
let cp = partial.common_prefix(&existing_key);
|
|
if cp == 0 {
|
|
trace!(target: "trie", "no-common-prefix, not-both-empty (exist={:?}; new={:?}): TRANSMUTE,AUGMENT", existing_key.len(), partial.len());
|
|
|
|
// partial isn't empty: make a branch here
|
|
// extensions may not have empty partial keys.
|
|
assert!(!existing_key.is_empty());
|
|
let idx = existing_key.at(0) as usize;
|
|
|
|
let mut children = empty_children();
|
|
children[idx] = if existing_key.len() == 1 {
|
|
// direct extension, just replace.
|
|
Some(child_branch)
|
|
} else {
|
|
// more work required after branching.
|
|
let ext = Node::Extension(existing_key.mid(1).encoded(false), child_branch);
|
|
Some(self.storage.alloc(Stored::New(ext)).into())
|
|
};
|
|
|
|
// continue inserting.
|
|
let branch_action = self.insert_inspector(Node::Branch(children, None), partial, value, old_val)?.unwrap_node();
|
|
InsertAction::Replace(branch_action)
|
|
} else if cp == existing_key.len() {
|
|
trace!(target: "trie", "complete-prefix (cp={:?}): AUGMENT-AT-END", cp);
|
|
|
|
// fully-shared prefix.
|
|
|
|
// insert into the child node.
|
|
let (new_child, changed) = self.insert_at(child_branch, partial.mid(cp), value, old_val)?;
|
|
let new_ext = Node::Extension(existing_key.encoded(false), new_child.into());
|
|
|
|
// if the child branch wasn't changed, meaning this extension remains the same.
|
|
match changed {
|
|
true => InsertAction::Replace(new_ext),
|
|
false => InsertAction::Restore(new_ext),
|
|
}
|
|
} else {
|
|
trace!(target: "trie", "partially-shared-prefix (exist={:?}; new={:?}; cp={:?}): AUGMENT-AT-END", existing_key.len(), partial.len(), cp);
|
|
|
|
// partially-shared.
|
|
let low = Node::Extension(existing_key.mid(cp).encoded(false), child_branch);
|
|
// augment the extension. this will take the cp == 0 path, creating a branch.
|
|
let augmented_low = self.insert_inspector(low, partial.mid(cp), value, old_val)?.unwrap_node();
|
|
|
|
// always replace, since this extension is not the one we started with.
|
|
// this is known because the partial key is only the common prefix.
|
|
InsertAction::Replace(Node::Extension(
|
|
existing_key.encoded_leftmost(cp, false),
|
|
self.storage.alloc(Stored::New(augmented_low)).into()
|
|
))
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Remove a node from the trie based on key.
|
|
fn remove_at(&mut self, handle: NodeHandle<H::Out>, partial: NibbleSlice, old_val: &mut Option<DBValue>) -> Result<Option<(StorageHandle, bool)>, H::Out, C::Error> {
|
|
let stored = match handle {
|
|
NodeHandle::InMemory(h) => self.storage.destroy(h),
|
|
NodeHandle::Hash(h) => {
|
|
let handle = self.cache(h)?;
|
|
self.storage.destroy(handle)
|
|
}
|
|
};
|
|
|
|
let opt = self.inspect(stored, move |trie, node| trie.remove_inspector(node, partial, old_val))?;
|
|
|
|
Ok(opt.map(|(new, changed)| (self.storage.alloc(new), changed)))
|
|
}
|
|
|
|
/// the removal inspector
|
|
fn remove_inspector(&mut self, node: Node<H::Out>, partial: NibbleSlice, old_val: &mut Option<DBValue>) -> Result<Action<H::Out>, H::Out, C::Error> {
|
|
Ok(match (node, partial.is_empty()) {
|
|
(Node::Empty, _) => Action::Delete,
|
|
(Node::Branch(c, None), true) => Action::Restore(Node::Branch(c, None)),
|
|
(Node::Branch(children, Some(val)), true) => {
|
|
*old_val = Some(val);
|
|
// always replace since we took the value out.
|
|
Action::Replace(self.fix(Node::Branch(children, None))?)
