openethereum/src/hash.rs

504 lines
12 KiB
Rust

//! General hash types, a fixed-size raw-data type used as the output of hash functions.
use std::str::FromStr;
use std::fmt;
use std::ops;
use std::hash::{Hash, Hasher};
use std::ops::{Index, IndexMut, Deref, DerefMut, BitOr, BitOrAssign, BitAnd, BitXor};
use std::cmp::{PartialOrd, Ordering};
use rustc_serialize::hex::*;
use error::UtilError;
use rand::Rng;
use rand::os::OsRng;
use bytes::{BytesConvertable,Populatable};
use math::log2;
use uint::U256;
/// Trait for a fixed-size byte array to be used as the output of hash functions.
///
/// Note: types implementing `FixedHash` must be also `BytesConvertable`.
pub trait FixedHash: Sized + BytesConvertable + Populatable {
fn new() -> Self;
/// Synonym for `new()`. Prefer to new as it's more readable.
fn zero() -> Self;
fn random() -> Self;
fn randomize(&mut self);
fn size() -> usize;
fn from_slice(src: &[u8]) -> Self;
fn clone_from_slice(&mut self, src: &[u8]) -> usize;
fn copy_to(&self, dest: &mut [u8]);
fn shift_bloomed<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash;
fn with_bloomed<T>(mut self, b: &T) -> Self where T: FixedHash { self.shift_bloomed(b); self }
fn bloom_part<T>(&self, m: usize) -> T where T: FixedHash;
fn contains_bloomed<T>(&self, b: &T) -> bool where T: FixedHash;
fn contains<'a>(&'a self, b: &'a Self) -> bool;
fn is_zero(&self) -> bool;
}
macro_rules! impl_hash {
($from: ident, $size: expr) => {
#[derive(Eq)]
pub struct $from (pub [u8; $size]);
impl BytesConvertable for $from {
fn bytes(&self) -> &[u8] {
&self.0
}
}
impl Deref for $from {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
&self.0
}
}
impl DerefMut for $from {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
&mut self.0
}
}
impl FixedHash for $from {
fn new() -> $from {
$from([0; $size])
}
fn zero() -> $from {
$from([0; $size])
}
fn random() -> $from {
let mut hash = $from::new();
hash.randomize();
hash
}
fn randomize(&mut self) {
let mut rng = OsRng::new().unwrap();
rng.fill_bytes(&mut self.0);
}
fn size() -> usize {
$size
}
// TODO: remove once slice::clone_from_slice is stable
#[inline]
fn clone_from_slice(&mut self, src: &[u8]) -> usize {
let min = ::std::cmp::min($size, src.len());
let dst = &mut self.deref_mut()[.. min];
let src = &src[.. min];
for i in 0..min {
dst[i] = src[i];
}
min
}
fn from_slice(src: &[u8]) -> Self {
let mut r = Self::new();
r.clone_from_slice(src);
r
}
fn copy_to(&self, dest: &mut[u8]) {
unsafe {
let min = ::std::cmp::min($size, dest.len());
::std::ptr::copy(self.0.as_ptr(), dest.as_mut_ptr(), min);
}
}
fn shift_bloomed<'a, T>(&'a mut self, b: &T) -> &'a mut Self where T: FixedHash {
let bp: Self = b.bloom_part($size);
let new_self = &bp | self;
// impl |= instead
// TODO: that's done now!
