openethereum/ethcore/src/evm/interpreter.rs

1194 lines
33 KiB
Rust

///! Rust VM implementation
use common::*;
use evm;
use super::instructions as instructions;
use super::instructions::Instruction;
use std::marker::Copy;
use evm::{MessageCallResult, ContractCreateResult};
#[cfg(not(feature = "evm-debug"))]
macro_rules! evm_debug {
($x: expr) => {}
}
#[cfg(feature = "evm-debug")]
macro_rules! evm_debug {
($x: expr) => {
$x
}
}
#[cfg(feature = "evm-debug")]
fn color(instruction: Instruction, name: &'static str) -> String {
let c = instruction as usize % 6;
let colors = [31, 34, 33, 32, 35, 36];
format!("\x1B[1;{}m{}\x1B[0m", colors[c], name)
}
macro_rules! overflowing {
($x: expr) => {{
let (v, overflow) = $x;
if overflow { return Err(evm::Error::OutOfGas); }
v
}}
}
type CodePosition = usize;
type Gas = U256;
type ProgramCounter = usize;
/// Stack trait with VM-friendly API
trait Stack<T> {
/// Returns `Stack[len(Stack) - no_from_top]`
fn peek(&self, no_from_top: usize) -> &T;
/// Swaps Stack[len(Stack)] and Stack[len(Stack) - no_from_top]
fn swap_with_top(&mut self, no_from_top: usize);
/// Returns true if Stack has at least `no_of_elems` elements
fn has(&self, no_of_elems: usize) -> bool;
/// Get element from top and remove it from Stack. Panics if stack is empty.
fn pop_back(&mut self) -> T;
/// Get (up to `instructions::MAX_NO_OF_TOPICS`) elements from top and remove them from Stack. Panics if stack is empty.
fn pop_n(&mut self, no_of_elems: usize) -> &[T];
/// Add element on top of the Stack
fn push(&mut self, elem: T);
/// Get number of elements on Stack
fn size(&self) -> usize;
}
struct VecStack<S> {
stack: Vec<S>,
logs: [S; instructions::MAX_NO_OF_TOPICS]
}
impl<S : Copy> VecStack<S> {
fn with_capacity(capacity: usize, zero: S) -> Self {
VecStack {
stack: Vec::with_capacity(capacity),
logs: [zero; instructions::MAX_NO_OF_TOPICS]
}
}
}
impl<S : fmt::Display> Stack<S> for VecStack<S> {
fn peek(&self, no_from_top: usize) -> &S {
&self.stack[self.stack.len() - no_from_top - 1]
}
fn swap_with_top(&mut self, no_from_top: usize) {
let len = self.stack.len();
self.stack.swap(len - no_from_top - 1, len - 1);
}
fn has(&self, no_of_elems: usize) -> bool {
self.stack.len() >= no_of_elems
}
fn pop_back(&mut self) -> S {
let val = self.stack.pop();
match val {
Some(x) => {
evm_debug!({
println!(" POP: {}", x)
});
x
},
None => panic!("Tried to pop from empty stack.")
}
}
fn pop_n(&mut self, no_of_elems: usize) -> &[S] {
assert!(no_of_elems <= instructions::MAX_NO_OF_TOPICS);
for i in 0..no_of_elems {
self.logs[i] = self.pop_back();
}
&self.logs[0..no_of_elems]
}
fn push(&mut self, elem: S) {
evm_debug!({
println!(" PUSH: {}", elem)
});
self.stack.push(elem);
}
fn size(&self) -> usize {
self.stack.len()
}
}
trait Memory {
/// Retrieve current size of the memory
fn size(&self) -> usize;
/// Resize (shrink or expand) the memory to specified size (fills 0)
fn resize(&mut self, new_size: usize);
/// Resize the memory only if its smaller
fn expand(&mut self, new_size: usize);
/// Write single byte to memory
fn write_byte(&mut self, offset: U256, value: U256);
/// Write a word to memory. Does not resize memory!
fn write(&mut self, offset: U256, value: U256);
/// Read a word from memory
fn read(&self, offset: U256) -> U256;
/// Write slice of bytes to memory. Does not resize memory!
