2153 lines
61 KiB
Rust
2153 lines
61 KiB
Rust
// Copyright 2015, 2016 Ethcore (UK) Ltd.
|
|
// This file is part of Parity.
|
|
|
|
// Parity is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// Parity is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// Code derived from original work by Andrew Poelstra <apoelstra@wpsoftware.net>
|
|
|
|
// Rust Bitcoin Library
|
|
// Written in 2014 by
|
|
// Andrew Poelstra <apoelstra@wpsoftware.net>
|
|
//
|
|
// To the extent possible under law, the author(s) have dedicated all
|
|
// copyright and related and neighboring rights to this software to
|
|
// the public domain worldwide. This software is distributed without
|
|
// any warranty.
|
|
//
|
|
// You should have received a copy of the CC0 Public Domain Dedication
|
|
// along with this software.
|
|
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
|
|
//
|
|
|
|
//! Big unsigned integer types
|
|
//!
|
|
//! Implementation of a various large-but-fixed sized unsigned integer types.
|
|
//! The functions here are designed to be fast.
|
|
//!
|
|
|
|
#[cfg(all(asm_available, target_arch="x86_64"))]
|
|
use std::mem;
|
|
use std::fmt;
|
|
use std::cmp;
|
|
|
|
use std::str::{FromStr};
|
|
use std::convert::From;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::ops::*;
|
|
use std::cmp::*;
|
|
|
|
use serde;
|
|
use rustc_serialize::hex::{FromHex, FromHexError, ToHex};
|
|
|
|
|
|
macro_rules! impl_map_from {
|
|
($thing:ident, $from:ty, $to:ty) => {
|
|
impl From<$from> for $thing {
|
|
fn from(value: $from) -> $thing {
|
|
From::from(value as $to)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(not(all(asm_available, target_arch="x86_64")))]
|
|
macro_rules! uint_overflowing_add {
|
|
($name:ident, $n_words:expr, $self_expr: expr, $other: expr) => ({
|
|
uint_overflowing_add_reg!($name, $n_words, $self_expr, $other)
|
|
})
|
|
}
|
|
|
|
macro_rules! uint_overflowing_add_reg {
|
|
($name:ident, $n_words:expr, $self_expr: expr, $other: expr) => ({
|
|
let $name(ref me) = $self_expr;
|
|
let $name(ref you) = $other;
|
|
|
|
let mut ret = [0u64; $n_words];
|
|
let mut carry = 0u64;
|
|
|
|
for i in 0..$n_words {
|
|
let (res1, overflow1) = me[i].overflowing_add(you[i]);
|
|
let (res2, overflow2) = res1.overflowing_add(carry);
|
|
|
|
ret[i] = res2;
|
|
carry = overflow1 as u64 + overflow2 as u64;
|
|
}
|
|
|
|
($name(ret), carry > 0)
|
|
})
|
|
}
|
|
|
|
#[cfg(all(asm_available, target_arch="x86_64"))]
|
|
macro_rules! uint_overflowing_add {
|
|
(U256, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
let mut result: [u64; 4] = unsafe { mem::uninitialized() };
|
|
let self_t: &[u64; 4] = unsafe { &mem::transmute($self_expr) };
|
|
let other_t: &[u64; 4] = unsafe { &mem::transmute($other) };
|
|
|
|
let overflow: u8;
|
|
unsafe {
|
|
asm!("
|
|
add $9, $0
|
|
adc $10, $1
|
|
adc $11, $2
|
|
adc $12, $3
|
|
setc %al
|
|
"
|
|
: "=r"(result[0]), "=r"(result[1]), "=r"(result[2]), "=r"(result[3]), "={al}"(overflow)
|
|
: "0"(self_t[0]), "1"(self_t[1]), "2"(self_t[2]), "3"(self_t[3]),
|
|
"mr"(other_t[0]), "mr"(other_t[1]), "mr"(other_t[2]), "mr"(other_t[3])
|
|
:
|
|
:
|
|
);
|
|
}
|
|
(U256(result), overflow != 0)
|
|
});
|
|
(U512, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
let mut result: [u64; 8] = unsafe { mem::uninitialized() };
|
|
let self_t: &[u64; 8] = unsafe { &mem::transmute($self_expr) };
|
|
let other_t: &[u64; 8] = unsafe { &mem::transmute($other) };
|
|
|
|
let overflow: u8;
|
|
|
|
unsafe {
|
|
asm!("
|
|
add $15, $0
|
|
adc $16, $1
|
|
adc $17, $2
|
|
adc $18, $3
|
|
lodsq
|
|
adc $11, %rax
|
|
stosq
|
|
lodsq
|
|
adc $12, %rax
|
|
stosq
|
|
lodsq
|
|
adc $13, %rax
|
|
stosq
|
|
lodsq
|
|
adc $14, %rax
|
|
stosq
|
|
setc %al
|
|
|
|
": "=r"(result[0]), "=r"(result[1]), "=r"(result[2]), "=r"(result[3]),
|
|
|
|
"={al}"(overflow) /* $0 - $4 */
|
|
|
|
: "{rdi}"(&result[4] as *const u64) /* $5 */
|
|
"{rsi}"(&other_t[4] as *const u64) /* $6 */
|
|
"0"(self_t[0]), "1"(self_t[1]), "2"(self_t[2]), "3"(self_t[3]),
|
|
"m"(self_t[4]), "m"(self_t[5]), "m"(self_t[6]), "m"(self_t[7]),
|
|
/* $7 - $14 */
|
|
|
|
"mr"(other_t[0]), "mr"(other_t[1]), "mr"(other_t[2]), "mr"(other_t[3]),
|
|
"m"(other_t[4]), "m"(other_t[5]), "m"(other_t[6]), "m"(other_t[7]) /* $15 - $22 */
|
|
: "rdi", "rsi"
|
|
:
|
|
);
|
|
}
|
|
(U512(result), overflow != 0)
|
|
});
|
|
|
|
($name:ident, $n_words:expr, $self_expr: expr, $other: expr) => (
|
|
uint_overflowing_add_reg!($name, $n_words, $self_expr, $other)
|
|
)
|
|
}
|
|
|
|
#[cfg(not(all(asm_available, target_arch="x86_64")))]
|
|
macro_rules! uint_overflowing_sub {
|
|
($name:ident, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
uint_overflowing_sub_reg!($name, $n_words, $self_expr, $other)
|
|
})
|
|
}
|
|
|
|
macro_rules! uint_overflowing_sub_reg {
|
|
($name:ident, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
let $name(ref me) = $self_expr;
|
|
let $name(ref you) = $other;
|
|
|
|
let mut ret = [0u64; $n_words];
|
|
let mut carry = 0u64;
|
|
|
|
for i in 0..$n_words {
|
|
let (res1, overflow1) = me[i].overflowing_sub(you[i]);
|
|
let (res2, overflow2) = res1.overflowing_sub(carry);
|
|
|
|
ret[i] = res2;
|
|
carry = overflow1 as u64 + overflow2 as u64;
|
|
}
|
|
|
|
($name(ret), carry > 0)
|
|
|
|
})
|
|
}
|
|
|
|
#[cfg(all(asm_available, target_arch="x86_64"))]
|
|
macro_rules! uint_overflowing_sub {
|
|
(U256, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
let mut result: [u64; 4] = unsafe { mem::uninitialized() };
|
|
let self_t: &[u64; 4] = unsafe { &mem::transmute($self_expr) };
|
|
let other_t: &[u64; 4] = unsafe { &mem::transmute($other) };
|
|
|
|
let overflow: u8;
|
|
unsafe {
|
|
asm!("
|
|
sub $9, $0
|
|
sbb $10, $1
|
|
sbb $11, $2
|
|
sbb $12, $3
|
|
setb %al
|
|
"
|
|
: "=r"(result[0]), "=r"(result[1]), "=r"(result[2]), "=r"(result[3]), "={al}"(overflow)
|
|
: "0"(self_t[0]), "1"(self_t[1]), "2"(self_t[2]), "3"(self_t[3]), "mr"(other_t[0]), "mr"(other_t[1]), "mr"(other_t[2]), "mr"(other_t[3])
|
|
:
|
|
:
|
|
);
|
|
}
|
|
(U256(result), overflow != 0)
|
|
});
|
|
(U512, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
let mut result: [u64; 8] = unsafe { mem::uninitialized() };
|
|
let self_t: &[u64; 8] = unsafe { &mem::transmute($self_expr) };
|
|
let other_t: &[u64; 8] = unsafe { &mem::transmute($other) };
|
|
|
|
let overflow: u8;
|
|
|
|
unsafe {
|
|
asm!("
|
|
sub $15, $0
|
|
sbb $16, $1
|
|
sbb $17, $2
|
|
sbb $18, $3
|
|
lodsq
|
|
sbb $19, %rax
|
|
stosq
|
|
lodsq
|
|
sbb $20, %rax
|
|
stosq
|
|
lodsq
|
|
sbb $21, %rax
|
|
stosq
|
|
lodsq
|
|
sbb $22, %rax
|
|
stosq
|
|
setb %al
|
|
"
|
|
: "=r"(result[0]), "=r"(result[1]), "=r"(result[2]), "=r"(result[3]),