|
|
}
|
|
(Node::Branch(mut children, value), false) => {
|
|
let idx = partial.at(0) as usize;
|
|
if let Some(child) = children[idx].take() {
|
|
trace!(target: "trie", "removing value out of branch child, partial={:?}", partial);
|
|
match self.remove_at(child, partial.mid(1), old_val)? {
|
|
Some((new, changed)) => {
|
|
children[idx] = Some(new.into());
|
|
let branch = Node::Branch(children, value);
|
|
match changed {
|
|
// child was changed, so we were too.
|
|
true => Action::Replace(branch),
|
|
// unchanged, so we are too.
|
|
false => Action::Restore(branch),
|
|
}
|
|
}
|
|
None => {
|
|
// the child we took was deleted.
|
|
// the node may need fixing.
|
|
trace!(target: "trie", "branch child deleted, partial={:?}", partial);
|
|
Action::Replace(self.fix(Node::Branch(children, value))?)
|
|
}
|
|
}
|
|
} else {
|
|
// no change needed.
|
|
Action::Restore(Node::Branch(children, value))
|
|
}
|
|
}
|
|
(Node::Leaf(encoded, value), _) => {
|
|
if NibbleSlice::from_encoded(&encoded).0 == partial {
|
|
// this is the node we were looking for. Let's delete it.
|
|
*old_val = Some(value);
|
|
Action::Delete
|
|
} else {
|
|
// leaf the node alone.
|
|
trace!(target: "trie", "restoring leaf wrong partial, partial={:?}, existing={:?}", partial, NibbleSlice::from_encoded(&encoded).0);
|
|
Action::Restore(Node::Leaf(encoded, value))
|
|
}
|
|
}
|
|
(Node::Extension(encoded, child_branch), _) => {
|
|
let (cp, existing_len) = {
|
|
let existing_key = NibbleSlice::from_encoded(&encoded).0;
|
|
(existing_key.common_prefix(&partial), existing_key.len())
|
|
};
|
|
if cp == existing_len {
|
|
// try to remove from the child branch.
|
|
trace!(target: "trie", "removing from extension child, partial={:?}", partial);
|
|
match self.remove_at(child_branch, partial.mid(cp), old_val)? {
|
|
Some((new_child, changed)) => {
|
|
let new_child = new_child.into();
|
|
|
|
// if the child branch was unchanged, then the extension is too.
|
|
// otherwise, this extension may need fixing.
|
|
match changed {
|
|
true => Action::Replace(self.fix(Node::Extension(encoded, new_child))?),
|
|
false => Action::Restore(Node::Extension(encoded, new_child)),
|
|
}
|
|
}
|
|
None => {
|
|
// the whole branch got deleted.
|
|
// that means that this extension is useless.
|
|
Action::Delete
|
|
}
|
|
}
|
|
} else {
|
|
// partway through an extension -- nothing to do here.
|
|
Action::Restore(Node::Extension(encoded, child_branch))
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Given a node which may be in an _invalid state_, fix it such that it is then in a valid
|
|
/// state.
|
|
///
|
|
/// _invalid state_ means:
|
|
/// - Branch node where there is only a single entry;
|
|
/// - Extension node followed by anything other than a Branch node.
|
|
fn fix(&mut self, node: Node<H::Out>) -> Result<Node<H::Out>, H::Out, C::Error> {
|
|
match node {
|
|
Node::Branch(mut children, value) => {
|
|
// if only a single value, transmute to leaf/extension and feed through fixed.
|
|
#[derive(Debug)]
|
|
enum UsedIndex {
|
|
None,
|
|
One(u8),
|
|
Many,
|
|
};
|
|
let mut used_index = UsedIndex::None;
|
|
for i in 0..16 {
|
|
match (children[i].is_none(), &used_index) {
|
|
(false, &UsedIndex::None) => used_index = UsedIndex::One(i as u8),
|
|
(false, &UsedIndex::One(_)) => {
|
|
used_index = UsedIndex::Many;
|
|
break;
|
|
}
|
|
_ => continue,
|
|
}
|
|
}
|
|
|
|
match (used_index, value) {
|
|
(UsedIndex::None, None) => panic!("Branch with no subvalues. Something went wrong."),
|
|
(UsedIndex::One(a), None) => {
|
|
// only one onward node. make an extension.