fn write_slice(&mut self, offset: U256, &[u8]);
/// Retrieve part of the memory between offset and offset + size
fn read_slice(&self, offset: U256, size: U256) -> &[u8];
/// Retrieve writeable part of memory
fn writeable_slice(&mut self, offset: U256, size: U256) -> &mut[u8];
fn dump(&self);
}
/// Checks whether offset and size is valid memory range
fn is_valid_range(off: usize, size: usize) -> bool {
// When size is zero we haven't actually expanded the memory
let overflow = off.overflowing_add(size).1;
size > 0 && !overflow
}
impl Memory for Vec<u8> {
fn dump(&self) {
println!("MemoryDump:");
for i in self.iter() {
println!("{:02x} ", i);
}
println!("");
}
fn size(&self) -> usize {
self.len()
}
fn read_slice(&self, init_off_u: U256, init_size_u: U256) -> &[u8] {
let off = init_off_u.low_u64() as usize;
let size = init_size_u.low_u64() as usize;
if !is_valid_range(off, size) {
&self[0..0]
} else {
&self[off..off+size]
}
}
fn read(&self, offset: U256) -> U256 {
let off = offset.low_u64() as usize;
U256::from(&self[off..off+32])
}
fn writeable_slice(&mut self, offset: U256, size: U256) -> &mut [u8] {
let off = offset.low_u64() as usize;
let s = size.low_u64() as usize;
if !is_valid_range(off, s) {
&mut self[0..0]
} else {
&mut self[off..off+s]
}
}
fn write_slice(&mut self, offset: U256, slice: &[u8]) {
let off = offset.low_u64() as usize;
// TODO [todr] Optimize?
for pos in off..off+slice.len() {
self[pos] = slice[pos - off];
}
}
fn write(&mut self, offset: U256, value: U256) {
let off = offset.low_u64() as usize;
let mut val = value;
let end = off + 32;
for pos in 0..32 {
self[end - pos - 1] = val.low_u64() as u8;
val = val >> 8;
}
}
fn write_byte(&mut self, offset: U256, value: U256) {
let off = offset.low_u64() as usize;
let val = value.low_u64() as u64;
self[off] = val as u8;
}
fn resize(&mut self, new_size: usize) {
self.resize(new_size, 0);
}
fn expand(&mut self, size: usize) {
if size > self.len() {
Memory::resize(self, size)
}
}
}
/// Abstraction over raw vector of Bytes. Easier state management of PC.
struct CodeReader<'a> {
position: ProgramCounter,
code: &'a Bytes
}
#[allow(len_without_is_empty)]
impl<'a> CodeReader<'a> {
/// Get `no_of_bytes` from code and convert to U256. Move PC
fn read(&mut self, no_of_bytes: usize) -> U256 {
let pos = self.position;
self.position += no_of_bytes;
let max = cmp::min(pos + no_of_bytes, self.code.len());
U256::from(&self.code[pos..max])
}
fn len (&self) -> usize {
self.code.len()
}
}
enum InstructionCost {
Gas(U256),
GasMem(U256, U256),
GasMemCopy(U256, U256, U256)
}
enum InstructionResult {
Ok,
UseAllGas,
GasLeft(U256),
UnusedGas(U256),
JumpToPosition(U256),
StopExecutionWithGasLeft(U256),
StopExecution
}
/// Intepreter EVM implementation
pub struct Interpreter;
impl evm::Evm for Interpreter {
fn exec(&self, params: ActionParams, ext: &mut evm::Ext) -> evm::Result {
let code = &params.code.clone().unwrap();
let valid_jump_destinations = self.find_jump_destinations(&code);
let mut current_gas = params.gas.clone();
let mut stack = VecStack::with_capacity(ext.schedule().stack_limit, U256::zero());
let mut mem = vec![];
let mut reader = CodeReader {
position: 0,
code: &code
};
while reader.position < code.len() {
let instruction = code[reader.position];
reader.position += 1;
// Calculate gas cost
let (gas_cost, mem_size) = try!(self.get_gas_cost_mem(ext, instruction, &mut mem, &stack));
try!(self.verify_gas(&current_gas, &gas_cost));
mem.expand(mem_size);
current_gas -= gas_cost;
evm_debug!({
println!("[0x{:x}][{}(0x{:x}) Gas: {:x}\n Gas Before: {:x}",
reader.position,
color(instruction, instructions::get_info(instruction).name),
instruction,
gas_cost,
current_gas + gas_cost
);
});
// Execute instruction
let result = try!(self.exec_instruction(
current_gas, &params, ext, instruction, &mut reader, &mut mem, &mut stack
));
// Advance
match result {
InstructionResult::Ok => {},
InstructionResult::UnusedGas(gas) => {
current_gas += gas;