|
|
|
|
"={al}"(overflow) /* $0 - $4 */
|
|
|
|
: "{rdi}"(&result[4] as *const u64) /* $5 */
|
|
"{rsi}"(&self_t[4] as *const u64) /* $6 */
|
|
"0"(self_t[0]), "1"(self_t[1]), "2"(self_t[2]), "3"(self_t[3]),
|
|
"m"(self_t[4]), "m"(self_t[5]), "m"(self_t[6]), "m"(self_t[7]),
|
|
/* $7 - $14 */
|
|
|
|
"m"(other_t[0]), "m"(other_t[1]), "m"(other_t[2]), "m"(other_t[3]),
|
|
"m"(other_t[4]), "m"(other_t[5]), "m"(other_t[6]), "m"(other_t[7]) /* $15 - $22 */
|
|
: "rdi", "rsi"
|
|
:
|
|
);
|
|
}
|
|
(U512(result), overflow != 0)
|
|
});
|
|
($name:ident, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
uint_overflowing_sub_reg!($name, $n_words, $self_expr, $other)
|
|
})
|
|
}
|
|
|
|
#[cfg(all(asm_available, target_arch="x86_64"))]
|
|
macro_rules! uint_overflowing_mul {
|
|
(U256, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
let mut result: [u64; 4] = unsafe { mem::uninitialized() };
|
|
let self_t: &[u64; 4] = unsafe { &mem::transmute($self_expr) };
|
|
let other_t: &[u64; 4] = unsafe { &mem::transmute($other) };
|
|
|
|
let overflow: u64;
|
|
unsafe {
|
|
asm!("
|
|
mov $5, %rax
|
|
mulq $9
|
|
mov %rax, $0
|
|
mov %rdx, $1
|
|
|
|
mov $5, %rax
|
|
mulq $10
|
|
add %rax, $1
|
|
adc $$0, %rdx
|
|
mov %rdx, $2
|
|
|
|
mov $5, %rax
|
|
mulq $11
|
|
add %rax, $2
|
|
adc $$0, %rdx
|
|
mov %rdx, $3
|
|
|
|
mov $5, %rax
|
|
mulq $12
|
|
add %rax, $3
|
|
adc $$0, %rdx
|
|
mov %rdx, %rcx
|
|
|
|
mov $6, %rax
|
|
mulq $9
|
|
add %rax, $1
|
|
adc %rdx, $2
|
|
adc $$0, $3
|
|
adc $$0, %rcx
|
|
|
|
mov $6, %rax
|
|
mulq $10
|
|
add %rax, $2
|
|
adc %rdx, $3
|
|
adc $$0, %rcx
|
|
adc $$0, $3
|
|
adc $$0, %rcx
|
|
|
|
mov $6, %rax
|
|
mulq $11
|
|
add %rax, $3
|
|
adc $$0, %rdx
|
|
or %rdx, %rcx
|
|
|
|
mov $7, %rax
|
|
mulq $9
|
|
add %rax, $2
|
|
adc %rdx, $3
|
|
adc $$0, %rcx
|
|
|
|
mov $7, %rax
|
|
mulq $10
|
|
add %rax, $3
|
|
adc $$0, %rdx
|
|
or %rdx, %rcx
|
|
|
|
mov $8, %rax
|
|
mulq $9
|
|
add %rax, $3
|
|
or %rdx, %rcx
|
|
|
|
cmpq $$0, %rcx
|
|
jne 2f
|
|
|
|
mov $8, %rcx
|
|
jrcxz 12f
|
|
|
|
mov $12, %rcx
|
|
mov $11, %rax
|
|
or %rax, %rcx
|
|
mov $10, %rax
|
|
or %rax, %rcx
|
|
jmp 2f
|
|
|
|
12:
|
|
mov $12, %rcx
|
|
jrcxz 11f
|
|
|
|
mov $7, %rcx
|
|
mov $6, %rax
|
|
or %rax, %rcx
|
|
|
|
cmpq $$0, %rcx
|
|
jne 2f
|
|
|
|
11:
|
|
mov $11, %rcx
|
|
jrcxz 2f
|
|
mov $7, %rcx
|
|
|
|
2:
|
|
"
|
|
: /* $0 */ "={r8}"(result[0]), /* $1 */ "={r9}"(result[1]), /* $2 */ "={r10}"(result[2]),
|
|
/* $3 */ "={r11}"(result[3]), /* $4 */ "={rcx}"(overflow)
|
|
|
|
: /* $5 */ "m"(self_t[0]), /* $6 */ "m"(self_t[1]), /* $7 */ "m"(self_t[2]),
|
|
/* $8 */ "m"(self_t[3]), /* $9 */ "m"(other_t[0]), /* $10 */ "m"(other_t[1]),
|
|
/* $11 */ "m"(other_t[2]), /* $12 */ "m"(other_t[3])
|
|
: "rax", "rdx"
|
|
:
|
|
|
|
);
|
|
}
|
|
(U256(result), overflow > 0)
|
|
});
|
|
($name:ident, $n_words:expr, $self_expr: expr, $other: expr) => (
|
|
uint_overflowing_mul_reg!($name, $n_words, $self_expr, $other)
|
|
)
|
|
}
|
|
|
|
#[cfg(not(all(asm_available, target_arch="x86_64")))]
|
|
macro_rules! uint_overflowing_mul {
|
|
($name:ident, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
uint_overflowing_mul_reg!($name, $n_words, $self_expr, $other)
|
|
})
|
|
}
|
|
|
|
macro_rules! uint_overflowing_mul_reg {
|
|
($name:ident, $n_words: expr, $self_expr: expr, $other: expr) => ({
|
|
let $name(ref me) = $self_expr;
|
|
let $name(ref you) = $other;
|
|
let mut ret = [0u64; 2*$n_words];
|
|
|
|
for i in 0..$n_words {
|
|
if you[i] == 0 {
|
|
continue;
|
|
}
|
|
|
|
let mut carry2 = 0u64;
|
|
let (b_u, b_l) = split(you[i]);
|
|
|
|
for j in 0..$n_words {
|
|
if me[j] == 0 && carry2 == 0 {
|
|
continue;
|
|
}
|
|
|
|
let a = split(me[j]);
|
|
|
|
// multiply parts
|
|
let (c_l, overflow_l) = mul_u32(a, b_l, ret[i + j]);
|
|
let (c_u, overflow_u) = mul_u32(a, b_u, c_l >> 32);
|
|
ret[i + j] = (c_l & 0xFFFFFFFF) + (c_u << 32);
|
|
|
|
// Only single overflow possible here
|
|
let carry = (c_u >> 32) + (overflow_u << 32) + overflow_l + carry2;
|
|
let (carry, o) = carry.overflowing_add(ret[i + j + 1]);
|
|
|
|
ret[i + j + 1] = carry;
|
|
carry2 = o as u64;
|
|
}
|
|
}
|
|
|
|
let mut res = [0u64; $n_words];
|
|
let mut overflow = false;
|
|
for i in 0..$n_words {
|
|
res[i] = ret[i];
|
|
}
|
|
|
|
for i in $n_words..2*$n_words {
|
|
overflow |= ret[i] != 0;
|
|
}
|
|
|
|
($name(res), overflow)
|
|
})
|
|
}
|
|
|
|
macro_rules! overflowing {
|
|
($op: expr, $overflow: expr) => (
|
|
{
|
|
let (overflow_x, overflow_overflow) = $op;
|
|
$overflow |= overflow_overflow;
|
|
overflow_x
|
|
}
|
|
);
|
|
($op: expr) => (
|
|
{
|
|
let (overflow_x, _overflow_overflow) = $op;
|
|
overflow_x
|
|
}
|
|
);
|
|
}
|
|
|
|
macro_rules! panic_on_overflow {
|
|
($name: expr) => {
|
|
if $name {
|
|
panic!("arithmetic operation overflow")
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn mul_u32(a: (u64, u64), b: u64, carry: u64) -> (u64, u64) {
|
|
let upper = b * a.0;
|
|
let lower = b * a.1;
|
|
|
|
let (res1, overflow1) = lower.overflowing_add(upper << 32);
|
|
let (res2, overflow2) = res1.overflowing_add(carry);
|
|
|
|
let carry = (upper >> 32) + overflow1 as u64 + overflow2 as u64;
|
|
(res2, carry)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn split(a: u64) -> (u64, u64) {
|
|
(a >> 32, a & 0xFFFFFFFF)
|
|
}
|
|
|
|
/// Large, fixed-length unsigned integer type.
|
|
pub trait Uint: Sized + Default + FromStr + From<u64> + fmt::Debug + fmt::Display + PartialOrd + Ord + PartialEq + Eq + Hash {
|
|
|
|
/// Returns new instance equalling zero.
|
|
fn zero() -> Self;
|
|
/// Returns new instance equalling one.
|
|
fn one() -> Self;
|
|
/// Returns the largest value that can be represented by this integer type.
|
|
fn max_value() -> Self;
|
|
|
|
/// Error type for converting from a decimal string.
|
|
type FromDecStrErr;
|
|
/// Convert from a decimal string.
|
|
fn from_dec_str(value: &str) -> Result<Self, Self::FromDecStrErr>;
|
|
|
|
/// Conversion to u32
|
|
fn low_u32(&self) -> u32;
|
|
|
|
/// Conversion to u64
|
|
fn low_u64(&self) -> u64;
|
|
|
|
/// Conversion to u32 with overflow checking
|
|
fn as_u32(&self) -> u32;
|
|
|
|
/// Conversion to u64 with overflow checking
|
|
fn as_u64(&self) -> u64;
|
|
|
|
/// Return the least number of bits needed to represent the number
|
|
fn bits(&self) -> usize;
|
|
/// Return if specific bit is set
|
|
fn bit(&self, index: usize) -> bool;
|
|
/// Return single byte
|
|
fn byte(&self, index: usize) -> u8;
|
|
/// Get this Uint as slice of bytes
|
|
fn to_raw_bytes(&self, bytes: &mut[u8]);
|
|
|
|
/// Create `Uint(10**n)`
|
|
fn exp10(n: usize) -> Self;
|
|
/// Return eponentation `self**other`. Panic on overflow.
