openethereum/ethcore/src/transaction.rs
Robert Habermeier d365281cce Ethcore crate split part 1 (#6041)
* split out types into separate crate

* split out evm into its own crate
2017-07-12 13:09:17 +02:00

635 lines
20 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Transaction data structure.
use std::ops::Deref;
use rlp::*;
use util::sha3::Hashable;
use util::{H256, Address, U256, Bytes, HeapSizeOf};
use ethkey::{Signature, Secret, Public, recover, public_to_address, Error as EthkeyError};
use error::*;
use evm::Schedule;
use header::BlockNumber;
use ethjson;
/// Fake address for unsigned transactions as defined by EIP-86.
pub const UNSIGNED_SENDER: Address = ::util::H160([0xff; 20]);
/// System sender address for internal state updates.
pub const SYSTEM_ADDRESS: Address = ::util::H160([0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,0xff, 0xff, 0xff, 0xff,0xff, 0xff, 0xff, 0xff,0xff, 0xff, 0xff, 0xfe]);
/// Transaction action type.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Action {
/// Create creates new contract.
Create,
/// Calls contract at given address.
/// In the case of a transfer, this is the receiver's address.'
Call(Address),
}
impl Default for Action {
fn default() -> Action { Action::Create }
}
impl Decodable for Action {
fn decode(rlp: &UntrustedRlp) -> Result<Self, DecoderError> {
if rlp.is_empty() {
Ok(Action::Create)
} else {
Ok(Action::Call(rlp.as_val()?))
}
}
}
/// Transaction activation condition.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum Condition {
/// Valid at this block number or later.
Number(BlockNumber),
/// Valid at this unix time or later.
Timestamp(u64),
}
/// A set of information describing an externally-originating message call
/// or contract creation operation.
#[derive(Default, Debug, Clone, PartialEq, Eq)]
pub struct Transaction {
/// Nonce.
pub nonce: U256,
/// Gas price.
pub gas_price: U256,
/// Gas paid up front for transaction execution.
pub gas: U256,
/// Action, can be either call or contract create.
pub action: Action,
/// Transfered value.
pub value: U256,
/// Transaction data.
pub data: Bytes,
}
impl Transaction {
/// Append object with a without signature into RLP stream
pub fn rlp_append_unsigned_transaction(&self, s: &mut RlpStream, network_id: Option<u64>) {
s.begin_list(if network_id.is_none() { 6 } else { 9 });
s.append(&self.nonce);
s.append(&self.gas_price);
s.append(&self.gas);
match self.action {
Action::Create => s.append_empty_data(),
Action::Call(ref to) => s.append(to)
};
s.append(&self.value);
s.append(&self.data);
if let Some(n) = network_id {
s.append(&n);
s.append(&0u8);
s.append(&0u8);
}
}
}
impl HeapSizeOf for Transaction {
fn heap_size_of_children(&self) -> usize {
self.data.heap_size_of_children()
}
}
impl From<ethjson::state::Transaction> for SignedTransaction {
fn from(t: ethjson::state::Transaction) -> Self {
let to: Option<ethjson::hash::Address> = t.to.into();
let secret = t.secret.map(|s| Secret::from_slice(&s.0));
let tx = Transaction {
nonce: t.nonce.into(),
gas_price: t.gas_price.into(),
gas: t.gas_limit.into(),
action: match to {
Some(to) => Action::Call(to.into()),
None => Action::Create
},
value: t.value.into(),
data: t.data.into(),
};
match secret {
Some(s) => tx.sign(&s, None),
None => tx.null_sign(1),
}
}
}
impl From<ethjson::transaction::Transaction> for UnverifiedTransaction {
fn from(t: ethjson::transaction::Transaction) -> Self {
let to: Option<ethjson::hash::Address> = t.to.into();
UnverifiedTransaction {
unsigned: Transaction {
nonce: t.nonce.into(),
gas_price: t.gas_price.into(),
gas: t.gas_limit.into(),
action: match to {
Some(to) => Action::Call(to.into()),
None => Action::Create
},
value: t.value.into(),
data: t.data.into(),
},
r: t.r.into(),
s: t.s.into(),
v: t.v.into(),
hash: 0.into(),
}.compute_hash()
}
}
impl Transaction {
/// The message hash of the transaction.