},
InstructionResult::UseAllGas => {
current_gas = U256::zero();
},
InstructionResult::GasLeft(gas_left) => {
current_gas = gas_left;
},
InstructionResult::JumpToPosition(position) => {
let pos = try!(self.verify_jump(position, &valid_jump_destinations));
reader.position = pos;
},
InstructionResult::StopExecutionWithGasLeft(gas_left) => {
current_gas = gas_left;
reader.position = code.len();
},
InstructionResult::StopExecution => {
reader.position = code.len();
}
}
}
Ok(current_gas)
}
}
impl Interpreter {
#[allow(cyclomatic_complexity)]
fn get_gas_cost_mem(&self,
ext: &evm::Ext,
instruction: Instruction,
mem: &mut Memory,
stack: &Stack<U256>
) -> Result<(U256, usize), evm::Error> {
let schedule = ext.schedule();
let info = instructions::get_info(instruction);
if !schedule.have_delegate_call && instruction == instructions::DELEGATECALL {
return Err(evm::Error::BadInstruction {
instruction: instruction
});
}
if info.tier == instructions::GasPriceTier::Invalid {
return Err(evm::Error::BadInstruction {
instruction: instruction
});
}
try!(self.verify_instructions_requirements(&info, schedule.stack_limit, stack));
let tier = instructions::get_tier_idx(info.tier);
let default_gas = U256::from(schedule.tier_step_gas[tier]);
let cost = match instruction {
instructions::SSTORE => {
let address = H256::from(stack.peek(0));
let newval = stack.peek(1);
let val = U256::from(ext.storage_at(&address).as_slice());
let gas = if self.is_zero(&val) && !self.is_zero(newval) {
schedule.sstore_set_gas
} else if !self.is_zero(&val) && self.is_zero(newval) {
// Refund is added when actually executing sstore
schedule.sstore_reset_gas
} else {
schedule.sstore_reset_gas
};
InstructionCost::Gas(U256::from(gas))
},
instructions::SLOAD => {
InstructionCost::Gas(U256::from(schedule.sload_gas))
},
instructions::MSTORE => {
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 32)))
},
instructions::MLOAD => {
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 32)))
},
instructions::MSTORE8 => {
InstructionCost::GasMem(default_gas, try!(self.mem_needed_const(stack.peek(0), 1)))
},
instructions::RETURN => {
InstructionCost::GasMem(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::SHA3 => {
let w = overflowing!(add_u256_usize(stack.peek(1), 31));
let words = w >> 5;
let gas = U256::from(schedule.sha3_gas) + (U256::from(schedule.sha3_word_gas) * words);
InstructionCost::GasMem(gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::CALLDATACOPY => {
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(2))), stack.peek(2).clone())
},
instructions::CODECOPY => {
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(0), stack.peek(2))), stack.peek(2).clone())
},
instructions::EXTCODECOPY => {
InstructionCost::GasMemCopy(default_gas, try!(self.mem_needed(stack.peek(1), stack.peek(3))), stack.peek(3).clone())
},
instructions::JUMPDEST => {
InstructionCost::Gas(U256::one())
},
instructions::LOG0...instructions::LOG4 => {
let no_of_topics = instructions::get_log_topics(instruction);
let log_gas = schedule.log_gas + schedule.log_topic_gas * no_of_topics;
let data_gas = overflowing!(stack.peek(1).overflowing_mul(U256::from(schedule.log_data_gas)));
let gas = overflowing!(data_gas.overflowing_add(U256::from(log_gas)));
InstructionCost::GasMem(gas, try!(self.mem_needed(stack.peek(0), stack.peek(1))))
},
instructions::CALL | instructions::CALLCODE => {
let mut gas = overflowing!(add_u256_usize(stack.peek(0), schedule.call_gas));
let mem = cmp::max(
try!(self.mem_needed(stack.peek(5), stack.peek(6))),
try!(self.mem_needed(stack.peek(3), stack.peek(4)))
);
let address = u256_to_address(stack.peek(1));
if instruction == instructions::CALL && !ext.exists(&address) {
gas = overflowing!(gas.overflowing_add(U256::from(schedule.call_new_account_gas)));
};
if stack.peek(2).clone() > U256::zero() {
gas = overflowing!(gas.overflowing_add(U256::from(schedule.call_value_transfer_gas)));
};
InstructionCost::GasMem(gas,mem)
},