|
|
fn pow(self, other: Self) -> Self;
|
|
/// Return wrapped eponentation `self**other` and flag if there was an overflow
|
|
fn overflowing_pow(self, other: Self) -> (Self, bool);
|
|
|
|
/// Add this `Uint` to other returning result and possible overflow
|
|
fn overflowing_add(self, other: Self) -> (Self, bool);
|
|
|
|
/// Subtract another `Uint` from this returning result and possible overflow
|
|
fn overflowing_sub(self, other: Self) -> (Self, bool);
|
|
|
|
/// Multiple this `Uint` with other returning result and possible overflow
|
|
fn overflowing_mul(self, other: Self) -> (Self, bool);
|
|
|
|
/// Divide this `Uint` by other returning result and possible overflow
|
|
fn overflowing_div(self, other: Self) -> (Self, bool);
|
|
|
|
/// Returns reminder of division of this `Uint` by other and possible overflow
|
|
fn overflowing_rem(self, other: Self) -> (Self, bool);
|
|
|
|
/// Returns negation of this `Uint` and overflow (always true)
|
|
fn overflowing_neg(self) -> (Self, bool);
|
|
}
|
|
|
|
macro_rules! construct_uint {
|
|
($name:ident, $n_words:expr) => (
|
|
/// Little-endian large integer type
|
|
#[derive(Copy, Clone, Eq, PartialEq)]
|
|
pub struct $name(pub [u64; $n_words]);
|
|
|
|
impl Uint for $name {
|
|
type FromDecStrErr = FromHexError;
|
|
|
|
/// TODO: optimize, throw appropriate err
|
|
fn from_dec_str(value: &str) -> Result<Self, Self::FromDecStrErr> {
|
|
Ok(value.bytes()
|
|
.map(|b| b - 48)
|
|
.fold($name::from(0u64), | acc, c |
|
|
// fast multiplication by 10
|
|
// (acc << 3) + (acc << 1) => acc * 10
|
|
(acc << 3) + (acc << 1) + $name::from(c)
|
|
))
|
|
}
|
|
|
|
#[inline]
|
|
fn low_u32(&self) -> u32 {
|
|
let &$name(ref arr) = self;
|
|
arr[0] as u32
|
|
}
|
|
|
|
#[inline]
|
|
fn low_u64(&self) -> u64 {
|
|
let &$name(ref arr) = self;
|
|
arr[0]
|
|
}
|
|
|
|
/// Conversion to u32 with overflow checking
|
|
#[inline]
|
|
fn as_u32(&self) -> u32 {
|
|
let &$name(ref arr) = self;
|
|
if (arr[0] & (0xffffffffu64 << 32)) != 0 {
|
|
panic!("Integer overflow when casting U256")
|
|
}
|
|
self.as_u64() as u32
|
|
}
|
|
|
|
/// Conversion to u64 with overflow checking
|
|
#[inline]
|
|
fn as_u64(&self) -> u64 {
|
|
let &$name(ref arr) = self;
|
|
for i in 1..$n_words {
|
|
if arr[i] != 0 {
|
|
panic!("Integer overflow when casting U256")
|
|
}
|
|
}
|
|
arr[0]
|
|
}
|
|
|
|
/// Return the least number of bits needed to represent the number
|
|
#[inline]
|
|
fn bits(&self) -> usize {
|
|
let &$name(ref arr) = self;
|
|
for i in 1..$n_words {
|
|
if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as usize; }
|
|
}
|
|
0x40 - arr[0].leading_zeros() as usize
|
|
}
|
|
|
|
#[inline]
|
|
fn bit(&self, index: usize) -> bool {
|
|
let &$name(ref arr) = self;
|
|
arr[index / 64] & (1 << (index % 64)) != 0
|
|
}
|
|
|
|
#[inline]
|
|
fn byte(&self, index: usize) -> u8 {
|
|
let &$name(ref arr) = self;
|
|
(arr[index / 8] >> (((index % 8)) * 8)) as u8
|
|
}
|
|
|
|
fn to_raw_bytes(&self, bytes: &mut[u8]) {
|
|
assert!($n_words * 8 == bytes.len());
|
|
let &$name(ref arr) = self;
|
|
for i in 0..bytes.len() {
|
|
let rev = bytes.len() - 1 - i;
|
|
let pos = rev / 8;
|
|
bytes[i] = (arr[pos] >> ((rev % 8) * 8)) as u8;
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn exp10(n: usize) -> Self {
|
|
match n {
|
|
0 => Self::from(1u64),
|
|
_ => Self::exp10(n - 1) * Self::from(10u64)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn zero() -> Self {
|
|
From::from(0u64)
|
|
}
|
|
|
|
#[inline]
|
|
fn one() -> Self {
|
|
From::from(1u64)
|
|
}
|
|
|
|
#[inline]
|
|
fn max_value() -> Self {
|
|
let mut result = [0; $n_words];
|
|
for i in 0..$n_words {
|
|
result[i] = u64::max_value();
|
|
}
|
|
$name(result)
|
|
}
|
|
|
|
/// Fast exponentation by squaring
|
|
/// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
|
|
fn pow(self, expon: Self) -> Self {
|
|
if expon == Self::zero() {
|
|
return Self::one()
|
|
}
|
|
let is_even = |x : &Self| x.low_u64() & 1 == 0;
|
|
|
|
let u_one = Self::one();
|
|
let u_two = Self::from(2);
|
|
let mut y = u_one;
|
|
let mut n = expon;
|
|
let mut x = self;
|
|
while n > u_one {
|
|
if is_even(&n) {
|
|
x = x * x;
|
|
n = n / u_two;
|
|
} else {
|
|
y = x * y;
|
|
x = x * x;
|
|
n = (n - u_one) / u_two;
|
|
}
|
|
}
|
|
x * y
|
|
}
|
|
|
|
/// Fast exponentation by squaring
|
|
/// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
|
|
fn overflowing_pow(self, expon: Self) -> (Self, bool) {
|
|
if expon == Self::zero() {
|
|
return (Self::one(), false)
|
|
}
|
|
let is_even = |x : &Self| x.low_u64() & 1 == 0;
|
|
|
|
let u_one = Self::one();
|
|
let u_two = Self::from(2);
|
|
let mut y = u_one;
|
|
let mut n = expon;
|
|
let mut x = self;
|
|
let mut overflow = false;
|
|
|
|
while n > u_one {
|
|
if is_even(&n) {
|
|
x = overflowing!(x.overflowing_mul(x), overflow);
|
|
n = n / u_two;
|
|
} else {
|
|
y = overflowing!(x.overflowing_mul(y), overflow);
|
|
x = overflowing!(x.overflowing_mul(x), overflow);
|
|
n = (n - u_one) / u_two;
|
|
}
|
|
}
|
|
let res = overflowing!(x.overflowing_mul(y), overflow);
|
|
(res, overflow)
|
|
}
|
|
|
|
/// Optimized instructions
|
|
#[inline(always)]
|
|
fn overflowing_add(self, other: $name) -> ($name, bool) {
|
|
uint_overflowing_add!($name, $n_words, self, other)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn overflowing_sub(self, other: $name) -> ($name, bool) {
|
|
uint_overflowing_sub!($name, $n_words, self, other)
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn overflowing_mul(self, other: $name) -> ($name, bool) {
|
|
uint_overflowing_mul!($name, $n_words, self, other)
|
|
}
|
|
|
|
fn overflowing_div(self, other: $name) -> ($name, bool) {
|
|
(self / other, false)
|
|
}
|
|
|
|
fn overflowing_rem(self, other: $name) -> ($name, bool) {
|
|
(self % other, false)
|
|
}
|
|
|
|
fn overflowing_neg(self) -> ($name, bool) {
|
|
(!self, true)
|
|
}
|
|
}
|
|
|
|
impl $name {
|
|
#[allow(dead_code)] // not used when multiplied with inline assembly
|
|
/// Multiplication by u32
|
|
fn mul_u32(self, other: u32) -> Self {
|
|
let (ret, overflow) = self.overflowing_mul_u32(other);
|
|
panic_on_overflow!(overflow);
|
|
ret
|
|
}
|
|
|
|
#[allow(dead_code)] // not used when multiplied with inline assembly
|
|
/// Overflowing multiplication by u32
|
|
fn overflowing_mul_u32(self, other: u32) -> (Self, bool) {
|
|
let $name(ref arr) = self;
|
|
let mut ret = [0u64; $n_words];
|
|
let mut carry = 0;
|
|
let o = other as u64;
|
|
|
|
for i in 0..$n_words {
|
|
let (res, carry2) = mul_u32(split(arr[i]), o, carry);
|
|
ret[i] = res;
|
|
carry = carry2;
|
|
}
|
|
|
|
($name(ret), carry > 0)
|
|
}
|
|
}
|
|
|
|
impl Default for $name {
|
|
fn default() -> Self {
|
|
$name::zero()
|
|
}
|
|
}
|
|
|
|
impl serde::Serialize for $name {
|
|
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
|
|
where S: serde::Serializer {
|
|
let mut hex = "0x".to_owned();
|
|
let mut bytes = [0u8; 8 * $n_words];
|
|
self.to_raw_bytes(&mut bytes);
|
|
let len = cmp::max((self.bits() + 7) / 8, 1);
|
|
hex.push_str(bytes[bytes.len() - len..].to_hex().as_ref());
|
|
serializer.serialize_str(hex.as_ref())
|
|
}
|
|
}
|
|
|
|
impl serde::Deserialize for $name {
|
|
fn deserialize<D>(deserializer: &mut D) -> Result<$name, D::Error>
|
|
where D: serde::Deserializer {
|
|
struct UintVisitor;
|
|
|
|
impl serde::de::Visitor for UintVisitor {
|
|
type Value = $name;
|
|
|
|
fn visit_str<E>(&mut self, value: &str) -> Result<Self::Value, E> where E: serde::Error {
|
|
// 0x + len
|
|
if value.len() > 2 + $n_words * 16 || value.len() < 2 {
|
|
return Err(serde::Error::custom("Invalid length."));
|
|
}
|
|
|
|
$name::from_str(&value[2..]).map_err(|_| serde::Error::custom("Invalid hex value."))