|
|
let new_partial = NibbleSlice::new_offset(&[a], 1).encoded(false);
|
|
let child = children[a as usize].take().expect("used_index only set if occupied; qed");
|
|
let new_node = Node::Extension(new_partial, child);
|
|
self.fix(new_node)
|
|
}
|
|
(UsedIndex::None, Some(value)) => {
|
|
// make a leaf.
|
|
trace!(target: "trie", "fixing: branch -> leaf");
|
|
Ok(Node::Leaf(NibbleSlice::new(&[]).encoded(true), value))
|
|
}
|
|
(_, value) => {
|
|
// all is well.
|
|
trace!(target: "trie", "fixing: restoring branch");
|
|
Ok(Node::Branch(children, value))
|
|
}
|
|
}
|
|
}
|
|
Node::Extension(partial, child) => {
|
|
let stored = match child {
|
|
NodeHandle::InMemory(h) => self.storage.destroy(h),
|
|
NodeHandle::Hash(h) => {
|
|
let handle = self.cache(h)?;
|
|
self.storage.destroy(handle)
|
|
}
|
|
};
|
|
|
|
let (child_node, maybe_hash) = match stored {
|
|
Stored::New(node) => (node, None),
|
|
Stored::Cached(node, hash) => (node, Some(hash))
|
|
};
|
|
|
|
match child_node {
|
|
Node::Extension(sub_partial, sub_child) => {
|
|
// combine with node below.
|
|
if let Some(hash) = maybe_hash {
|
|
// delete the cached child since we are going to replace it.
|
|
self.death_row.insert(hash);
|
|
}
|
|
let partial = NibbleSlice::from_encoded(&partial).0;
|
|
let sub_partial = NibbleSlice::from_encoded(&sub_partial).0;
|
|
|
|
let new_partial = NibbleSlice::new_composed(&partial, &sub_partial);
|
|
trace!(target: "trie", "fixing: extension combination. new_partial={:?}", new_partial);
|
|
self.fix(Node::Extension(new_partial.encoded(false), sub_child))
|
|
}
|
|
Node::Leaf(sub_partial, value) => {
|
|
// combine with node below.
|
|
if let Some(hash) = maybe_hash {
|
|
// delete the cached child since we are going to replace it.
|
|
self.death_row.insert(hash);
|
|
}
|
|
let partial = NibbleSlice::from_encoded(&partial).0;
|
|
let sub_partial = NibbleSlice::from_encoded(&sub_partial).0;
|
|
|
|
let new_partial = NibbleSlice::new_composed(&partial, &sub_partial);
|
|
trace!(target: "trie", "fixing: extension -> leaf. new_partial={:?}", new_partial);
|
|
Ok(Node::Leaf(new_partial.encoded(true), value))
|
|
}
|
|
child_node => {
|
|
trace!(target: "trie", "fixing: restoring extension");
|
|
|
|
// reallocate the child node.
|
|
let stored = if let Some(hash) = maybe_hash {
|
|
Stored::Cached(child_node, hash)
|
|
} else {
|
|
Stored::New(child_node)
|
|
};
|
|
|
|
Ok(Node::Extension(partial, self.storage.alloc(stored).into()))
|
|
}
|
|
}
|
|
}
|
|
other => Ok(other), // only ext and branch need fixing.
|
|
}
|
|
}
|
|
|
|
/// Commit the in-memory changes to disk, freeing their storage and
|
|
/// updating the state root.
|
|
pub fn commit(&mut self) {
|
|
trace!(target: "trie", "Committing trie changes to db.");
|
|
|
|
// always kill all the nodes on death row.
|
|
trace!(target: "trie", "{:?} nodes to remove from db", self.death_row.len());
|
|
for hash in self.death_row.drain() {
|
|
self.db.remove(&hash);
|
|
}
|
|
|
|
let handle = match self.root_handle() {
|
|
NodeHandle::Hash(_) => return, // no changes necessary.
|
|
NodeHandle::InMemory(h) => h,
|
|
};
|
|
|
|
match self.storage.destroy(handle) {
|
|
Stored::New(node) => {
|
|
let encoded_root = node.into_encoded::<_, C, H>(|child| self.commit_child(child) );
|
|
*self.root = self.db.insert(&encoded_root[..]);
|
|
self.hash_count += 1;
|
|
|
|
trace!(target: "trie", "encoded root node: {:?}", (&encoded_root[..]).pretty());
|
|
self.root_handle = NodeHandle::Hash(*self.root);
|
|
}
|
|
Stored::Cached(node, hash) => {
|
|
// probably won't happen, but update the root and move on.