pub fn hash(&self, network_id: Option<u64>) -> H256 {
let mut stream = RlpStream::new();
self.rlp_append_unsigned_transaction(&mut stream, network_id);
stream.as_raw().sha3()
}
/// Signs the transaction as coming from `sender`.
pub fn sign(self, secret: &Secret, network_id: Option<u64>) -> SignedTransaction {
let sig = ::ethkey::sign(secret, &self.hash(network_id))
.expect("data is valid and context has signing capabilities; qed");
SignedTransaction::new(self.with_signature(sig, network_id))
.expect("secret is valid so it's recoverable")
}
/// Signs the transaction with signature.
pub fn with_signature(self, sig: Signature, network_id: Option<u64>) -> UnverifiedTransaction {
UnverifiedTransaction {
unsigned: self,
r: sig.r().into(),
s: sig.s().into(),
v: sig.v() as u64 + if let Some(n) = network_id { 35 + n * 2 } else { 27 },
hash: 0.into(),
}.compute_hash()
}
/// Useful for test incorrectly signed transactions.
#[cfg(test)]
pub fn invalid_sign(self) -> UnverifiedTransaction {
UnverifiedTransaction {
unsigned: self,
r: U256::one(),
s: U256::one(),
v: 0,
hash: 0.into(),
}.compute_hash()
}
/// Specify the sender; this won't survive the serialize/deserialize process, but can be cloned.
pub fn fake_sign(self, from: Address) -> SignedTransaction {
SignedTransaction {
transaction: UnverifiedTransaction {
unsigned: self,
r: U256::one(),
s: U256::one(),
v: 0,
hash: 0.into(),
}.compute_hash(),
sender: from,
public: None,
}
}
/// Add EIP-86 compatible empty signature.
pub fn null_sign(self, network_id: u64) -> SignedTransaction {
SignedTransaction {
transaction: UnverifiedTransaction {
unsigned: self,
r: U256::zero(),
s: U256::zero(),
v: network_id,
hash: 0.into(),
}.compute_hash(),
sender: UNSIGNED_SENDER,
public: None,
}
}
/// Get the transaction cost in gas for the given params.
pub fn gas_required_for(is_create: bool, data: &[u8], schedule: &Schedule) -> u64 {
data.iter().fold(
(if is_create {schedule.tx_create_gas} else {schedule.tx_gas}) as u64,
|g, b| g + (match *b { 0 => schedule.tx_data_zero_gas, _ => schedule.tx_data_non_zero_gas }) as u64
)
}
/// Get the transaction cost in gas for this transaction.
pub fn gas_required(&self, schedule: &Schedule) -> u64 {
Self::gas_required_for(match self.action{Action::Create=>true, Action::Call(_)=>false}, &self.data, schedule)
}
}
/// Signed transaction information without verified signature.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct UnverifiedTransaction {
/// Plain Transaction.
unsigned: Transaction,
/// The V field of the signature; the LS bit described which half of the curve our point falls
/// in. The MS bits describe which network this transaction is for. If 27/28, its for all networks.
v: u64,
/// The R field of the signature; helps describe the point on the curve.
r: U256,
/// The S field of the signature; helps describe the point on the curve.
s: U256,
/// Hash of the transaction
hash: H256,
}
impl Deref for UnverifiedTransaction {
type Target = Transaction;
fn deref(&self) -> &Self::Target {
&self.unsigned
}
}
impl Decodable for UnverifiedTransaction {
fn decode(d: &UntrustedRlp) -> Result<Self, DecoderError> {
if d.item_count()? != 9 {
return Err(DecoderError::RlpIncorrectListLen);
}
let hash = d.as_raw().sha3();
Ok(UnverifiedTransaction {
unsigned: Transaction {
nonce: d.val_at(0)?,
gas_price: d.val_at(1)?,
gas: d.val_at(2)?,
action: d.val_at(3)?,
value: d.val_at(4)?,
data: d.val_at(5)?,
},
v: d.val_at(6)?,
r: d.val_at(7)?,
s: d.val_at(8)?,
hash: hash,
})
}
}
impl Encodable for UnverifiedTransaction {
fn rlp_append(&self, s: &mut RlpStream) { self.rlp_append_sealed_transaction(s) }
}
impl UnverifiedTransaction {
/// Used to compute hash of created transactions
fn compute_hash(mut self) -> UnverifiedTransaction {
let hash = (&*self.rlp_bytes()).sha3();
self.hash = hash;
self
}
/// Checks is signature is empty.