instructions::DELEGATECALL => {
let gas = overflowing!(add_u256_usize(stack.peek(0), schedule.call_gas));
let mem = cmp::max(
try!(self.mem_needed(stack.peek(4), stack.peek(5))),
try!(self.mem_needed(stack.peek(2), stack.peek(3)))
);
InstructionCost::GasMem(gas, mem)
},
instructions::CREATE => {
let gas = U256::from(schedule.create_gas);
let mem = try!(self.mem_needed(stack.peek(1), stack.peek(2)));
InstructionCost::GasMem(gas, mem)
},
instructions::EXP => {
let expon = stack.peek(1);
let bytes = ((expon.bits() + 7) / 8) as usize;
let gas = U256::from(schedule.exp_gas + schedule.exp_byte_gas * bytes);
InstructionCost::Gas(gas)
},
_ => InstructionCost::Gas(default_gas)
};
match cost {
InstructionCost::Gas(gas) => {
Ok((gas, 0))
},
InstructionCost::GasMem(gas, mem_size) => {
let (mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, mem.size(), &mem_size));
let gas = overflowing!(gas.overflowing_add(mem_gas));
Ok((gas, new_mem_size))
},
InstructionCost::GasMemCopy(gas, mem_size, copy) => {
let (mem_gas, new_mem_size) = try!(self.mem_gas_cost(schedule, mem.size(), &mem_size));
let copy = overflowing!(add_u256_usize(&copy, 31));
let copy_gas = U256::from(schedule.copy_gas) * (copy / U256::from(32));
let gas = overflowing!(gas.overflowing_add(copy_gas));
let gas = overflowing!(gas.overflowing_add(mem_gas));
Ok((gas, new_mem_size))
}
}
}
fn mem_gas_cost(&self, schedule: &evm::Schedule, current_mem_size: usize, mem_size: &U256) -> Result<(U256, usize), evm::Error> {
let gas_for_mem = |mem_size: U256| {
let s = mem_size >> 5;
// s * memory_gas + s * s / quad_coeff_div
let a = overflowing!(s.overflowing_mul(U256::from(schedule.memory_gas)));
// We need to go to U512 to calculate s*s/quad_coeff_div
let b = U512::from(s) * U512::from(s) / U512::from(schedule.quad_coeff_div);
if b > U512::from(!U256::zero()) {
Err(evm::Error::OutOfGas)
} else {
Ok(overflowing!(a.overflowing_add(U256::from(b))))
}
};
let current_mem_size = U256::from(current_mem_size);
let req_mem_size_rounded = (overflowing!(mem_size.overflowing_add(U256::from(31))) >> 5) << 5;
let new_mem_gas = try!(gas_for_mem(U256::from(req_mem_size_rounded)));
let current_mem_gas = try!(gas_for_mem(current_mem_size));
Ok((if req_mem_size_rounded > current_mem_size {
new_mem_gas - current_mem_gas
} else {
U256::zero()
}, req_mem_size_rounded.low_u64() as usize))
}
fn mem_needed_const(&self, mem: &U256, add: usize) -> Result<U256, evm::Error> {
Ok(overflowing!(mem.overflowing_add(U256::from(add))))
}
fn mem_needed(&self, offset: &U256, size: &U256) -> Result<U256, ::evm::Error> {
if self.is_zero(size) {
return Ok(U256::zero());
}
Ok(overflowing!(offset.overflowing_add(size.clone())))
}
fn exec_instruction(&self,
gas: Gas,
params: &ActionParams,
ext: &mut evm::Ext,
instruction: Instruction,
code: &mut CodeReader,
mem: &mut Memory,
stack: &mut Stack<U256>
) -> Result<InstructionResult, evm::Error> {
match instruction {
instructions::JUMP => {
let jump = stack.pop_back();
return Ok(InstructionResult::JumpToPosition(
jump
));
},
instructions::JUMPI => {
let jump = stack.pop_back();
let condition = stack.pop_back();
if !self.is_zero(&condition) {
return Ok(InstructionResult::JumpToPosition(
jump
));
}
},
instructions::JUMPDEST => {
// ignore
},
instructions::CREATE => {
let endowment = stack.pop_back();
let init_off = stack.pop_back();
let init_size = stack.pop_back();
let contract_code = mem.read_slice(init_off, init_size);
let can_create = ext.balance(&params.address) >= endowment && ext.depth() < ext.schedule().max_depth;
if !can_create {
stack.push(U256::zero());
return Ok(InstructionResult::Ok);
}
let create_result = ext.create(&gas, &endowment, &contract_code);
return match create_result {
ContractCreateResult::Created(address, gas_left) => {
stack.push(address_to_u256(address));
Ok(InstructionResult::GasLeft(gas_left))
},
ContractCreateResult::Failed => {
stack.push(U256::zero());
// TODO [todr] Should we just StopExecution here?