|
|
*self.root = hash;
|
|
self.root_handle = NodeHandle::InMemory(self.storage.alloc(Stored::Cached(node, hash)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Commit a node by hashing it and writing it to the db. Returns a
|
|
/// `ChildReference` which in most cases carries a normal hash but for the
|
|
/// case where we can fit the actual data in the `Hasher`s output type, we
|
|
/// store the data inline. This function is used as the callback to the
|
|
/// `into_encoded` method of `Node`.
|
|
fn commit_child(&mut self, handle: NodeHandle<H::Out>) -> ChildReference<H::Out> {
|
|
match handle {
|
|
NodeHandle::Hash(hash) => ChildReference::Hash(hash),
|
|
NodeHandle::InMemory(storage_handle) => {
|
|
match self.storage.destroy(storage_handle) {
|
|
Stored::Cached(_, hash) => ChildReference::Hash(hash),
|
|
Stored::New(node) => {
|
|
let encoded = node.into_encoded::<_, C, H>(|node_handle| self.commit_child(node_handle) );
|
|
if encoded.len() >= H::LENGTH {
|
|
let hash = self.db.insert(&encoded[..]);
|
|
self.hash_count +=1;
|
|
ChildReference::Hash(hash)
|
|
} else {
|
|
// it's a small value, so we cram it into a `H::Out` and tag with length
|
|
let mut h = H::Out::default();
|
|
let len = encoded.len();
|
|
h.as_mut()[..len].copy_from_slice(&encoded[..len]);
|
|
ChildReference::Inline(h, len)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// a hack to get the root node's handle
|
|
fn root_handle(&self) -> NodeHandle<H::Out> {
|
|
match self.root_handle {
|
|
NodeHandle::Hash(h) => NodeHandle::Hash(h),
|
|
NodeHandle::InMemory(StorageHandle(x)) => NodeHandle::InMemory(StorageHandle(x)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, H, C> TrieMut<H, C> for TrieDBMut<'a, H, C>
|
|
where
|
|
H: Hasher,
|
|
C: NodeCodec<H>
|
|
{
|
|
fn root(&mut self) -> &H::Out {
|
|
self.commit();
|
|
self.root
|
|
}
|
|
|
|
fn is_empty(&self) -> bool {
|
|
match self.root_handle {
|
|
NodeHandle::Hash(h) => h == C::HASHED_NULL_NODE,
|
|
NodeHandle::InMemory(ref h) => match self.storage[h] {
|
|
Node::Empty => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn get<'x, 'key>(&'x self, key: &'key [u8]) -> Result<Option<DBValue>, H::Out, C::Error>
|
|
where 'x: 'key
|
|
{
|
|
self.lookup(NibbleSlice::new(key), &self.root_handle)
|
|
}
|
|
|
|
fn insert(&mut self, key: &[u8], value: &[u8]) -> Result<Option<DBValue>, H::Out, C::Error> {
|
|
if value.is_empty() { return self.remove(key) }
|
|
|
|
let mut old_val = None;
|
|
|
|
trace!(target: "trie", "insert: key={:?}, value={:?}", key.pretty(), value.pretty());
|
|
|
|
let root_handle = self.root_handle();
|
|
let (new_handle, changed) = self.insert_at(
|
|
root_handle,
|
|
NibbleSlice::new(key),
|
|
DBValue::from_slice(value),
|
|
&mut old_val,
|
|
)?;
|
|
|
|
trace!(target: "trie", "insert: altered trie={}", changed);
|
|
self.root_handle = NodeHandle::InMemory(new_handle);
|
|
|
|
Ok(old_val)
|
|
}
|
|
|
|
fn remove(&mut self, key: &[u8]) -> Result<Option<DBValue>, H::Out, C::Error> {
|
|
trace!(target: "trie", "remove: key={:?}", key.pretty());
|
|
|
|
let root_handle = self.root_handle();
|
|
let key = NibbleSlice::new(key);
|
|
let mut old_val = None;
|
|
|
|
match self.remove_at(root_handle, key, &mut old_val)? {
|
|
Some((handle, changed)) => {
|
|
trace!(target: "trie", "remove: altered trie={}", changed);
|
|
self.root_handle = NodeHandle::InMemory(handle);
|
|
}
|
|
None => {
|
|
trace!(target: "trie", "remove: obliterated trie");
|
|
self.root_handle = NodeHandle::Hash(C::HASHED_NULL_NODE);
|
|
*self.root = C::HASHED_NULL_NODE;
|