|
|
}
|
|
|
|
fn visit_string<E>(&mut self, value: String) -> Result<Self::Value, E> where E: serde::Error {
|
|
self.visit_str(value.as_ref())
|
|
}
|
|
}
|
|
|
|
deserializer.deserialize(UintVisitor)
|
|
}
|
|
}
|
|
|
|
impl From<u64> for $name {
|
|
fn from(value: u64) -> $name {
|
|
let mut ret = [0; $n_words];
|
|
ret[0] = value;
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
|
|
impl_map_from!($name, u8, u64);
|
|
impl_map_from!($name, u16, u64);
|
|
impl_map_from!($name, u32, u64);
|
|
impl_map_from!($name, usize, u64);
|
|
|
|
impl From<i64> for $name {
|
|
fn from(value: i64) -> $name {
|
|
match value >= 0 {
|
|
true => From::from(value as u64),
|
|
false => { panic!("Unsigned integer can't be created from negative value"); }
|
|
}
|
|
}
|
|
}
|
|
|
|
impl_map_from!($name, i8, i64);
|
|
impl_map_from!($name, i16, i64);
|
|
impl_map_from!($name, i32, i64);
|
|
impl_map_from!($name, isize, i64);
|
|
|
|
impl<'a> From<&'a [u8]> for $name {
|
|
fn from(bytes: &[u8]) -> $name {
|
|
assert!($n_words * 8 >= bytes.len());
|
|
|
|
let mut ret = [0; $n_words];
|
|
for i in 0..bytes.len() {
|
|
let rev = bytes.len() - 1 - i;
|
|
let pos = rev / 8;
|
|
ret[pos] += (bytes[i] as u64) << ((rev % 8) * 8);
|
|
}
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl FromStr for $name {
|
|
type Err = FromHexError;
|
|
|
|
fn from_str(value: &str) -> Result<$name, Self::Err> {
|
|
let bytes: Vec<u8> = match value.len() % 2 == 0 {
|
|
true => try!(value.from_hex()),
|
|
false => try!(("0".to_owned() + value).from_hex())
|
|
};
|
|
|
|
let bytes_ref: &[u8] = &bytes;
|
|
Ok(From::from(bytes_ref))
|
|
}
|
|
}
|
|
|
|
impl Add<$name> for $name {
|
|
type Output = $name;
|
|
|
|
fn add(self, other: $name) -> $name {
|
|
let (result, overflow) = self.overflowing_add(other);
|
|
panic_on_overflow!(overflow);
|
|
result
|
|
}
|
|
}
|
|
|
|
impl Sub<$name> for $name {
|
|
type Output = $name;
|
|
|
|
#[inline]
|
|
fn sub(self, other: $name) -> $name {
|
|
let (result, overflow) = self.overflowing_sub(other);
|
|
panic_on_overflow!(overflow);
|
|
result
|
|
}
|
|
}
|
|
|
|
impl Mul<$name> for $name {
|
|
type Output = $name;
|
|
|
|
fn mul(self, other: $name) -> $name {
|
|
let (result, overflow) = self.overflowing_mul(other);
|
|
panic_on_overflow!(overflow);
|
|
result
|
|
}
|
|
}
|
|
|
|
impl Div<$name> for $name {
|
|
type Output = $name;
|
|
|
|
fn div(self, other: $name) -> $name {
|
|
let mut sub_copy = self;
|
|
let mut shift_copy = other;
|
|
let mut ret = [0u64; $n_words];
|
|
|
|
let my_bits = self.bits();
|
|
let your_bits = other.bits();
|
|
|
|
// Check for division by 0
|
|
assert!(your_bits != 0);
|
|
|
|
// Early return in case we are dividing by a larger number than us
|
|
if my_bits < your_bits {
|
|
return $name(ret);
|
|
}
|
|
|
|
// Bitwise long division
|
|
let mut shift = my_bits - your_bits;
|
|
shift_copy = shift_copy << shift;
|
|
loop {
|
|
if sub_copy >= shift_copy {
|
|
ret[shift / 64] |= 1 << (shift % 64);
|
|
sub_copy = overflowing!(sub_copy.overflowing_sub(shift_copy));
|
|
}
|
|
shift_copy = shift_copy >> 1;
|
|
if shift == 0 { break; }
|
|
shift -= 1;
|
|
}
|
|
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl Rem<$name> for $name {
|
|
type Output = $name;
|
|
|
|
fn rem(self, other: $name) -> $name {
|
|
let times = self / other;
|
|
self - (times * other)
|
|
}
|
|
}
|
|
|
|
// TODO: optimise and traitify.
|
|
|
|
impl BitAnd<$name> for $name {
|
|
type Output = $name;
|
|
|
|
#[inline]
|
|
fn bitand(self, other: $name) -> $name {
|
|
let $name(ref arr1) = self;
|
|
let $name(ref arr2) = other;
|
|
let mut ret = [0u64; $n_words];
|
|
for i in 0..$n_words {
|
|
ret[i] = arr1[i] & arr2[i];
|
|
}
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl BitXor<$name> for $name {
|
|
type Output = $name;
|
|
|
|
#[inline]
|
|
fn bitxor(self, other: $name) -> $name {
|
|
let $name(ref arr1) = self;
|
|
let $name(ref arr2) = other;
|
|
let mut ret = [0u64; $n_words];
|
|
for i in 0..$n_words {
|
|
ret[i] = arr1[i] ^ arr2[i];
|
|
}
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl BitOr<$name> for $name {
|
|
type Output = $name;
|
|
|
|
#[inline]
|
|
fn bitor(self, other: $name) -> $name {
|
|
let $name(ref arr1) = self;
|
|
let $name(ref arr2) = other;
|
|
let mut ret = [0u64; $n_words];
|
|
for i in 0..$n_words {
|
|
ret[i] = arr1[i] | arr2[i];
|
|
}
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl Not for $name {
|
|
type Output = $name;
|
|
|
|
#[inline]
|
|
fn not(self) -> $name {
|
|
let $name(ref arr) = self;
|
|
let mut ret = [0u64; $n_words];
|
|
for i in 0..$n_words {
|
|
ret[i] = !arr[i];
|
|
}
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl Shl<usize> for $name {
|
|
type Output = $name;
|
|
|
|
fn shl(self, shift: usize) -> $name {
|
|
let $name(ref original) = self;
|
|
let mut ret = [0u64; $n_words];
|
|
let word_shift = shift / 64;
|
|
let bit_shift = shift % 64;
|
|
|
|
// shift
|
|
for i in word_shift..$n_words {
|
|
ret[i] += original[i - word_shift] << bit_shift;
|
|
}
|
|
// carry
|
|
if bit_shift > 0 {
|
|
for i in word_shift+1..$n_words {
|
|
ret[i] += original[i - 1 - word_shift] >> (64 - bit_shift);
|
|
}
|
|
}
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl Shr<usize> for $name {
|
|
type Output = $name;
|
|
|
|
fn shr(self, shift: usize) -> $name {
|
|
let $name(ref original) = self;
|
|
let mut ret = [0u64; $n_words];
|
|
let word_shift = shift / 64;
|
|
let bit_shift = shift % 64;
|
|
|
|
for i in word_shift..$n_words {
|
|
// Shift
|
|
ret[i - word_shift] += original[i] >> bit_shift;
|
|
// Carry
|
|
if bit_shift > 0 && i < $n_words - 1 {
|
|
ret[i - word_shift] += original[i + 1] << (64 - bit_shift);
|
|
}
|
|
}
|
|
$name(ret)
|
|
}
|
|
}
|
|
|
|
impl Ord for $name {
|
|
fn cmp(&self, other: &$name) -> Ordering {
|
|
let &$name(ref me) = self;
|
|
let &$name(ref you) = other;
|
|
let mut i = $n_words;
|
|
while i > 0 {
|
|
i -= 1;
|
|
if me[i] < you[i] { return Ordering::Less; }
|
|
if me[i] > you[i] { return Ordering::Greater; }
|
|
}
|
|
Ordering::Equal
|
|
}
|
|
}
|
|
|
|
impl PartialOrd for $name {
|
|
fn partial_cmp(&self, other: &$name) -> Option<Ordering> {
|
|
Some(self.cmp(other))
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for $name {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
fmt::Display::fmt(self, f)
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for $name {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
if *self == $name::zero() {
|
|
return write!(f, "0");
|
|
}
|
|
|
|
let mut s = String::new();
|
|
let mut current = *self;
|
|
let ten = $name::from(10);
|
|
|
|
while current != $name::zero() {
|
|
s = format!("{}{}", (current % ten).low_u32(), s);
|
|
current = current / ten;
|
|
}
|
|
|
|
write!(f, "{}", s)
|
|
}
|
|
}
|
|
|
|
impl fmt::LowerHex for $name {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let &$name(ref data) = self;
|
|
try!(write!(f, "0x"));
|
|
let mut latch = false;
|
|
for ch in data.iter().rev() {
|
|
for x in 0..16 {
|
|
let nibble = (ch & (15u64 << ((15 - x) * 4) as u64)) >> (((15 - x) * 4) as u64);
|
|
if !latch { latch = nibble != 0 }
|
|
if latch {
|
|
try!(write!(f, "{:x}", nibble));
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg_attr(feature="dev", allow(derive_hash_xor_eq))] // We are pretty sure it's ok.
