openethereum/ethcore/evm/src/interpreter/gasometer.rs
2017-08-01 14:24:47 +02:00

375 lines
12 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use std::cmp;
use util::*;
use super::u256_to_address;
use {evm, vm};
use instructions::{self, Instruction, InstructionInfo};
use interpreter::stack::Stack;
use vm::Schedule;
macro_rules! overflowing {
($x: expr) => {{
let (v, overflow) = $x;
if overflow { return Err(vm::Error::OutOfGas); }
v
}}
}
#[cfg_attr(feature="dev", allow(enum_variant_names))]
enum Request<Cost: ::evm::CostType> {
Gas(Cost),
GasMem(Cost, Cost),
GasMemProvide(Cost, Cost, Option<U256>),
GasMemCopy(Cost, Cost, Cost)
}
pub struct InstructionRequirements<Cost> {
pub gas_cost: Cost,
pub provide_gas: Option<Cost>,
pub memory_total_gas: Cost,
pub memory_required_size: usize,
}
pub struct Gasometer<Gas> {
pub current_gas: Gas,
pub current_mem_gas: Gas,
}
impl<Gas: evm::CostType> Gasometer<Gas> {
pub fn new(current_gas: Gas) -> Self {
Gasometer {
current_gas: current_gas,
current_mem_gas: Gas::from(0),
}
}
pub fn verify_gas(&self, gas_cost: &Gas) -> vm::Result<()> {
match &self.current_gas < gas_cost {
true => Err(vm::Error::OutOfGas),
false => Ok(())
}
}
/// How much gas is provided to a CALL/CREATE, given that we need to deduct `needed` for this operation
/// and that we `requested` some.
pub fn gas_provided(&self, schedule: &Schedule, needed: Gas, requested: Option<U256>) -> vm::Result<Gas> {
// Try converting requested gas to `Gas` (`U256/u64`)
// but in EIP150 even if we request more we should never fail from OOG
let requested = requested.map(Gas::from_u256);
match schedule.sub_gas_cap_divisor {
Some(cap_divisor) if self.current_gas >= needed => {
let gas_remaining = self.current_gas - needed;
let max_gas_provided = match cap_divisor {
64 => gas_remaining - (gas_remaining >> 6),
cap_divisor => gas_remaining - gas_remaining / Gas::from(cap_divisor),
};
if let Some(Ok(r)) = requested {
Ok(cmp::min(r, max_gas_provided))
} else {
Ok(max_gas_provided)
}
},
_ => {
if let Some(r) = requested {
r
} else if self.current_gas >= needed {
Ok(self.current_gas - needed)
} else {
Ok(0.into())
}
},
}
}
#[cfg_attr(feature="dev", allow(cyclomatic_complexity))]
/// Determine how much gas is used by the given instruction, given the machine's state.
///
/// We guarantee that the final element of the returned tuple (`provided`) will be `Some`
/// iff the `instruction` is one of `CREATE`, or any of the `CALL` variants. In this case,
/// it will be the amount of gas that the current context provides to the child context.
pub fn requirements(
&mut self,
ext: &vm::Ext,
instruction: Instruction,
info: &InstructionInfo,
stack: &Stack<U256>,
current_mem_size: usize,
) -> vm::Result<InstructionRequirements<Gas>> {
let schedule = ext.schedule();
let tier = instructions::get_tier_idx(info.tier);
let default_gas = Gas::from(schedule.tier_step_gas[tier]);
let cost = match instruction {
instructions::JUMPDEST => {
Request::Gas(Gas::from(1))
},
instructions::SSTORE => {
let address = H256::from(stack.peek(0));
let newval = stack.peek(1);
let val = U256::from(&*ext.storage_at(&address)?);
let gas = if val.is_zero() && !newval.is_zero() {
schedule.sstore_set_gas
} else {
// Refund for below case is added when actually executing sstore
// !is_zero(&val) && is_zero(newval)
schedule.sstore_reset_gas
};
Request::Gas(Gas::from(gas))
},
instructions::SLOAD => {
Request::Gas(Gas::from(schedule.sload_gas))
},
instructions::BALANCE => {
Request::Gas(Gas::from(schedule.balance_gas))
},
instructions::EXTCODESIZE => {
Request::Gas(Gas::from(schedule.extcodesize_gas))
},
instructions::SUICIDE => {
let mut gas = Gas::from(schedule.suicide_gas);
let is_value_transfer = !ext.origin_balance()?.is_zero();
let address = u256_to_address(stack.peek(0));
if (
!schedule.no_empty && !ext.exists(&address)?