Ok(InstructionResult::UseAllGas)
}
};
},
instructions::CALL | instructions::CALLCODE | instructions::DELEGATECALL => {
assert!(ext.schedule().call_value_transfer_gas > ext.schedule().call_stipend, "overflow possible");
let call_gas = stack.pop_back();
let code_address = stack.pop_back();
let code_address = u256_to_address(&code_address);
let value = match instruction == instructions::DELEGATECALL {
true => None,
false => Some(stack.pop_back())
};
let in_off = stack.pop_back();
let in_size = stack.pop_back();
let out_off = stack.pop_back();
let out_size = stack.pop_back();
// Add stipend (only CALL|CALLCODE when value > 0)
let call_gas = call_gas + value.map_or_else(U256::zero, |val| match val > U256::zero() {
true => U256::from(ext.schedule().call_stipend),
false => U256::zero()
});
// Get sender & receive addresses, check if we have balance
let (sender_address, receive_address, has_balance) = match instruction {
instructions::CALL => {
let has_balance = ext.balance(&params.address) >= value.unwrap();
(&params.address, &code_address, has_balance)
},
instructions::CALLCODE => {
let has_balance = ext.balance(&params.address) >= value.unwrap();
(&params.address, &params.address, has_balance)
},
instructions::DELEGATECALL => (&params.sender, &params.address, true),
_ => panic!(format!("Unexpected instruction {} in CALL branch.", instruction))
};
let can_call = has_balance && ext.depth() < ext.schedule().max_depth;
if !can_call {
stack.push(U256::zero());
return Ok(InstructionResult::UnusedGas(call_gas));
}
let call_result = {
// we need to write and read from memory in the same time
// and we don't want to copy
let input = unsafe { ::std::mem::transmute(mem.read_slice(in_off, in_size)) };
let output = mem.writeable_slice(out_off, out_size);
ext.call(&call_gas, sender_address, receive_address, value, input, &code_address, output)
};
return match call_result {
MessageCallResult::Success(gas_left) => {
stack.push(U256::one());
Ok(InstructionResult::UnusedGas(gas_left))
},
MessageCallResult::Failed => {
stack.push(U256::zero());
Ok(InstructionResult::Ok)
}
};
},
instructions::RETURN => {
let init_off = stack.pop_back();
let init_size = stack.pop_back();
let return_code = mem.read_slice(init_off, init_size);
let gas_left = try!(ext.ret(&gas, &return_code));
return Ok(InstructionResult::StopExecutionWithGasLeft(
gas_left
));
},
instructions::STOP => {
return Ok(InstructionResult::StopExecution);
},
instructions::SUICIDE => {
let address = stack.pop_back();
ext.suicide(&u256_to_address(&address));
return Ok(InstructionResult::StopExecution);
},
instructions::LOG0...instructions::LOG4 => {
let no_of_topics = instructions::get_log_topics(instruction);
let offset = stack.pop_back();
let size = stack.pop_back();
let topics = stack.pop_n(no_of_topics)
.iter()
.map(H256::from)
.collect();
ext.log(topics, mem.read_slice(offset, size));
},
instructions::PUSH1...instructions::PUSH32 => {
let bytes = instructions::get_push_bytes(instruction);
let val = code.read(bytes);
stack.push(val);
},
instructions::MLOAD => {
let word = mem.read(stack.pop_back());
stack.push(U256::from(word));
},
instructions::MSTORE => {
let offset = stack.pop_back();
let word = stack.pop_back();
mem.write(offset, word);
},
instructions::MSTORE8 => {
let offset = stack.pop_back();
let byte = stack.pop_back();
mem.write_byte(offset, byte);
},
instructions::MSIZE => {
stack.push(U256::from(mem.size()));
},
instructions::SHA3 => {
let offset = stack.pop_back();
let size = stack.pop_back();
let sha3 = mem.read_slice(offset, size).sha3();
stack.push(U256::from(sha3.as_slice()));
},
instructions::SLOAD => {
let key = H256::from(&stack.pop_back());
let word = U256::from(ext.storage_at(&key).as_slice());
stack.push(word);
},
instructions::SSTORE => {
let address = H256::from(&stack.pop_back());
let val = stack.pop_back();