|
|
impl Hash for $name {
|
|
fn hash<H>(&self, state: &mut H) where H: Hasher {
|
|
unsafe { state.write(::std::slice::from_raw_parts(self.0.as_ptr() as *mut u8, self.0.len() * 8)); }
|
|
state.finish();
|
|
}
|
|
}
|
|
);
|
|
}
|
|
|
|
construct_uint!(U512, 8);
|
|
construct_uint!(U256, 4);
|
|
construct_uint!(U128, 2);
|
|
|
|
impl U256 {
|
|
/// Multiplies two 256-bit integers to produce full 512-bit integer
|
|
/// No overflow possible
|
|
#[cfg(all(asm_available, target_arch="x86_64"))]
|
|
pub fn full_mul(self, other: U256) -> U512 {
|
|
let self_t: &[u64; 4] = unsafe { &mem::transmute(self) };
|
|
let other_t: &[u64; 4] = unsafe { &mem::transmute(other) };
|
|
let mut result: [u64; 8] = unsafe { mem::uninitialized() };
|
|
unsafe {
|
|
asm!("
|
|
mov $8, %rax
|
|
mulq $12
|
|
mov %rax, $0
|
|
mov %rdx, $1
|
|
|
|
mov $8, %rax
|
|
mulq $13
|
|
add %rax, $1
|
|
adc $$0, %rdx
|
|
mov %rdx, $2
|
|
|
|
mov $8, %rax
|
|
mulq $14
|
|
add %rax, $2
|
|
adc $$0, %rdx
|
|
mov %rdx, $3
|
|
|
|
mov $8, %rax
|
|
mulq $15
|
|
add %rax, $3
|
|
adc $$0, %rdx
|
|
mov %rdx, $4
|
|
|
|
mov $9, %rax
|
|
mulq $12
|
|
add %rax, $1
|
|
adc %rdx, $2
|
|
adc $$0, $3
|
|
adc $$0, $4
|
|
xor $5, $5
|
|
adc $$0, $5
|
|
xor $6, $6
|
|
adc $$0, $6
|
|
xor $7, $7
|
|
adc $$0, $7
|
|
|
|
mov $9, %rax
|
|
mulq $13
|
|
add %rax, $2
|
|
adc %rdx, $3
|
|
adc $$0, $4
|
|
adc $$0, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $9, %rax
|
|
mulq $14
|
|
add %rax, $3
|
|
adc %rdx, $4
|
|
adc $$0, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $9, %rax
|
|
mulq $15
|
|
add %rax, $4
|
|
adc %rdx, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $10, %rax
|
|
mulq $12
|
|
add %rax, $2
|
|
adc %rdx, $3
|
|
adc $$0, $4
|
|
adc $$0, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $10, %rax
|
|
mulq $13
|
|
add %rax, $3
|
|
adc %rdx, $4
|
|
adc $$0, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $10, %rax
|
|
mulq $14
|
|
add %rax, $4
|
|
adc %rdx, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $10, %rax
|
|
mulq $15
|
|
add %rax, $5
|
|
adc %rdx, $6
|
|
adc $$0, $7
|
|
|
|
mov $11, %rax
|
|
mulq $12
|
|
add %rax, $3
|
|
adc %rdx, $4
|
|
adc $$0, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $11, %rax
|
|
mulq $13
|
|
add %rax, $4
|
|
adc %rdx, $5
|
|
adc $$0, $6
|
|
adc $$0, $7
|
|
|
|
mov $11, %rax
|
|
mulq $14
|
|
add %rax, $5
|
|
adc %rdx, $6
|
|
adc $$0, $7
|
|
|
|
mov $11, %rax
|
|
mulq $15
|
|
add %rax, $6
|
|
adc %rdx, $7
|
|
"
|
|
: /* $0 */ "={r8}"(result[0]), /* $1 */ "={r9}"(result[1]), /* $2 */ "={r10}"(result[2]),
|
|
/* $3 */ "={r11}"(result[3]), /* $4 */ "={r12}"(result[4]), /* $5 */ "={r13}"(result[5]),
|
|
/* $6 */ "={r14}"(result[6]), /* $7 */ "={r15}"(result[7])
|
|
|
|
: /* $8 */ "m"(self_t[0]), /* $9 */ "m"(self_t[1]), /* $10 */ "m"(self_t[2]),
|
|
/* $11 */ "m"(self_t[3]), /* $12 */ "m"(other_t[0]), /* $13 */ "m"(other_t[1]),
|
|
/* $14 */ "m"(other_t[2]), /* $15 */ "m"(other_t[3])
|
|
: "rax", "rdx"
|
|
:
|
|
);
|
|
}
|
|
U512(result)
|
|
}
|
|
|
|
/// Multiplies two 256-bit integers to produce full 512-bit integer
|
|
/// No overflow possible
|
|
#[cfg(not(all(asm_available, target_arch="x86_64")))]
|
|
pub fn full_mul(self, other: U256) -> U512 {
|
|
let U256(ref me) = self;
|
|
let U256(ref you) = other;
|
|
let mut ret = [0u64; 8];
|
|
|
|
for i in 0..4 {
|
|
if you[i] == 0 {
|
|
continue;
|
|
}
|
|
|
|
let mut carry2 = 0u64;
|
|
let (b_u, b_l) = split(you[i]);
|
|
|
|
for j in 0..4 {
|
|
if me[j] == 0 && carry2 == 0 {
|
|
continue;
|
|
}
|
|
|
|
let a = split(me[j]);
|
|
|
|
// multiply parts
|
|
let (c_l, overflow_l) = mul_u32(a, b_l, ret[i + j]);
|
|
let (c_u, overflow_u) = mul_u32(a, b_u, c_l >> 32);
|
|
ret[i + j] = (c_l & 0xFFFFFFFF) + (c_u << 32);
|
|
|
|
// Only single overflow possible here
|
|
let carry = (c_u >> 32) + (overflow_u << 32) + overflow_l + carry2;
|
|
let (carry, o) = carry.overflowing_add(ret[i + j + 1]);
|
|
|
|
ret[i + j + 1] = carry;
|
|
carry2 = o as u64;
|
|
}
|
|
}
|
|
|
|
U512(ret)
|
|
}
|
|
}
|
|
|
|
impl From<U256> for U512 {
|
|
fn from(value: U256) -> U512 {
|
|
let U256(ref arr) = value;
|
|
let mut ret = [0; 8];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
ret[2] = arr[2];
|
|
ret[3] = arr[3];
|
|
U512(ret)
|
|
}
|
|
}
|
|
|
|
impl From<U512> for U256 {
|
|
fn from(value: U512) -> U256 {
|
|
let U512(ref arr) = value;
|
|
if arr[4] | arr[5] | arr[6] | arr[7] != 0 {
|
|
panic!("Overflow");
|
|
}
|
|
let mut ret = [0; 4];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
ret[2] = arr[2];
|
|
ret[3] = arr[3];
|
|
U256(ret)
|
|
}
|
|
}
|
|
|
|
impl<'a> From<&'a U256> for U512 {
|
|
fn from(value: &'a U256) -> U512 {
|
|
let U256(ref arr) = *value;
|
|
let mut ret = [0; 8];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
ret[2] = arr[2];
|
|
ret[3] = arr[3];
|
|
U512(ret)
|
|
}
|
|
}
|
|
|
|
impl<'a> From<&'a U512> for U256 {
|
|
fn from(value: &'a U512) -> U256 {
|
|
let U512(ref arr) = *value;
|
|
if arr[4] | arr[5] | arr[6] | arr[7] != 0 {
|
|
panic!("Overflow");
|
|
}
|
|
let mut ret = [0; 4];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
ret[2] = arr[2];
|
|
ret[3] = arr[3];
|
|
U256(ret)
|
|
}
|
|
}
|
|
|
|
impl From<U256> for U128 {
|
|
fn from(value: U256) -> U128 {
|
|
let U256(ref arr) = value;
|
|
if arr[2] | arr[3] != 0 {
|
|
panic!("Overflow");
|
|
}
|
|
let mut ret = [0; 2];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
U128(ret)
|
|
}
|
|
}
|
|
|
|
impl From<U512> for U128 {
|
|
fn from(value: U512) -> U128 {
|
|
let U512(ref arr) = value;
|
|
if arr[2] | arr[3] | arr[4] | arr[5] | arr[6] | arr[7] != 0 {
|
|
panic!("Overflow");
|
|
}
|
|
let mut ret = [0; 2];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
U128(ret)
|
|
}
|
|
}
|
|
|
|
impl From<U128> for U512 {
|
|
fn from(value: U128) -> U512 {
|
|
let U128(ref arr) = value;
|
|
let mut ret = [0; 8];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
U512(ret)
|
|
}
|
|
}
|
|
|
|
impl From<U128> for U256 {
|
|
fn from(value: U128) -> U256 {
|
|
let U128(ref arr) = value;
|
|
let mut ret = [0; 4];
|
|
ret[0] = arr[0];
|
|
ret[1] = arr[1];
|
|
U256(ret)
|
|
}
|
|
}
|
|
|
|
impl From<U256> for u64 {
|
|
fn from(value: U256) -> u64 {
|
|
value.as_u64()
|
|
}
|
|
}
|
|
|
|
impl From<U256> for u32 {
|
|
fn from(value: U256) -> u32 {
|
|
value.as_u32()
|
|
}
|
|
}
|
|
|
|
/// Constant value of `U256::zero()` that can be used for a reference saving an additional instance creation.
|
|
pub const ZERO_U256: U256 = U256([0x00u64; 4]);
|
|
/// Constant value of `U256::one()` that can be used for a reference saving an additional instance creation.