pub fn is_unsigned(&self) -> bool {
self.r.is_zero() && self.s.is_zero()
}
/// Append object with a signature into RLP stream
fn rlp_append_sealed_transaction(&self, s: &mut RlpStream) {
s.begin_list(9);
s.append(&self.nonce);
s.append(&self.gas_price);
s.append(&self.gas);
match self.action {
Action::Create => s.append_empty_data(),
Action::Call(ref to) => s.append(to)
};
s.append(&self.value);
s.append(&self.data);
s.append(&self.v);
s.append(&self.r);
s.append(&self.s);
}
/// Reference to unsigned part of this transaction.
pub fn as_unsigned(&self) -> &Transaction {
&self.unsigned
}
/// 0 if `v` would have been 27 under "Electrum" notation, 1 if 28 or 4 if invalid.
pub fn standard_v(&self) -> u8 { match self.v { v if v == 27 || v == 28 || v > 36 => ((v - 1) % 2) as u8, _ => 4 } }
/// The `v` value that appears in the RLP.
pub fn original_v(&self) -> u64 { self.v }
/// The network ID, or `None` if this is a global transaction.
pub fn network_id(&self) -> Option<u64> {
match self.v {
v if self.is_unsigned() => Some(v),
v if v > 36 => Some((v - 35) / 2),
_ => None,
}
}
/// Construct a signature object from the sig.
pub fn signature(&self) -> Signature {
Signature::from_rsv(&self.r.into(), &self.s.into(), self.standard_v())
}
/// Checks whether the signature has a low 's' value.
pub fn check_low_s(&self) -> Result<(), Error> {
if !self.signature().is_low_s() {
Err(EthkeyError::InvalidSignature.into())
} else {
Ok(())
}
}
/// Get the hash of this header (sha3 of the RLP).
pub fn hash(&self) -> H256 {
self.hash
}
/// Recovers the public key of the sender.
pub fn recover_public(&self) -> Result<Public, Error> {
Ok(recover(&self.signature(), &self.unsigned.hash(self.network_id()))?)
}
/// Do basic validation, checking for valid signature and minimum gas,
// TODO: consider use in block validation.
#[cfg(test)]
#[cfg(feature = "json-tests")]
pub fn validate(self, schedule: &Schedule, require_low: bool, allow_network_id_of_one: bool, allow_empty_signature: bool) -> Result<UnverifiedTransaction, Error> {
let chain_id = if allow_network_id_of_one { Some(1) } else { None };
self.verify_basic(require_low, chain_id, allow_empty_signature)?;
if !allow_empty_signature || !self.is_unsigned() {
self.recover_public()?;
}
if self.gas < U256::from(self.gas_required(&schedule)) {
return Err(TransactionError::InvalidGasLimit(::util::OutOfBounds{min: Some(U256::from(self.gas_required(&schedule))), max: None, found: self.gas}).into())
}
Ok(self)
}
/// Verify basic signature params. Does not attempt sender recovery.
pub fn verify_basic(&self, check_low_s: bool, chain_id: Option<u64>, allow_empty_signature: bool) -> Result<(), Error> {
if check_low_s && !(allow_empty_signature && self.is_unsigned()) {
self.check_low_s()?;
}
// EIP-86: Transactions of this form MUST have gasprice = 0, nonce = 0, value = 0, and do NOT increment the nonce of account 0.
if allow_empty_signature && self.is_unsigned() && !(self.gas_price.is_zero() && self.value.is_zero() && self.nonce.is_zero()) {
return Err(EthkeyError::InvalidSignature.into())
}
match (self.network_id(), chain_id) {
(None, _) => {},
(Some(n), Some(m)) if n == m => {},
_ => return Err(TransactionError::InvalidNetworkId.into()),
};
Ok(())
}
}
/// A `UnverifiedTransaction` with successfully recovered `sender`.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct SignedTransaction {
transaction: UnverifiedTransaction,
sender: Address,
public: Option<Public>,
}
impl HeapSizeOf for SignedTransaction {
fn heap_size_of_children(&self) -> usize {
self.transaction.unsigned.heap_size_of_children()
}
}
impl Encodable for SignedTransaction {
fn rlp_append(&self, s: &mut RlpStream) { self.transaction.rlp_append_sealed_transaction(s) }
}
impl Deref for SignedTransaction {
type Target = UnverifiedTransaction;
fn deref(&self) -> &Self::Target {
&self.transaction
}
}
impl From<SignedTransaction> for UnverifiedTransaction {
fn from(tx: SignedTransaction) -> Self {
tx.transaction
}
}
impl SignedTransaction {
/// Try to verify transaction and recover sender.