|
}
|
|
}
|
|
|
|
Ok(old_val)
|
|
}
|
|
}
|
|
|
|
impl<'a, H, C> Drop for TrieDBMut<'a, H, C>
|
|
where
|
|
H: Hasher,
|
|
C: NodeCodec<H>
|
|
{
|
|
fn drop(&mut self) {
|
|
self.commit();
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use bytes::ToPretty;
|
|
use hashdb::{DBValue, Hasher, HashDB};
|
|
use keccak_hasher::KeccakHasher;
|
|
use memorydb::MemoryDB;
|
|
use rlp::{Decodable, Encodable};
|
|
use triehash::trie_root;
|
|
use standardmap::*;
|
|
use ethtrie::{TrieDBMut, RlpCodec, trie::{TrieMut, NodeCodec}};
|
|
use env_logger;
|
|
use ethereum_types::H256;
|
|
|
|
fn populate_trie<'db, H, C>(db: &'db mut HashDB<KeccakHasher>, root: &'db mut H256, v: &[(Vec<u8>, Vec<u8>)]) -> TrieDBMut<'db>
|
|
where H: Hasher, H::Out: Decodable + Encodable, C: NodeCodec<H>
|
|
{
|
|
let mut t = TrieDBMut::new(db, root);
|
|
for i in 0..v.len() {
|
|
let key: &[u8]= &v[i].0;
|
|
let val: &[u8] = &v[i].1;
|
|
t.insert(key, val).unwrap();
|
|
}
|
|
t
|
|
}
|
|
|
|
fn unpopulate_trie<'db>(t: &mut TrieDBMut<'db>, v: &[(Vec<u8>, Vec<u8>)]) {
|
|
for i in v {
|
|
let key: &[u8]= &i.0;
|
|
t.remove(key).unwrap();
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn playpen() {
|
|
env_logger::init();
|
|
let mut seed = H256::new();
|
|
for test_i in 0..10 {
|
|
if test_i % 50 == 0 {
|
|
debug!("{:?} of 10000 stress tests done", test_i);
|
|
}
|
|
let x = StandardMap {
|
|
alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
|
|
min_key: 5,
|
|
journal_key: 0,
|
|
value_mode: ValueMode::Index,
|
|
count: 100,
|
|
}.make_with(&mut seed);
|
|
|
|
let real = trie_root(x.clone());
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut memtrie = populate_trie::<_, RlpCodec>(&mut memdb, &mut root, &x);
|
|
|
|
memtrie.commit();
|
|
if *memtrie.root() != real {
|
|
println!("TRIE MISMATCH");
|
|
println!("");
|
|
println!("{:?} vs {:?}", memtrie.root(), real);
|
|
for i in &x {
|
|
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
|
|
}
|
|
}
|
|
assert_eq!(*memtrie.root(), real);
|
|
unpopulate_trie(&mut memtrie, &x);
|
|
memtrie.commit();
|
|
if *memtrie.root() != RlpCodec::HASHED_NULL_NODE {
|
|
println!("- TRIE MISMATCH");
|
|
println!("");
|
|
println!("{:?} vs {:?}", memtrie.root(), real);
|
|
for i in &x {
|
|
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
|
|
}
|
|
}
|
|
assert_eq!(*memtrie.root(), RlpCodec::HASHED_NULL_NODE);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn init() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
assert_eq!(*t.root(), RlpCodec::HASHED_NULL_NODE);
|
|
}
|
|
|
|
#[test]
|
|
fn insert_on_empty() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x01u8, 0x23]) ]));
|
|
}
|
|
|
|
#[test]
|
|
fn remove_to_empty() {
|
|
let big_value = b"00000000000000000000000000000000";
|
|
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t1 = TrieDBMut::new(&mut memdb, &mut root);
|
|
t1.insert(&[0x01, 0x23], big_value).unwrap();
|
|
t1.insert(&[0x01, 0x34], big_value).unwrap();
|
|
let mut memdb2 = MemoryDB::<KeccakHasher>::new();
|
|
let mut root2 = H256::new();
|
|
let mut t2 = TrieDBMut::new(&mut memdb2, &mut root2);
|
|
|
|
t2.insert(&[0x01], big_value).unwrap();
|
|
t2.insert(&[0x01, 0x23], big_value).unwrap();
|
|
t2.insert(&[0x01, 0x34], big_value).unwrap();
|
|
t2.remove(&[0x01]).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn insert_replace_root() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
t.insert(&[0x01u8, 0x23], &[0x23u8, 0x45]).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![ (vec![0x01u8, 0x23], vec![0x23u8, 0x45]) ]));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_make_branch_root() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