|
|
pub const ONE_U256: U256 = U256([0x01u64, 0x00u64, 0x00u64, 0x00u64]);
|
|
|
|
|
|
known_heap_size!(0, U128, U256);
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use uint::{Uint, U128, U256, U512};
|
|
use std::str::FromStr;
|
|
|
|
#[test]
|
|
pub fn uint256_from() {
|
|
let e = U256([10, 0, 0, 0]);
|
|
|
|
// test unsigned initialization
|
|
let ua = U256::from(10u8);
|
|
let ub = U256::from(10u16);
|
|
let uc = U256::from(10u32);
|
|
let ud = U256::from(10u64);
|
|
assert_eq!(e, ua);
|
|
assert_eq!(e, ub);
|
|
assert_eq!(e, uc);
|
|
assert_eq!(e, ud);
|
|
|
|
// test initialization from bytes
|
|
let va = U256::from(&[10u8][..]);
|
|
assert_eq!(e, va);
|
|
|
|
// more tests for initialization from bytes
|
|
assert_eq!(U256([0x1010, 0, 0, 0]), U256::from(&[0x10u8, 0x10][..]));
|
|
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0x12u8, 0xf0][..]));
|
|
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from(&[0, 0x12u8, 0xf0][..]));
|
|
assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from(&[0, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..]));
|
|
assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from(&[1, 0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..]));
|
|
assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from(&[
|
|
0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0,
|
|
0x09, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x77,
|
|
0, 0, 0, 0, 0, 0, 0, 1,
|
|
0, 0, 0, 0, 0, 0, 0x12u8, 0xf0][..]));
|
|
assert_eq!(U256([0x00192437100019fa, 0x243710, 0, 0]), U256::from(&[
|
|
0x24u8, 0x37, 0x10,
|
|
0, 0x19, 0x24, 0x37, 0x10, 0, 0x19, 0xfa][..]));
|
|
|
|
// test initializtion from string
|
|
let sa = U256::from_str("0a").unwrap();
|
|
assert_eq!(e, sa);
|
|
assert_eq!(U256([0x1010, 0, 0, 0]), U256::from_str("1010").unwrap());
|
|
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap());
|
|
assert_eq!(U256([0x12f0, 0, 0, 0]), U256::from_str("12f0").unwrap());
|
|
assert_eq!(U256([0x12f0, 0 , 0, 0]), U256::from_str("0000000012f0").unwrap());
|
|
assert_eq!(U256([0x12f0, 1 , 0, 0]), U256::from_str("0100000000000012f0").unwrap());
|
|
assert_eq!(U256([0x12f0, 1 , 0x0910203040506077, 0x8090a0b0c0d0e0f0]), U256::from_str("8090a0b0c0d0e0f00910203040506077000000000000000100000000000012f0").unwrap());
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_to() {
|
|
let hex = "8090a0b0c0d0e0f00910203040506077583a2cf8264910e1436bda32571012f0";
|
|
let uint = U256::from_str(hex).unwrap();
|
|
let mut bytes = [0u8; 32];
|
|
uint.to_raw_bytes(&mut bytes);
|
|
let uint2 = U256::from(&bytes[..]);
|
|
assert_eq!(uint, uint2);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_bits_test() {
|
|
assert_eq!(U256::from(0u64).bits(), 0);
|
|
assert_eq!(U256::from(255u64).bits(), 8);
|
|
assert_eq!(U256::from(256u64).bits(), 9);
|
|
assert_eq!(U256::from(300u64).bits(), 9);
|
|
assert_eq!(U256::from(60000u64).bits(), 16);
|
|
assert_eq!(U256::from(70000u64).bits(), 17);
|
|
|
|
//// Try to read the following lines out loud quickly
|
|
let mut shl = U256::from(70000u64);
|
|
shl = shl << 100;
|
|
assert_eq!(shl.bits(), 117);
|
|
shl = shl << 100;
|
|
assert_eq!(shl.bits(), 217);
|
|
shl = shl << 100;
|
|
assert_eq!(shl.bits(), 0);
|
|
|
|
//// Bit set check
|
|
//// 01010
|
|
assert!(!U256::from(10u8).bit(0));
|
|
assert!(U256::from(10u8).bit(1));
|
|
assert!(!U256::from(10u8).bit(2));
|
|
assert!(U256::from(10u8).bit(3));
|
|
assert!(!U256::from(10u8).bit(4));
|
|
|
|
//// byte check
|
|
assert_eq!(U256::from(10u8).byte(0), 10);
|
|
assert_eq!(U256::from(0xffu64).byte(0), 0xff);
|
|
assert_eq!(U256::from(0xffu64).byte(1), 0);
|
|
assert_eq!(U256::from(0x01ffu64).byte(0), 0xff);
|
|
assert_eq!(U256::from(0x01ffu64).byte(1), 0x1);
|
|
assert_eq!(U256([0u64, 0xfc, 0, 0]).byte(8), 0xfc);
|
|
assert_eq!(U256([0u64, 0, 0, u64::max_value()]).byte(31), 0xff);
|
|
assert_eq!(U256([0u64, 0, 0, (u64::max_value() >> 8) + 1]).byte(31), 0x01);
|
|
}
|
|
|
|
#[test]
|
|
#[cfg_attr(feature="dev", allow(eq_op))]
|
|
pub fn uint256_comp_test() {
|
|
let small = U256([10u64, 0, 0, 0]);
|
|
let big = U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
|
|
let bigger = U256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
|
|
let biggest = U256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]);
|
|
|
|
assert!(small < big);
|
|
assert!(big < bigger);
|
|
assert!(bigger < biggest);
|
|
assert!(bigger <= biggest);
|
|
assert!(biggest <= biggest);
|
|
assert!(bigger >= big);
|
|
assert!(bigger >= small);
|
|
assert!(small <= small);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_arithmetic_test() {
|
|
let init = U256::from(0xDEADBEEFDEADBEEFu64);
|
|
let copy = init;
|
|
|
|
let add = init + copy;
|
|
assert_eq!(add, U256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0]));
|
|
// Bitshifts
|
|
let shl = add << 88;
|
|
assert_eq!(shl, U256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0]));
|
|
let shr = shl >> 40;
|
|
assert_eq!(shr, U256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0]));
|
|
// Increment
|
|
let incr = shr + U256::from(1u64);
|
|
assert_eq!(incr, U256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0]));
|
|
// Subtraction
|
|
let sub = overflowing!(incr.overflowing_sub(init));
|
|
assert_eq!(sub, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
|
|
// Multiplication
|
|
let mult = sub.mul_u32(300);
|
|
assert_eq!(mult, U256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]));
|
|
// Division
|
|
assert_eq!(U256::from(105u8) / U256::from(5u8), U256::from(21u8));
|
|
let div = mult / U256::from(300u16);
|
|
assert_eq!(div, U256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
|
|
//// TODO: bit inversion
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_simple_mul() {
|
|
let a = U256::from_str("10000000000000000").unwrap();
|
|
let b = U256::from_str("10000000000000000").unwrap();
|
|
|
|
let c = U256::from_str("100000000000000000000000000000000").unwrap();
|
|
println!("Multiplying");
|
|
let result = a.overflowing_mul(b);
|
|
println!("Got result");
|
|
assert_eq!(result, (c, false))
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_extreme_bitshift_test() {
|
|
//// Shifting a u64 by 64 bits gives an undefined value, so make sure that
|
|
//// we're doing the Right Thing here
|
|
let init = U256::from(0xDEADBEEFDEADBEEFu64);
|
|
|
|
assert_eq!(init << 64, U256([0, 0xDEADBEEFDEADBEEF, 0, 0]));
|
|
let add = (init << 64) + init;
|
|
assert_eq!(add, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
|
|
assert_eq!(add >> 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
|
|
assert_eq!(add << 0, U256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
|
|
assert_eq!(add >> 64, U256([0xDEADBEEFDEADBEEF, 0, 0, 0]));
|
|
assert_eq!(add << 64, U256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0]));
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_exp10() {
|
|
assert_eq!(U256::exp10(0), U256::from(1u64));
|
|
println!("\none: {:?}", U256::from(1u64));
|
|
println!("ten: {:?}", U256::from(10u64));
|
|
assert_eq!(U256::from(2u64) * U256::from(10u64), U256::from(20u64));
|
|
assert_eq!(U256::exp10(1), U256::from(10u64));
|
|
assert_eq!(U256::exp10(2), U256::from(100u64));
|
|
assert_eq!(U256::exp10(5), U256::from(100000u64));
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_mul32() {
|
|
assert_eq!(U256::from(0u64).mul_u32(2), U256::from(0u64));
|
|
assert_eq!(U256::from(1u64).mul_u32(2), U256::from(2u64));
|
|
assert_eq!(U256::from(10u64).mul_u32(2), U256::from(20u64));
|
|
assert_eq!(U256::from(10u64).mul_u32(5), U256::from(50u64));
|
|
assert_eq!(U256::from(1000u64).mul_u32(50), U256::from(50000u64));
|
|
}
|
|
|
|
#[test]
|
|
fn uint256_pow () {
|
|
assert_eq!(U256::from(10).pow(U256::from(0)), U256::from(1));
|
|
assert_eq!(U256::from(10).pow(U256::from(1)), U256::from(10));
|
|
assert_eq!(U256::from(10).pow(U256::from(2)), U256::from(100));
|
|
assert_eq!(U256::from(10).pow(U256::from(3)), U256::from(1000));
|
|
assert_eq!(U256::from(10).pow(U256::from(20)), U256::exp10(20));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn uint256_pow_overflow_panic () {
|
|
U256::from(2).pow(U256::from(0x100));
|
|
}
|
|
|
|
#[test]
|
|
fn uint256_overflowing_pow () {
|
|
// assert_eq!(
|
|
// U256::from(2).overflowing_pow(U256::from(0xff)),
|
|
// (U256::from_str("8000000000000000000000000000000000000000000000000000000000000000").unwrap(), false)
|
|
// );
|
|
assert_eq!(
|
|
U256::from(2).overflowing_pow(U256::from(0x100)),
|
|
(U256::zero(), true)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_mul1() {
|
|
assert_eq!(U256::from(1u64) * U256::from(10u64), U256::from(10u64));
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_mul2() {
|
|
let a = U512::from_str("10000000000000000fffffffffffffffe").unwrap();
|
|
let b = U512::from_str("ffffffffffffffffffffffffffffffff").unwrap();
|
|
|
|
assert_eq!(a * b, U512::from_str("10000000000000000fffffffffffffffcffffffffffffffff0000000000000002").unwrap());
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_overflowing_mul() {
|
|
assert_eq!(
|
|