pub fn new(transaction: UnverifiedTransaction) -> Result<Self, Error> {
if transaction.is_unsigned() {
Ok(SignedTransaction {
transaction: transaction,
sender: UNSIGNED_SENDER,
public: None,
})
} else {
let public = transaction.recover_public()?;
let sender = public_to_address(&public);
Ok(SignedTransaction {
transaction: transaction,
sender: sender,
public: Some(public),
})
}
}
/// Returns transaction sender.
pub fn sender(&self) -> Address {
self.sender
}
/// Returns a public key of the sender.
pub fn public_key(&self) -> Option<Public> {
self.public
}
/// Checks is signature is empty.
pub fn is_unsigned(&self) -> bool {
self.transaction.is_unsigned()
}
}
/// Signed Transaction that is a part of canon blockchain.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct LocalizedTransaction {
/// Signed part.
pub signed: UnverifiedTransaction,
/// Block number.
pub block_number: BlockNumber,
/// Block hash.
pub block_hash: H256,
/// Transaction index within block.
pub transaction_index: usize,
/// Cached sender
pub cached_sender: Option<Address>,
}
impl LocalizedTransaction {
/// Returns transaction sender.
/// Panics if `LocalizedTransaction` is constructed using invalid `UnverifiedTransaction`.
pub fn sender(&mut self) -> Address {
if let Some(sender) = self.cached_sender {
return sender;
}
if self.is_unsigned() {
return UNSIGNED_SENDER.clone();
}
let sender = public_to_address(&self.recover_public()
.expect("LocalizedTransaction is always constructed from transaction from blockchain; Blockchain only stores verified transactions; qed"));
self.cached_sender = Some(sender);
sender
}
}
impl Deref for LocalizedTransaction {
type Target = UnverifiedTransaction;
fn deref(&self) -> &Self::Target {
&self.signed
}
}
/// Queued transaction with additional information.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PendingTransaction {
/// Signed transaction data.
pub transaction: SignedTransaction,
/// To be activated at this condition. `None` for immediately.
pub condition: Option<Condition>,
}
impl PendingTransaction {
/// Create a new pending transaction from signed transaction.
pub fn new(signed: SignedTransaction, condition: Option<Condition>) -> Self {
PendingTransaction {
transaction: signed,
condition: condition,
}
}
}
impl Deref for PendingTransaction {
type Target = SignedTransaction;
fn deref(&self) -> &SignedTransaction { &self.transaction }
}
impl From<SignedTransaction> for PendingTransaction {
fn from(t: SignedTransaction) -> Self {
PendingTransaction {
transaction: t,
condition: None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use util::{Hashable, U256};
#[test]
fn sender_test() {
let t: UnverifiedTransaction = decode(&::rustc_hex::FromHex::from_hex("f85f800182520894095e7baea6a6c7c4c2dfeb977efac326af552d870a801ba048b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353a0efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c804").unwrap());
assert_eq!(t.data, b"");
assert_eq!(t.gas, U256::from(0x5208u64));
assert_eq!(t.gas_price, U256::from(0x01u64));
assert_eq!(t.nonce, U256::from(0x00u64));
if let Action::Call(ref to) = t.action {
assert_eq!(*to, "095e7baea6a6c7c4c2dfeb977efac326af552d87".into());
} else { panic!(); }
assert_eq!(t.value, U256::from(0x0au64));
assert_eq!(public_to_address(&t.recover_public().unwrap()), "0f65fe9276bc9a24ae7083ae28e2660ef72df99e".into());
assert_eq!(t.network_id(), None);
}
#[test]
fn signing() {
use ethkey::{Random, Generator};
let key = Random.generate().unwrap();
let t = Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec()
}.sign(&key.secret(), None);
assert_eq!(Address::from(key.public().sha3()), t.sender());
assert_eq!(t.network_id(), None);
}
#[test]
fn fake_signing() {