unsafe {
use std::{mem, ptr};
ptr::copy(new_self.0.as_ptr(), self.0.as_mut_ptr(), mem::size_of::<Self>());
}
self
}
fn bloom_part<T>(&self, m: usize) -> T where T: FixedHash {
// numbers of bits
// TODO: move it to some constant
let p = 3;
let bloom_bits = m * 8;
let mask = bloom_bits - 1;
let bloom_bytes = (log2(bloom_bits) + 7) / 8;
//println!("bb: {}", bloom_bytes);
// must be a power of 2
assert_eq!(m & (m - 1), 0);
// out of range
assert!(p * bloom_bytes <= $size);
// return type
let mut ret = T::new();
// 'ptr' to out slice
let mut ptr = 0;
// set p number of bits,
// p is equal 3 according to yellowpaper
for _ in 0..p {
let mut index = 0 as usize;
for _ in 0..bloom_bytes {
index = (index << 8) | self.0[ptr] as usize;
ptr += 1;
}
index &= mask;
ret.as_slice_mut()[m - 1 - index / 8] |= 1 << (index % 8);
}
ret
}
fn contains_bloomed<T>(&self, b: &T) -> bool where T: FixedHash {
let bp: Self = b.bloom_part($size);
self.contains(&bp)
}
fn contains<'a>(&'a self, b: &'a Self) -> bool {
&(b & self) == b
}
fn is_zero(&self) -> bool {
self.eq(&Self::new())
}
}
impl FromStr for $from {
type Err = UtilError;
fn from_str(s: &str) -> Result<$from, UtilError> {
let a = try!(s.from_hex());
if a.len() != $size { return Err(UtilError::BadSize); }
let mut ret = $from([0;$size]);
for i in 0..$size {
ret.0[i] = a[i];
}
Ok(ret)
}
}
impl fmt::Debug for $from {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for i in self.0.iter() {
try!(write!(f, "{:02x}", i));
}
Ok(())
}
}
impl fmt::Display for $from {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
(self as &fmt::Debug).fmt(f)
}
}
impl Clone for $from {
fn clone(&self) -> $from {
unsafe {
use std::{mem, ptr};
let mut ret: $from = mem::uninitialized();
ptr::copy(self.0.as_ptr(), ret.0.as_mut_ptr(), mem::size_of::<$from>());
ret
}
}
}
impl PartialEq for $from {
fn eq(&self, other: &Self) -> bool {
for i in 0..$size {
if self.0[i] != other.0[i] {
return false;
}
}
true
}
}
impl PartialOrd for $from {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
for i in 0..$size {
if self.0[i] > other.0[i] {
return Some(Ordering::Greater);
} else if self.0[i] < other.0[i] {
return Some(Ordering::Less);
}
}
Some(Ordering::Equal)
}
}
impl Hash for $from {
fn hash<H>(&self, state: &mut H) where H: Hasher {
state.write(&self.0);
state.finish();
}
}
impl Index<usize> for $from {
type Output = u8;
fn index<'a>(&'a self, index: usize) -> &'a u8 {
&self.0[index]
}
}
impl IndexMut<usize> for $from {
fn index_mut<'a>(&'a mut self, index: usize) -> &'a mut u8 {
&mut self.0[index]
}
}
impl Index<ops::Range<usize>> for $from {
type Output = [u8];
fn index<'a>(&'a self, index: ops::Range<usize>) -> &'a [u8] {
&self.0[index]
}
}
impl IndexMut<ops::Range<usize>> for $from {
fn index_mut<'a>(&'a mut self, index: ops::Range<usize>) -> &'a mut [u8] {
&mut self.0[index]
}
}
impl Index<ops::RangeFull> for $from {
type Output = [u8];
fn index<'a>(&'a self, _index: ops::RangeFull) -> &'a [u8] {
&self.0
}
}
impl IndexMut<ops::RangeFull> for $from {
fn index_mut<'a>(&'a mut self, _index: ops::RangeFull) -> &'a mut [u8] {
&mut self.0
}
}
/// BitOr on references
impl<'a> BitOr for &'a $from {
type Output = $from;
fn bitor(self, rhs: Self) -> Self::Output {
unsafe {
use std::mem;
let mut ret: $from = mem::uninitialized();
for i in 0..$size {
ret.0[i] = self.0[i] | rhs.0[i];
}
ret
}
}
}
/// Moving BitOr
impl BitOr for $from {
type Output = $from;
fn bitor(self, rhs: Self) -> Self::Output {
&self | &rhs
}
}
/// Moving BitOrAssign
impl<'a> BitOrAssign<&'a $from> for $from {
fn bitor_assign(&mut self, rhs: &'a Self) {
for i in 0..$size {
self.0[i] = self.0[i] | rhs.0[i];
}
}
}
/// BitAnd on references
impl <'a> BitAnd for &'a $from {
type Output = $from;
fn bitand(self, rhs: Self) -> Self::Output {
unsafe {
use std::mem;
let mut ret: $from = mem::uninitialized();