let current_val = U256::from(ext.storage_at(&address).as_slice());
// Increase refund for clear
if !self.is_zero(&current_val) && self.is_zero(&val) {
ext.inc_sstore_clears();
}
ext.set_storage(address, H256::from(&val));
},
instructions::PC => {
stack.push(U256::from(code.position - 1));
},
instructions::GAS => {
stack.push(gas.clone());
},
instructions::ADDRESS => {
stack.push(address_to_u256(params.address.clone()));
},
instructions::ORIGIN => {
stack.push(address_to_u256(params.origin.clone()));
},
instructions::BALANCE => {
let address = u256_to_address(&stack.pop_back());
let balance = ext.balance(&address);
stack.push(balance);
},
instructions::CALLER => {
stack.push(address_to_u256(params.sender.clone()));
},
instructions::CALLVALUE => {
stack.push(match params.value {
ActionValue::Transfer(val) => val,
ActionValue::Apparent(val) => val,
});
},
instructions::CALLDATALOAD => {
let big_id = stack.pop_back();
let id = big_id.low_u64() as usize;
let max = id.wrapping_add(32);
let data = params.data.clone().unwrap_or_else(|| vec![]);
let bound = cmp::min(data.len(), max);
if id < bound && big_id < U256::from(data.len()) {
let mut v = data[id..bound].to_vec();
v.resize(32, 0);
stack.push(U256::from(&v[..]))
} else {
stack.push(U256::zero())
}
},
instructions::CALLDATASIZE => {
stack.push(U256::from(params.data.clone().map_or(0, |l| l.len())));
},
instructions::CODESIZE => {
stack.push(U256::from(code.len()));
},
instructions::EXTCODESIZE => {
let address = u256_to_address(&stack.pop_back());
let len = ext.extcode(&address).len();
stack.push(U256::from(len));
},
instructions::CALLDATACOPY => {
self.copy_data_to_memory(mem, stack, &params.data.clone().unwrap_or_else(|| vec![]));
},
instructions::CODECOPY => {
self.copy_data_to_memory(mem, stack, &params.code.clone().unwrap_or_else(|| vec![]));
},
instructions::EXTCODECOPY => {
let address = u256_to_address(&stack.pop_back());
let code = ext.extcode(&address);
self.copy_data_to_memory(mem, stack, &code);
},
instructions::GASPRICE => {
stack.push(params.gas_price.clone());
},
instructions::BLOCKHASH => {
let block_number = stack.pop_back();
let block_hash = ext.blockhash(&block_number);
stack.push(U256::from(block_hash.as_slice()));
},
instructions::COINBASE => {
stack.push(address_to_u256(ext.env_info().author.clone()));
},
instructions::TIMESTAMP => {
stack.push(U256::from(ext.env_info().timestamp));
},
instructions::NUMBER => {
stack.push(U256::from(ext.env_info().number));
},
instructions::DIFFICULTY => {
stack.push(ext.env_info().difficulty.clone());
},
instructions::GASLIMIT => {
stack.push(ext.env_info().gas_limit.clone());
},
_ => {
try!(self.exec_stack_instruction(instruction, stack));
}
};
Ok(InstructionResult::Ok)
}
fn copy_data_to_memory(&self,
mem: &mut Memory,
stack: &mut Stack<U256>,
data: &[u8]) {
let offset = stack.pop_back();
let index = stack.pop_back();
let size = stack.pop_back();
let data_size = data.len();
if index < U256::from(data_size) {
let u_index = index.low_u64() as usize;
let bound_size = match size + index > U256::from(data_size) {
true => data_size,
false => size.low_u64() as usize + u_index
};
mem.write_slice(offset, &data[u_index..bound_size]);
}
}
fn verify_instructions_requirements(&self,
info: &instructions::InstructionInfo,
stack_limit: usize,
stack: &Stack<U256>) -> Result<(), evm::Error> {
if !stack.has(info.args) {
Err(evm::Error::StackUnderflow {
instruction: info.name,
wanted: info.args,
on_stack: stack.size()
})
} else if stack.size() - info.args + info.ret > stack_limit {
Err(evm::Error::OutOfStack {
instruction: info.name,
wanted: info.ret - info.args,
limit: stack_limit
})
} else {
Ok(())
}
}
fn verify_gas(&self, current_gas: &U256, gas_cost: &U256) -> Result<(), evm::Error> {
match current_gas < gas_cost {
true => Err(evm::Error::OutOfGas),
false => Ok(())
}
}
fn verify_jump(&self, jump_u: U256, valid_jump_destinations: &HashSet<usize>) -> Result<usize, evm::Error> {