let t = Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec()
}.fake_sign(Address::from(0x69));
assert_eq!(Address::from(0x69), t.sender());
assert_eq!(t.network_id(), None);
let t = t.clone();
assert_eq!(Address::from(0x69), t.sender());
assert_eq!(t.network_id(), None);
}
#[test]
fn should_recover_from_network_specific_signing() {
use ethkey::{Random, Generator};
let key = Random.generate().unwrap();
let t = Transaction {
action: Action::Create,
nonce: U256::from(42),
gas_price: U256::from(3000),
gas: U256::from(50_000),
value: U256::from(1),
data: b"Hello!".to_vec()
}.sign(&key.secret(), Some(69));
assert_eq!(Address::from(key.public().sha3()), t.sender());
assert_eq!(t.network_id(), Some(69));
}
#[test]
fn should_agree_with_vitalik() {
use rustc_hex::FromHex;
let test_vector = |tx_data: &str, address: &'static str| {
let signed = decode(&FromHex::from_hex(tx_data).unwrap());
let signed = SignedTransaction::new(signed).unwrap();
assert_eq!(signed.sender(), address.into());
flushln!("networkid: {:?}", signed.network_id());
};
test_vector("f864808504a817c800825208943535353535353535353535353535353535353535808025a0044852b2a670ade5407e78fb2863c51de9fcb96542a07186fe3aeda6bb8a116da0044852b2a670ade5407e78fb2863c51de9fcb96542a07186fe3aeda6bb8a116d", "0xf0f6f18bca1b28cd68e4357452947e021241e9ce");
test_vector("f864018504a817c80182a410943535353535353535353535353535353535353535018025a0489efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bcaa0489efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6", "0x23ef145a395ea3fa3deb533b8a9e1b4c6c25d112");
test_vector("f864028504a817c80282f618943535353535353535353535353535353535353535088025a02d7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a5a02d7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a5", "0x2e485e0c23b4c3c542628a5f672eeab0ad4888be");
test_vector("f865038504a817c803830148209435353535353535353535353535353535353535351b8025a02a80e1ef1d7842f27f2e6be0972bb708b9a135c38860dbe73c27c3486c34f4e0a02a80e1ef1d7842f27f2e6be0972bb708b9a135c38860dbe73c27c3486c34f4de", "0x82a88539669a3fd524d669e858935de5e5410cf0");
test_vector("f865048504a817c80483019a28943535353535353535353535353535353535353535408025a013600b294191fc92924bb3ce4b969c1e7e2bab8f4c93c3fc6d0a51733df3c063a013600b294191fc92924bb3ce4b969c1e7e2bab8f4c93c3fc6d0a51733df3c060", "0xf9358f2538fd5ccfeb848b64a96b743fcc930554");
test_vector("f865058504a817c8058301ec309435353535353535353535353535353535353535357d8025a04eebf77a833b30520287ddd9478ff51abbdffa30aa90a8d655dba0e8a79ce0c1a04eebf77a833b30520287ddd9478ff51abbdffa30aa90a8d655dba0e8a79ce0c1", "0xa8f7aba377317440bc5b26198a363ad22af1f3a4");
test_vector("f866068504a817c80683023e3894353535353535353535353535353535353535353581d88025a06455bf8ea6e7463a1046a0b52804526e119b4bf5136279614e0b1e8e296a4e2fa06455bf8ea6e7463a1046a0b52804526e119b4bf5136279614e0b1e8e296a4e2d", "0xf1f571dc362a0e5b2696b8e775f8491d3e50de35");
test_vector("f867078504a817c807830290409435353535353535353535353535353535353535358201578025a052f1a9b320cab38e5da8a8f97989383aab0a49165fc91c737310e4f7e9821021a052f1a9b320cab38e5da8a8f97989383aab0a49165fc91c737310e4f7e9821021", "0xd37922162ab7cea97c97a87551ed02c9a38b7332");
test_vector("f867088504a817c8088302e2489435353535353535353535353535353535353535358202008025a064b1702d9298fee62dfeccc57d322a463ad55ca201256d01f62b45b2e1c21c12a064b1702d9298fee62dfeccc57d322a463ad55ca201256d01f62b45b2e1c21c10", "0x9bddad43f934d313c2b79ca28a432dd2b7281029");
test_vector("f867098504a817c809830334509435353535353535353535353535353535353535358202d98025a052f8f61201b2b11a78d6e866abc9c3db2ae8631fa656bfe5cb53668255367afba052f8f61201b2b11a78d6e866abc9c3db2ae8631fa656bfe5cb53668255367afb", "0x3c24d7329e92f84f08556ceb6df1cdb0104ca49f");
}
}