U256::from_str("100000000000000000000000000000000").unwrap().overflowing_mul(
|
|
U256::from_str("100000000000000000000000000000000").unwrap()
|
|
),
|
|
(U256::zero(), true)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint128_add() {
|
|
assert_eq!(
|
|
U128::from_str("fffffffffffffffff").unwrap() + U128::from_str("fffffffffffffffff").unwrap(),
|
|
U128::from_str("1ffffffffffffffffe").unwrap()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint128_add_overflow() {
|
|
assert_eq!(
|
|
U128::from_str("ffffffffffffffffffffffffffffffff").unwrap()
|
|
.overflowing_add(
|
|
U128::from_str("ffffffffffffffffffffffffffffffff").unwrap()
|
|
),
|
|
(U128::from_str("fffffffffffffffffffffffffffffffe").unwrap(), true)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
// overflows panic only in debug builds. Running this test with `--release` flag, always fails
|
|
#[ignore]
|
|
pub fn uint128_add_overflow_panic() {
|
|
U128::from_str("ffffffffffffffffffffffffffffffff").unwrap()
|
|
+
|
|
U128::from_str("ffffffffffffffffffffffffffffffff").unwrap();
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint128_mul() {
|
|
assert_eq!(
|
|
U128::from_str("fffffffff").unwrap() * U128::from_str("fffffffff").unwrap(),
|
|
U128::from_str("ffffffffe000000001").unwrap());
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint512_mul() {
|
|
assert_eq!(
|
|
U512::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
*
|
|
U512::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap(),
|
|
U512::from_str("3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000000000000000000000000000000000000000000000000001").unwrap()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_mul_overflow() {
|
|
assert_eq!(
|
|
U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
.overflowing_mul(
|
|
U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
),
|
|
(U256::from_str("1").unwrap(), true)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
pub fn uint256_mul_overflow_panic() {
|
|
U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
*
|
|
U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap();
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_sub_overflow() {
|
|
assert_eq!(
|
|
U256::from_str("0").unwrap()
|
|
.overflowing_sub(
|
|
U256::from_str("1").unwrap()
|
|
),
|
|
(U256::from_str("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap(), true)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
pub fn uint256_sub_overflow_panic() {
|
|
U256::from_str("0").unwrap()
|
|
-
|
|
U256::from_str("1").unwrap();
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_shl() {
|
|
assert_eq!(
|
|
U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
<< 4,
|
|
U256::from_str("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0").unwrap()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_shl_words() {
|
|
assert_eq!(
|
|
U256::from_str("0000000000000001ffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
<< 64,
|
|
U256::from_str("ffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000").unwrap()
|
|
);
|
|
assert_eq!(
|
|
U256::from_str("0000000000000000ffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
<< 64,
|
|
U256::from_str("ffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000").unwrap()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
pub fn uint256_mul() {
|
|
assert_eq!(
|
|
U256::from_str("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff").unwrap()
|
|
*
|
|
U256::from_str("2").unwrap(),
|
|
U256::from_str("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe").unwrap()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn uint256_div() {
|
|
assert_eq!(U256::from(10u64) / U256::from(1u64), U256::from(10u64));
|
|
assert_eq!(U256::from(10u64) / U256::from(2u64), U256::from(5u64));
|
|
assert_eq!(U256::from(10u64) / U256::from(3u64), U256::from(3u64));
|
|
}
|
|
|
|
#[test]
|
|
fn uint256_rem() {
|
|
assert_eq!(U256::from(10u64) % U256::from(1u64), U256::from(0u64));
|
|
assert_eq!(U256::from(10u64) % U256::from(3u64), U256::from(1u64));
|
|
}
|
|
|
|
#[test]
|
|
fn uint256_from_dec_str() {
|
|
assert_eq!(U256::from_dec_str("10").unwrap(), U256::from(10u64));
|
|
assert_eq!(U256::from_dec_str("1024").unwrap(), U256::from(1024u64));
|
|
}
|
|
|
|
#[test]
|
|
fn display_uint() {
|
|
let s = "12345678987654321023456789";
|
|
assert_eq!(format!("{}", U256::from_dec_str(s).unwrap()), s);
|
|
}
|
|
|
|
#[test]
|
|
fn display_uint_zero() {
|
|
assert_eq!(format!("{}", U256::from(0)), "0");
|
|
}
|
|
|
|
#[test]
|
|
fn u512_multi_adds() {
|
|
let (result, _) = U512([0, 0, 0, 0, 0, 0, 0, 0]).overflowing_add(U512([0, 0, 0, 0, 0, 0, 0, 0]));
|
|
assert_eq!(result, U512([0, 0, 0, 0, 0, 0, 0, 0]));
|
|
|
|
let (result, _) = U512([1, 0, 0, 0, 0, 0, 0, 1]).overflowing_add(U512([1, 0, 0, 0, 0, 0, 0, 1]));
|
|
assert_eq!(result, U512([2, 0, 0, 0, 0, 0, 0, 2]));
|
|
|
|
let (result, _) = U512([0, 0, 0, 0, 0, 0, 0, 1]).overflowing_add(U512([0, 0, 0, 0, 0, 0, 0, 1]));
|
|
assert_eq!(result, U512([0, 0, 0, 0, 0, 0, 0, 2]));
|
|
|
|
let (result, _) = U512([0, 0, 0, 0, 0, 0, 2, 1]).overflowing_add(U512([0, 0, 0, 0, 0, 0, 3, 1]));
|
|
assert_eq!(result, U512([0, 0, 0, 0, 0, 0, 5, 2]));
|
|
|
|
let (result, _) = U512([1, 2, 3, 4, 5, 6, 7, 8]).overflowing_add(U512([9, 10, 11, 12, 13, 14, 15, 16]));
|
|
assert_eq!(result, U512([10, 12, 14, 16, 18, 20, 22, 24]));
|
|
|
|
let (_, overflow) = U512([0, 0, 0, 0, 0, 0, 2, 1]).overflowing_add(U512([0, 0, 0, 0, 0, 0, 3, 1]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U512([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX])
|
|
.overflowing_add(U512([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert!(overflow);
|
|
|
|
let (_, overflow) = U512([0, 0, 0, 0, 0, 0, 0, ::std::u64::MAX])
|
|
.overflowing_add(U512([0, 0, 0, 0, 0, 0, 0, ::std::u64::MAX]));
|
|
assert!(overflow);
|
|
|
|
let (_, overflow) = U512([0, 0, 0, 0, 0, 0, 0, ::std::u64::MAX])
|
|
.overflowing_add(U512([0, 0, 0, 0, 0, 0, 0, 0]));
|
|
assert!(!overflow);
|
|
}
|
|
|
|
#[test]
|
|
fn u256_multi_adds() {
|
|
let (result, _) = U256([0, 0, 0, 0]).overflowing_add(U256([0, 0, 0, 0]));
|
|
assert_eq!(result, U256([0, 0, 0, 0]));
|
|
|
|
let (result, _) = U256([0, 0, 0, 1]).overflowing_add(U256([0, 0, 0, 1]));
|
|
assert_eq!(result, U256([0, 0, 0, 2]));
|
|
|
|
let (result, overflow) = U256([0, 0, 2, 1]).overflowing_add(U256([0, 0, 3, 1]));
|
|
assert_eq!(result, U256([0, 0, 5, 2]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX])
|
|
.overflowing_add(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert!(overflow);
|
|
|
|
let (_, overflow) = U256([0, 0, 0, ::std::u64::MAX]).overflowing_add(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert!(overflow);
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn u256_multi_subs() {
|
|
let (result, _) = U256([0, 0, 0, 0]).overflowing_sub(U256([0, 0, 0, 0]));
|
|
assert_eq!(result, U256([0, 0, 0, 0]));
|
|
|
|
let (result, _) = U256([0, 0, 0, 1]).overflowing_sub(U256([0, 0, 0, 1]));
|
|
assert_eq!(result, U256([0, 0, 0, 0]));
|
|
|
|
let (_, overflow) = U256([0, 0, 2, 1]).overflowing_sub(U256([0, 0, 3, 1]));
|
|
assert!(overflow);
|
|
|
|
let (result, overflow) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX])
|
|
.overflowing_sub(U256([::std::u64::MAX/2, ::std::u64::MAX/2, ::std::u64::MAX/2, ::std::u64::MAX/2]));
|
|
assert!(!overflow);
|
|
assert_eq!(U256([::std::u64::MAX/2+1, ::std::u64::MAX/2+1, ::std::u64::MAX/2+1, ::std::u64::MAX/2+1]), result);
|
|
|
|
let (result, overflow) = U256([0, 0, 0, 1]).overflowing_sub(U256([0, 0, 1, 0]));
|
|
assert!(!overflow);
|
|
assert_eq!(U256([0, 0, ::std::u64::MAX, 0]), result);
|
|
|
|
let (result, overflow) = U256([0, 0, 0, 1]).overflowing_sub(U256([1, 0, 0, 0]));
|
|
assert!(!overflow);
|
|
assert_eq!(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]), result);
|
|
}
|
|
|
|
#[test]
|
|
fn u512_multi_subs() {
|
|
let (result, _) = U512([0, 0, 0, 0, 0, 0, 0, 0]).overflowing_sub(U512([0, 0, 0, 0, 0, 0, 0, 0]));
|
|
assert_eq!(result, U512([0, 0, 0, 0, 0, 0, 0, 0]));
|
|
|
|
let (result, _) = U512([10, 9, 8, 7, 6, 5, 4, 3]).overflowing_sub(U512([9, 8, 7, 6, 5, 4, 3, 2]));
|
|
assert_eq!(result, U512([1, 1, 1, 1, 1, 1, 1, 1]));
|
|
|
|
let (_, overflow) = U512([10, 9, 8, 7, 6, 5, 4, 3]).overflowing_sub(U512([9, 8, 7, 6, 5, 4, 3, 2]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U512([9, 8, 7, 6, 5, 4, 3, 2]).overflowing_sub(U512([10, 9, 8, 7, 6, 5, 4, 3]));
|
|
assert!(overflow);
|
|
}
|
|
|
|
#[test]
|
|
fn u256_multi_carry_all() {
|
|
let (result, _) = U256([::std::u64::MAX, 0, 0, 0]).overflowing_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U256([1, ::std::u64::MAX-1, 0, 0]), result);
|
|
|
|