let jump = jump_u.low_u64() as usize;
if valid_jump_destinations.contains(&jump) && jump_u < U256::from(!0 as usize) {
Ok(jump)
} else {
Err(evm::Error::BadJumpDestination {
destination: jump
})
}
}
fn is_zero(&self, val: &U256) -> bool {
&U256::zero() == val
}
fn bool_to_u256(&self, val: bool) -> U256 {
if val {
U256::one()
} else {
U256::zero()
}
}
fn exec_stack_instruction(&self, instruction: Instruction, stack: &mut Stack<U256>) -> Result<(), evm::Error> {
match instruction {
instructions::DUP1...instructions::DUP16 => {
let position = instructions::get_dup_position(instruction);
let val = stack.peek(position).clone();
stack.push(val);
},
instructions::SWAP1...instructions::SWAP16 => {
let position = instructions::get_swap_position(instruction);
stack.swap_with_top(position)
},
instructions::POP => {
stack.pop_back();
},
instructions::ADD => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(a.overflowing_add(b).0);
},
instructions::MUL => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(a.overflowing_mul(b).0);
},
instructions::SUB => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(a.overflowing_sub(b).0);
},
instructions::DIV => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(if !self.is_zero(&b) {
a.overflowing_div(b).0
} else {
U256::zero()
});
},
instructions::MOD => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(if !self.is_zero(&b) {
a.overflowing_rem(b).0
} else {
U256::zero()
});
},
instructions::SDIV => {
let (a, sign_a) = get_and_reset_sign(stack.pop_back());
let (b, sign_b) = get_and_reset_sign(stack.pop_back());
// -2^255
let min = (U256::one() << 255) - U256::one();
stack.push(if self.is_zero(&b) {
U256::zero()
} else if a == min && b == !U256::zero() {
min
} else {
let c = a.overflowing_div(b).0;
set_sign(c, sign_a ^ sign_b)
});
},
instructions::SMOD => {
let ua = stack.pop_back();
let ub = stack.pop_back();
let (a, sign_a) = get_and_reset_sign(ua);
let b = get_and_reset_sign(ub).0;
stack.push(if !self.is_zero(&b) {
let c = a.overflowing_rem(b).0;
set_sign(c, sign_a)
} else {
U256::zero()
});
},
instructions::EXP => {
let base = stack.pop_back();
let expon = stack.pop_back();
let res = base.overflowing_pow(expon).0;
stack.push(res);
},
instructions::NOT => {
let a = stack.pop_back();
stack.push(!a);
},
instructions::LT => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(self.bool_to_u256(a < b));
},
instructions::SLT => {
let (a, neg_a) = get_and_reset_sign(stack.pop_back());
let (b, neg_b) = get_and_reset_sign(stack.pop_back());
let is_positive_lt = a < b && (neg_a | neg_b) == false;
let is_negative_lt = a > b && (neg_a & neg_b) == true;
let has_different_signs = neg_a == true && neg_b == false;
stack.push(self.bool_to_u256(is_positive_lt | is_negative_lt | has_different_signs));
},
instructions::GT => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(self.bool_to_u256(a > b));
},
instructions::SGT => {
let (a, neg_a) = get_and_reset_sign(stack.pop_back());
let (b, neg_b) = get_and_reset_sign(stack.pop_back());
let is_positive_gt = a > b && (neg_a | neg_b) == false;
let is_negative_gt = a < b && (neg_a & neg_b) == true;
let has_different_signs = neg_a == false && neg_b == true;
stack.push(self.bool_to_u256(is_positive_gt | is_negative_gt | has_different_signs));
},
instructions::EQ => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(self.bool_to_u256(a == b));
},
instructions::ISZERO => {
let a = stack.pop_back();
stack.push(self.bool_to_u256(self.is_zero(&a)));
},
instructions::AND => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(a & b);
},
instructions::OR => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(a | b);
},
instructions::XOR => {
let a = stack.pop_back();
let b = stack.pop_back();
stack.push(a ^ b);
},
instructions::BYTE => {
let word = stack.pop_back();