) || (
schedule.no_empty && is_value_transfer && !ext.exists_and_not_null(&address)?
) {
gas = overflowing!(gas.overflow_add(schedule.suicide_to_new_account_cost.into()));
}
Request::Gas(gas)
},
instructions::MSTORE | instructions::MLOAD => {
Request::GasMem(default_gas, mem_needed_const(stack.peek(0), 32)?)
},
instructions::MSTORE8 => {
Request::GasMem(default_gas, mem_needed_const(stack.peek(0), 1)?)
},
instructions::RETURN | instructions::REVERT => {
Request::GasMem(default_gas, mem_needed(stack.peek(0), stack.peek(1))?)
},
instructions::SHA3 => {
let w = overflowing!(add_gas_usize(Gas::from_u256(*stack.peek(1))?, 31));
let words = w >> 5;
let gas = Gas::from(schedule.sha3_gas) + (Gas::from(schedule.sha3_word_gas) * words);
Request::GasMem(gas, mem_needed(stack.peek(0), stack.peek(1))?)
},
instructions::CALLDATACOPY | instructions::CODECOPY | instructions::RETURNDATACOPY => {
Request::GasMemCopy(default_gas, mem_needed(stack.peek(0), stack.peek(2))?, Gas::from_u256(*stack.peek(2))?)
},
instructions::EXTCODECOPY => {
Request::GasMemCopy(schedule.extcodecopy_base_gas.into(), mem_needed(stack.peek(1), stack.peek(3))?, Gas::from_u256(*stack.peek(3))?)
},
instructions::LOG0...instructions::LOG4 => {
let no_of_topics = instructions::get_log_topics(instruction);
let log_gas = schedule.log_gas + schedule.log_topic_gas * no_of_topics;
let data_gas = overflowing!(Gas::from_u256(*stack.peek(1))?.overflow_mul(Gas::from(schedule.log_data_gas)));
let gas = overflowing!(data_gas.overflow_add(Gas::from(log_gas)));
Request::GasMem(gas, mem_needed(stack.peek(0), stack.peek(1))?)
},
instructions::CALL | instructions::CALLCODE => {
let mut gas = Gas::from(schedule.call_gas);
let mem = cmp::max(
mem_needed(stack.peek(5), stack.peek(6))?,
mem_needed(stack.peek(3), stack.peek(4))?
);
let address = u256_to_address(stack.peek(1));
let is_value_transfer = !stack.peek(2).is_zero();
if instruction == instructions::CALL && (
(!schedule.no_empty && !ext.exists(&address)?)
||
(schedule.no_empty && is_value_transfer && !ext.exists_and_not_null(&address)?)
) {
gas = overflowing!(gas.overflow_add(schedule.call_new_account_gas.into()));
}
if is_value_transfer {
gas = overflowing!(gas.overflow_add(schedule.call_value_transfer_gas.into()));
}
let requested = *stack.peek(0);
Request::GasMemProvide(gas, mem, Some(requested))
},
instructions::DELEGATECALL | instructions::STATICCALL => {
let gas = Gas::from(schedule.call_gas);
let mem = cmp::max(
mem_needed(stack.peek(4), stack.peek(5))?,
mem_needed(stack.peek(2), stack.peek(3))?