let (result, _) = U256([0, ::std::u64::MAX, 0, 0]).overflowing_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U256([0, 1, ::std::u64::MAX-1, 0]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]).overflowing_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U256([1, ::std::u64::MAX, ::std::u64::MAX-1, 0]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, 0, 0, 0]).overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U256([1, ::std::u64::MAX, ::std::u64::MAX-1, 0]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U256([1, 0, ::std::u64::MAX-1, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, 0, 0, 0]).overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U256([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]).overflowing_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U256([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, 0, 0, 0]).overflowing_mul(
|
|
U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U256([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX])
|
|
.overflowing_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U256([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U256([1, 0, ::std::u64::MAX, ::std::u64::MAX-1]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U256([1, 0, ::std::u64::MAX, ::std::u64::MAX-1]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U256([1, 0, ::std::u64::MAX, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U256([1, 0, ::std::u64::MAX, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U256([1, 0, 0, ::std::u64::MAX-1]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U256([1, 0, 0, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U256([1, 0, 0, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([0, 0, 0, ::std::u64::MAX]).overflowing_mul(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert_eq!(U256([0, 0, 0, 0]), result);
|
|
|
|
let (result, _) = U256([1, 0, 0, 0]).overflowing_mul(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert_eq!(U256([0, 0, 0, ::std::u64::MAX]), result);
|
|
|
|
let (result, _) = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX])
|
|
.overflowing_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U256([1, 0, 0, 0]), result);
|
|
}
|
|
|
|
#[test]
|
|
fn u256_multi_muls() {
|
|
let (result, _) = U256([0, 0, 0, 0]).overflowing_mul(U256([0, 0, 0, 0]));
|
|
assert_eq!(U256([0, 0, 0, 0]), result);
|
|
|
|
let (result, _) = U256([1, 0, 0, 0]).overflowing_mul(U256([1, 0, 0, 0]));
|
|
assert_eq!(U256([1, 0, 0, 0]), result);
|
|
|
|
let (result, _) = U256([5, 0, 0, 0]).overflowing_mul(U256([5, 0, 0, 0]));
|
|
assert_eq!(U256([25, 0, 0, 0]), result);
|
|
|
|
let (result, _) = U256([0, 5, 0, 0]).overflowing_mul(U256([0, 5, 0, 0]));
|
|
assert_eq!(U256([0, 0, 25, 0]), result);
|
|
|
|
let (result, _) = U256([0, 0, 0, 1]).overflowing_mul(U256([1, 0, 0, 0]));
|
|
assert_eq!(U256([0, 0, 0, 1]), result);
|
|
|
|
let (result, _) = U256([0, 0, 0, 5]).overflowing_mul(U256([2, 0, 0, 0]));
|
|
assert_eq!(U256([0, 0, 0, 10]), result);
|
|
|
|
let (result, _) = U256([0, 0, 1, 0]).overflowing_mul(U256([0, 5, 0, 0]));
|
|
assert_eq!(U256([0, 0, 0, 5]), result);
|
|
|
|
let (result, _) = U256([0, 0, 8, 0]).overflowing_mul(U256([0, 0, 7, 0]));
|
|
assert_eq!(U256([0, 0, 0, 0]), result);
|
|
|
|
let (result, _) = U256([2, 0, 0, 0]).overflowing_mul(U256([0, 5, 0, 0]));
|
|
assert_eq!(U256([0, 10, 0, 0]), result);
|
|
|
|
let (result, _) = U256([1, 0, 0, 0]).overflowing_mul(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert_eq!(U256([0, 0, 0, ::std::u64::MAX]), result);
|
|
}
|
|
|
|
#[test]
|
|
fn u256_multi_muls_overflow() {
|
|
let (_, overflow) = U256([1, 0, 0, 0]).overflowing_mul(U256([0, 0, 0, 0]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U256([1, 0, 0, 0]).overflowing_mul(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U256([0, 1, 0, 0]).overflowing_mul(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert!(overflow);
|
|
|
|
let (_, overflow) = U256([0, 1, 0, 0]).overflowing_mul(U256([0, 1, 0, 0]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U256([0, 1, 0, ::std::u64::MAX]).overflowing_mul(U256([0, 1, 0, ::std::u64::MAX]));
|
|
assert!(overflow);
|
|
|
|
let (_, overflow) = U256([0, ::std::u64::MAX, 0, 0]).overflowing_mul(U256([0, ::std::u64::MAX, 0, 0]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U256([1, 0, 0, 0]).overflowing_mul(U256([10, 0, 0, 0]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U256([2, 0, 0, 0]).overflowing_mul(U256([0, 0, 0, ::std::u64::MAX / 2]));
|
|
assert!(!overflow);
|
|
|
|
let (_, overflow) = U256([0, 0, 8, 0]).overflowing_mul(U256([0, 0, 7, 0]));
|
|
assert!(overflow);
|
|
}
|
|
|
|
|
|
#[test]
|
|
#[cfg_attr(feature="dev", allow(cyclomatic_complexity))]
|
|
fn u256_multi_full_mul() {
|
|
let result = U256([0, 0, 0, 0]).full_mul(U256([0, 0, 0, 0]));
|
|
assert_eq!(U512([0, 0, 0, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([1, 0, 0, 0]).full_mul(U256([1, 0, 0, 0]));
|
|
assert_eq!(U512([1, 0, 0, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([5, 0, 0, 0]).full_mul(U256([5, 0, 0, 0]));
|
|
assert_eq!(U512([25, 0, 0, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([0, 5, 0, 0]).full_mul(U256([0, 5, 0, 0]));
|
|
assert_eq!(U512([0, 0, 25, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([0, 0, 0, 4]).full_mul(U256([4, 0, 0, 0]));
|
|
assert_eq!(U512([0, 0, 0, 16, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([0, 0, 0, 5]).full_mul(U256([2, 0, 0, 0]));
|
|
assert_eq!(U512([0, 0, 0, 10, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([0, 0, 2, 0]).full_mul(U256([0, 5, 0, 0]));
|
|
assert_eq!(U512([0, 0, 0, 10, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([0, 3, 0, 0]).full_mul(U256([0, 0, 3, 0]));
|
|
assert_eq!(U512([0, 0, 0, 9, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([0, 0, 8, 0]).full_mul(U256([0, 0, 6, 0]));
|
|
assert_eq!(U512([0, 0, 0, 0, 48, 0, 0, 0]), result);
|
|
|
|
let result = U256([9, 0, 0, 0]).full_mul(U256([0, 3, 0, 0]));
|
|
assert_eq!(U512([0, 27, 0, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, 0, 0, 0]).full_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U512([1, ::std::u64::MAX-1, 0, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([0, ::std::u64::MAX, 0, 0]).full_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U512([0, 1, ::std::u64::MAX-1, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]).full_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U512([1, ::std::u64::MAX, ::std::u64::MAX-1, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, 0, 0, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U512([1, ::std::u64::MAX, ::std::u64::MAX-1, 0, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U512([1, 0, ::std::u64::MAX-1, ::std::u64::MAX, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, 0, 0, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U512([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]).full_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U512([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, 0, 0, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U512([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]).full_mul(U256([::std::u64::MAX, 0, 0, 0]));
|
|
assert_eq!(U512([1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U512([1, 0, ::std::u64::MAX, ::std::u64::MAX-1, ::std::u64::MAX, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U512([1, 0, ::std::u64::MAX, ::std::u64::MAX-1, ::std::u64::MAX, 0, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]));
|
|
assert_eq!(U512([1, 0, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1, ::std::u64::MAX, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, 0, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U512([1, 0, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX-1, ::std::u64::MAX, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U512([1, 0, 0, ::std::u64::MAX-1, ::std::u64::MAX, ::std::u64::MAX, 0, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U512([1, 0, 0, ::std::u64::MAX, ::std::u64::MAX-1, ::std::u64::MAX, ::std::u64::MAX, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, 0]));
|
|
assert_eq!(U512([1, 0, 0, ::std::u64::MAX, ::std::u64::MAX-1, ::std::u64::MAX, ::std::u64::MAX, 0]), result);
|
|
|
|
let result = U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]).full_mul(U256([::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]));
|
|
assert_eq!(U512([1, 0, 0, 0, ::std::u64::MAX-1, ::std::u64::MAX, ::std::u64::MAX, ::std::u64::MAX]), result);
|
|
|
|
let result = U256([0, 0, 0, ::std::u64::MAX]).full_mul(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert_eq!(U512([0, 0, 0, 0, 0, 0, 1, ::std::u64::MAX-1]), result);
|
|
|
|
let result = U256([1, 0, 0, 0]).full_mul(U256([0, 0, 0, ::std::u64::MAX]));
|
|
assert_eq!(U512([0, 0, 0, ::std::u64::MAX, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([1, 2, 3, 4]).full_mul(U256([5, 0, 0, 0]));
|
|
assert_eq!(U512([5, 10, 15, 20, 0, 0, 0, 0]), result);
|
|
|
|
let result = U256([1, 2, 3, 4]).full_mul(U256([0, 6, 0, 0]));
|
|
assert_eq!(U512([0, 6, 12, 18, 24, 0, 0, 0]), result);
|
|
|
|
let result = U256([1, 2, 3, 4]).full_mul(U256([0, 0, 7, 0]));
|
|
assert_eq!(U512([0, 0, 7, 14, 21, 28, 0, 0]), result);
|
|
|
|
let result = U256([1, 2, 3, 4]).full_mul(U256([0, 0, 0, 8]));
|
|
assert_eq!(U512([0, 0, 0, 8, 16, 24, 32, 0]), result);
|
|
|
|
let result = U256([1, 2, 3, 4]).full_mul(U256([5, 6, 7, 8]));
|
|
assert_eq!(U512([5, 16, 34, 60, 61, 52, 32, 0]), result);
|
|
}
|
|
}
|
|
|