t.insert(&[0x11u8, 0x23], &[0x11u8, 0x23]).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![
|
|
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
|
|
(vec![0x11u8, 0x23], vec![0x11u8, 0x23])
|
|
]));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_into_branch_root() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]).unwrap();
|
|
t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![
|
|
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
|
|
(vec![0x81u8, 0x23], vec![0x81u8, 0x23]),
|
|
(vec![0xf1u8, 0x23], vec![0xf1u8, 0x23]),
|
|
]));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_value_into_branch_root() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
t.insert(&[], &[0x0]).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![
|
|
(vec![], vec![0x0]),
|
|
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
|
|
]));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_split_leaf() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
t.insert(&[0x01u8, 0x34], &[0x01u8, 0x34]).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![
|
|
(vec![0x01u8, 0x23], vec![0x01u8, 0x23]),
|
|
(vec![0x01u8, 0x34], vec![0x01u8, 0x34]),
|
|
]));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_split_extenstion() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01, 0x23, 0x45], &[0x01]).unwrap();
|
|
t.insert(&[0x01, 0xf3, 0x45], &[0x02]).unwrap();
|
|
t.insert(&[0x01, 0xf3, 0xf5], &[0x03]).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![
|
|
(vec![0x01, 0x23, 0x45], vec![0x01]),
|
|
(vec![0x01, 0xf3, 0x45], vec![0x02]),
|
|
(vec![0x01, 0xf3, 0xf5], vec![0x03]),
|
|
]));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_big_value() {
|
|
let big_value0 = b"00000000000000000000000000000000";
|
|
let big_value1 = b"11111111111111111111111111111111";
|
|
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], big_value0).unwrap();
|
|
t.insert(&[0x11u8, 0x23], big_value1).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![
|
|
(vec![0x01u8, 0x23], big_value0.to_vec()),
|
|
(vec![0x11u8, 0x23], big_value1.to_vec())
|
|
]));
|
|
}
|
|
|
|
#[test]
|
|
fn insert_duplicate_value() {
|
|
let big_value = b"00000000000000000000000000000000";
|
|
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], big_value).unwrap();
|
|
t.insert(&[0x11u8, 0x23], big_value).unwrap();
|
|
assert_eq!(*t.root(), trie_root(vec![
|
|
(vec![0x01u8, 0x23], big_value.to_vec()),
|
|
(vec![0x11u8, 0x23], big_value.to_vec())
|
|
]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_at_empty() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let t = TrieDBMut::new(&mut memdb, &mut root);
|
|
assert_eq!(t.get(&[0x5]).unwrap(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_at_one() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
assert_eq!(t.get(&[0x1, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0x1u8, 0x23]));
|
|
t.commit();
|
|
assert_eq!(t.get(&[0x1, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0x1u8, 0x23]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_at_three() {
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut memdb, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
t.insert(&[0xf1u8, 0x23], &[0xf1u8, 0x23]).unwrap();
|
|
t.insert(&[0x81u8, 0x23], &[0x81u8, 0x23]).unwrap();
|
|
assert_eq!(t.get(&[0x01, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0x01u8, 0x23]));
|
|