);
let requested = *stack.peek(0);
Request::GasMemProvide(gas, mem, Some(requested))
},
instructions::CREATE | instructions::CREATE2 => {
let gas = Gas::from(schedule.create_gas);
let mem = mem_needed(stack.peek(1), stack.peek(2))?;
Request::GasMemProvide(gas, mem, None)
},
instructions::EXP => {
let expon = stack.peek(1);
let bytes = ((expon.bits() + 7) / 8) as usize;
let gas = Gas::from(schedule.exp_gas + schedule.exp_byte_gas * bytes);
Request::Gas(gas)
},
instructions::BLOCKHASH => {
Request::Gas(Gas::from(schedule.blockhash_gas))
},
_ => Request::Gas(default_gas),
};
Ok(match cost {
Request::Gas(gas) => {
InstructionRequirements {
gas_cost: gas,
provide_gas: None,
memory_required_size: 0,
memory_total_gas: self.current_mem_gas,
}
},
Request::GasMem(gas, mem_size) => {
let (mem_gas_cost, new_mem_gas, new_mem_size) = self.mem_gas_cost(schedule, current_mem_size, &mem_size)?;
let gas = overflowing!(gas.overflow_add(mem_gas_cost));
InstructionRequirements {
gas_cost: gas,
provide_gas: None,
memory_required_size: new_mem_size,
memory_total_gas: new_mem_gas,
}
},
Request::GasMemProvide(gas, mem_size, requested) => {
let (mem_gas_cost, new_mem_gas, new_mem_size) = self.mem_gas_cost(schedule, current_mem_size, &mem_size)?;
let gas = overflowing!(gas.overflow_add(mem_gas_cost));
let provided = self.gas_provided(schedule, gas, requested)?;
let total_gas = overflowing!(gas.overflow_add(provided));
InstructionRequirements {
gas_cost: total_gas,
provide_gas: Some(provided),
memory_required_size: new_mem_size,
memory_total_gas: new_mem_gas,
}
},
Request::GasMemCopy(gas, mem_size, copy) => {
let (mem_gas_cost, new_mem_gas, new_mem_size) = self.mem_gas_cost(schedule, current_mem_size, &mem_size)?;
let copy = overflowing!(add_gas_usize(copy, 31)) >> 5;
let copy_gas = Gas::from(schedule.copy_gas) * copy;
let gas = overflowing!(gas.overflow_add(copy_gas));
let gas = overflowing!(gas.overflow_add(mem_gas_cost));
InstructionRequirements {
gas_cost: gas,
provide_gas: None,
memory_required_size: new_mem_size,
memory_total_gas: new_mem_gas,
}
},
})
}
fn mem_gas_cost(&self, schedule: &Schedule, current_mem_size: usize, mem_size: &Gas) -> vm::Result<(Gas, Gas, usize)> {
let gas_for_mem = |mem_size: Gas| {
let s = mem_size >> 5;
// s * memory_gas + s * s / quad_coeff_div
let a = overflowing!(s.overflow_mul(Gas::from(schedule.memory_gas)));
// Calculate s*s/quad_coeff_div
assert_eq!(schedule.quad_coeff_div, 512);
let b = overflowing!(s.overflow_mul_shr(s, 9));
Ok(overflowing!(a.overflow_add(b)))
};
let current_mem_size = Gas::from(current_mem_size);
let req_mem_size_rounded = (overflowing!(mem_size.overflow_add(Gas::from(31 as usize))) >> 5) << 5;
let (mem_gas_cost, new_mem_gas) = if req_mem_size_rounded > current_mem_size {
let new_mem_gas = gas_for_mem(req_mem_size_rounded)?;
(new_mem_gas - self.current_mem_gas, new_mem_gas)
} else {
(Gas::from(0), self.current_mem_gas)
};
Ok((mem_gas_cost, new_mem_gas, req_mem_size_rounded.as_usize()))
}
}
#[inline]
fn mem_needed_const<Gas: evm::CostType>(mem: &U256, add: usize) -> vm::Result<Gas> {
Gas::from_u256(overflowing!(mem.overflowing_add(U256::from(add))))
}
#[inline]
fn mem_needed<Gas: evm::CostType>(offset: &U256, size: &U256) -> vm::Result<Gas> {
if size.is_zero() {
return Ok(Gas::from(0));
}
Gas::from_u256(overflowing!(offset.overflowing_add(*size)))
}
#[inline]
fn add_gas_usize<Gas: evm::CostType>(value: Gas, num: usize) -> (Gas, bool) {
value.overflow_add(Gas::from(num))
}
#[test]
fn test_mem_gas_cost() {
// given
let gasometer = Gasometer::<U256>::new(U256::zero());
let schedule = Schedule::default();
let current_mem_size = 5;
let mem_size = !U256::zero();
// when
let result = gasometer.mem_gas_cost(&schedule, current_mem_size, &mem_size);
// then
if result.is_ok() {
assert!(false, "Should fail with OutOfGas");
}
}
#[test]
fn test_calculate_mem_cost() {
// given
let gasometer = Gasometer::<usize>::new(0);
let schedule = Schedule::default();
let current_mem_size = 0;
let mem_size = 5;
// when
let (mem_cost, new_mem_gas, mem_size) = gasometer.mem_gas_cost(&schedule, current_mem_size, &mem_size).unwrap();
// then
assert_eq!(mem_cost, 3);
assert_eq!(new_mem_gas, 3);
assert_eq!(mem_size, 32);
}