for i in 0..$size {
ret.0[i] = self.0[i] & rhs.0[i];
}
ret
}
}
}
/// Moving BitAnd
impl BitAnd for $from {
type Output = $from;
fn bitand(self, rhs: Self) -> Self::Output {
&self & &rhs
}
}
/// BitXor on references
impl <'a> BitXor for &'a $from {
type Output = $from;
fn bitxor(self, rhs: Self) -> Self::Output {
unsafe {
use std::mem;
let mut ret: $from = mem::uninitialized();
for i in 0..$size {
ret.0[i] = self.0[i] ^ rhs.0[i];
}
ret
}
}
}
/// Moving BitXor
impl BitXor for $from {
type Output = $from;
fn bitxor(self, rhs: Self) -> Self::Output {
&self ^ &rhs
}
}
impl $from {
pub fn hex(&self) -> String {
format!("{}", self)
}
pub fn from_bloomed<T>(b: &T) -> Self where T: FixedHash { b.bloom_part($size) }
}
}
}
impl<'a> From<&'a U256> for H256 {
fn from(value: &'a U256) -> H256 {
unsafe {
let mut ret: H256 = ::std::mem::uninitialized();
value.to_bytes(&mut ret);
ret
}
}
}
impl From<H256> for Address {
fn from(value: H256) -> Address {
unsafe {
let mut ret: Address = ::std::mem::uninitialized();
::std::ptr::copy(value.as_ptr().offset(12), ret.as_mut_ptr(), 20);
ret
}
}
}
impl From<Address> for H256 {
fn from(value: Address) -> H256 {
unsafe {
let mut ret = H256::new();
::std::ptr::copy(value.as_ptr(), ret.as_mut_ptr().offset(12), 20);
ret
}
}
}
pub fn h256_from_hex(s: &str) -> H256 {
use std::str::FromStr;
H256::from_str(s).unwrap()
}
pub fn h256_from_u64(n: u64) -> H256 {
use uint::U256;
H256::from(&U256::from(n))
}
pub fn address_from_hex(s: &str) -> Address {
use std::str::FromStr;
Address::from_str(s).unwrap()
}
pub fn address_from_u64(n: u64) -> Address {
let h256 = h256_from_u64(n);
From::from(h256)
}
impl_hash!(H32, 4);
impl_hash!(H64, 8);
impl_hash!(H128, 16);
impl_hash!(Address, 20);
impl_hash!(H256, 32);
impl_hash!(H264, 33);
impl_hash!(H512, 64);
impl_hash!(H520, 65);
impl_hash!(H1024, 128);
impl_hash!(H2048, 256);
/// Constant address for point 0. Often used as a default.
pub static ZERO_ADDRESS: Address = Address([0x00; 20]);
/// Constant 256-bit datum for 0. Often used as a default.
pub static ZERO_H256: H256 = H256([0x00; 32]);
#[cfg(test)]
mod tests {
use hash::*;
use std::str::FromStr;
#[test]
fn hash() {
let h = H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
assert_eq!(H64::from_str("0123456789abcdef").unwrap(), h);
assert_eq!(format!("{}", h), "0123456789abcdef");
assert_eq!(format!("{:?}", h), "0123456789abcdef");
assert_eq!(h.hex(), "0123456789abcdef");
assert!(h == h);
assert!(h != H64([0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xee]));
assert!(h != H64([0; 8]));
}
#[test]
fn hash_bitor() {
let a = H64([1; 8]);
let b = H64([2; 8]);
let c = H64([3; 8]);
// borrow
assert_eq!(&a | &b, c);
// move
assert_eq!(a | b, c);
}
#[test]
fn shift_bloomed() {
use sha3::Hashable;
let bloom = H2048::from_str("00000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002020000000000000000000000000000000000000000000008000000001000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
let address = Address::from_str("ef2d6d194084c2de36e0dabfce45d046b37d1106").unwrap();
let topic = H256::from_str("02c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let mut my_bloom = H2048::new();
assert!(!my_bloom.contains_bloomed(&address.sha3()));
assert!(!my_bloom.contains_bloomed(&topic.sha3()));
my_bloom.shift_bloomed(&address.sha3());
assert!(my_bloom.contains_bloomed(&address.sha3()));
assert!(!my_bloom.contains_bloomed(&topic.sha3()));
my_bloom.shift_bloomed(&topic.sha3());
assert_eq!(my_bloom, bloom);
assert!(my_bloom.contains_bloomed(&address.sha3()));
assert!(my_bloom.contains_bloomed(&topic.sha3()));
}
#[test]
fn from_and_to_address() {
let address = Address::from_str("ef2d6d194084c2de36e0dabfce45d046b37d1106").unwrap();
let h = H256::from(address.clone());
let a = Address::from(h);
assert_eq!(address, a);
}
}