assert_eq!(t.get(&[0xf1, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0xf1u8, 0x23]));
|
|
assert_eq!(t.get(&[0x81, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0x81u8, 0x23]));
|
|
assert_eq!(t.get(&[0x82, 0x23]).unwrap(), None);
|
|
t.commit();
|
|
assert_eq!(t.get(&[0x01, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0x01u8, 0x23]));
|
|
assert_eq!(t.get(&[0xf1, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0xf1u8, 0x23]));
|
|
assert_eq!(t.get(&[0x81, 0x23]).unwrap().unwrap(), DBValue::from_slice(&[0x81u8, 0x23]));
|
|
assert_eq!(t.get(&[0x82, 0x23]).unwrap(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn stress() {
|
|
let mut seed = H256::new();
|
|
for _ in 0..50 {
|
|
let x = StandardMap {
|
|
alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
|
|
min_key: 5,
|
|
journal_key: 0,
|
|
value_mode: ValueMode::Index,
|
|
count: 4,
|
|
}.make_with(&mut seed);
|
|
|
|
let real = trie_root(x.clone());
|
|
let mut memdb = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut memtrie = populate_trie::<_, RlpCodec>(&mut memdb, &mut root, &x);
|
|
let mut y = x.clone();
|
|
y.sort_by(|ref a, ref b| a.0.cmp(&b.0));
|
|
let mut memdb2 = MemoryDB::<KeccakHasher>::new();
|
|
let mut root2 = H256::new();
|
|
let mut memtrie_sorted = populate_trie::<_, RlpCodec>(&mut memdb2, &mut root2, &y);
|
|
if *memtrie.root() != real || *memtrie_sorted.root() != real {
|
|
println!("TRIE MISMATCH");
|
|
println!("");
|
|
println!("ORIGINAL... {:?}", memtrie.root());
|
|
for i in &x {
|
|
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
|
|
}
|
|
println!("SORTED... {:?}", memtrie_sorted.root());
|
|
for i in &y {
|
|
println!("{:?} -> {:?}", i.0.pretty(), i.1.pretty());
|
|
}
|
|
}
|
|
assert_eq!(*memtrie.root(), real);
|
|
assert_eq!(*memtrie_sorted.root(), real);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_trie_existing() {
|
|
let mut db = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
{
|
|
let mut t = TrieDBMut::new(&mut db, &mut root);
|
|
t.insert(&[0x01u8, 0x23], &[0x01u8, 0x23]).unwrap();
|
|
}
|
|
|
|
{
|
|
let _ = TrieDBMut::from_existing(&mut db, &mut root);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn insert_empty() {
|
|
let mut seed = H256::new();
|
|
let x = StandardMap {
|
|
alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
|
|
min_key: 5,
|
|
journal_key: 0,
|
|
value_mode: ValueMode::Index,
|
|
count: 4,
|
|
}.make_with(&mut seed);
|
|
|
|
let mut db = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut db, &mut root);
|
|
for &(ref key, ref value) in &x {
|
|
t.insert(key, value).unwrap();
|
|
}
|
|
|
|
assert_eq!(*t.root(), trie_root(x.clone()));
|
|
|
|
for &(ref key, _) in &x {
|
|
t.insert(key, &[]).unwrap();
|
|
}
|
|
|
|
assert!(t.is_empty());
|
|
assert_eq!(*t.root(), RlpCodec::HASHED_NULL_NODE);
|
|
}
|
|
|
|
#[test]
|
|
fn return_old_values() {
|
|
let mut seed = H256::new();
|
|
let x = StandardMap {
|
|
alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
|
|
min_key: 5,
|
|
journal_key: 0,
|
|
value_mode: ValueMode::Index,
|
|
count: 4,
|
|
}.make_with(&mut seed);
|
|
|
|
let mut db = MemoryDB::<KeccakHasher>::new();
|
|
let mut root = H256::new();
|
|
let mut t = TrieDBMut::new(&mut db, &mut root);
|
|
for &(ref key, ref value) in &x {
|
|
assert!(t.insert(key, value).unwrap().is_none());
|
|
assert_eq!(t.insert(key, value).unwrap(), Some(DBValue::from_slice(value)));
|
|
}
|
|
|
|
for (key, value) in x {
|
|
assert_eq!(t.remove(&key).unwrap(), Some(DBValue::from_slice(&value)));
|
|
assert!(t.remove(&key).unwrap().is_none());
|
|
}
|
|
}
|
|
}
|