let val = stack.pop_back();
let byte = match word < U256::from(32) {
true => (val >> (8 * (31 - word.low_u64() as usize))) & U256::from(0xff),
false => U256::zero()
};
stack.push(byte);
},
instructions::ADDMOD => {
let a = stack.pop_back();
let b = stack.pop_back();
let c = stack.pop_back();
stack.push(if !self.is_zero(&c) {
// upcast to 512
let a5 = U512::from(a);
let res = a5.overflowing_add(U512::from(b)).0;
let x = res.overflowing_rem(U512::from(c)).0;
U256::from(x)
} else {
U256::zero()
});
},
instructions::MULMOD => {
let a = stack.pop_back();
let b = stack.pop_back();
let c = stack.pop_back();
stack.push(if !self.is_zero(&c) {
let a5 = U512::from(a);
let res = a5.overflowing_mul(U512::from(b)).0;
let x = res.overflowing_rem(U512::from(c)).0;
U256::from(x)
} else {
U256::zero()
});
},
instructions::SIGNEXTEND => {
let bit = stack.pop_back();
if bit < U256::from(32) {
let number = stack.pop_back();
let bit_position = (bit.low_u64() * 8 + 7) as usize;
let bit = number.bit(bit_position);
let mask = (U256::one() << bit_position) - U256::one();
stack.push(if bit {
number | !mask
} else {
number & mask
});
}
},
_ => {
return Err(evm::Error::BadInstruction {
instruction: instruction
});
}
}
Ok(())
}
fn find_jump_destinations(&self, code: &[u8]) -> HashSet<CodePosition> {
let mut jump_dests = HashSet::new();
let mut position = 0;
while position < code.len() {
let instruction = code[position];
if instruction == instructions::JUMPDEST {
jump_dests.insert(position);
} else if instructions::is_push(instruction) {
position += instructions::get_push_bytes(instruction);
}
position += 1;
}
jump_dests
}
}
fn get_and_reset_sign(value: U256) -> (U256, bool) {
let sign = (value >> 255).low_u64() == 1;
(set_sign(value, sign), sign)
}
fn set_sign(value: U256, sign: bool) -> U256 {
if sign {
(!U256::zero() ^ value).overflowing_add(U256::one()).0
} else {
value
}
}
#[inline]
fn add_u256_usize(value: &U256, num: usize) -> (U256, bool) {
value.clone().overflowing_add(U256::from(num))
}
#[inline]
fn u256_to_address(value: &U256) -> Address {
Address::from(H256::from(value))
}
#[inline]
fn address_to_u256(value: Address) -> U256 {
U256::from(H256::from(value).as_slice())
}
#[test]
fn test_mem_gas_cost() {
// given
let interpreter = Interpreter;
let schedule = evm::Schedule::default();
let current_mem_size = 5;
let mem_size = !U256::zero();
// when
let result = interpreter.mem_gas_cost(&schedule, current_mem_size, &mem_size);
// then
if let Ok(_) = result {
assert!(false, "Should fail with OutOfGas");
}
}
#[cfg(test)]
mod tests {
use common::*;
use super::*;
use evm;
#[test]
fn test_find_jump_destinations() {
// given
let interpreter = Interpreter;
let code = "7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5b01600055".from_hex().unwrap();
// when
let valid_jump_destinations = interpreter.find_jump_destinations(&code);
// then
assert!(valid_jump_destinations.contains(&66));
}
#[test]
fn test_calculate_mem_cost() {
// given
let interpreter = Interpreter;
let schedule = evm::Schedule::default();
let current_mem_size = 0;
let mem_size = U256::from(5);
// when
let (mem_cost, mem_size) = interpreter.mem_gas_cost(&schedule, current_mem_size, &mem_size).unwrap();
// then
assert_eq!(mem_cost, U256::from(3));
assert_eq!(mem_size, 32);
}
#[test]
fn test_memory_read_and_write() {
// given
let mem: &mut super::Memory = &mut vec![];
mem.resize(0x80 + 32);
// when
mem.write(U256::from(0x80), U256::from(0xabcdef));
// then
assert_eq!(mem.read(U256::from(0x80)), U256::from(0xabcdef));
}
#[test]
fn test_memory_read_and_write_byte() {
// given
let mem: &mut super::Memory = &mut vec![];
mem.resize(32);
// when
mem.write_byte(U256::from(0x1d), U256::from(0xab));
mem.write_byte(U256::from(0x1e), U256::from(0xcd));
mem.write_byte(U256::from(0x1f), U256::from(0xef));
// then
assert_eq!(mem.read(U256::from(0x00)), U256::from(0xabcdef));
}
}