openethereum/util/src/kvdb.rs

476 lines
14 KiB
Rust

// Copyright 2015, 2016 Ethcore (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Key-Value store abstraction with `RocksDB` backend.
use common::*;
use elastic_array::*;
use std::default::Default;
use rlp::{UntrustedRlp, RlpType, View, Compressible};
use rocksdb::{DB, Writable, WriteBatch, WriteOptions, IteratorMode, DBIterator,
Options, DBCompactionStyle, BlockBasedOptions, Direction, Cache, Column};
const DB_BACKGROUND_FLUSHES: i32 = 2;
const DB_BACKGROUND_COMPACTIONS: i32 = 2;
/// Write transaction. Batches a sequence of put/delete operations for efficiency.
pub struct DBTransaction {
ops: RwLock<Vec<DBOp>>,
}
enum DBOp {
Insert {
col: Option<u32>,
key: ElasticArray32<u8>,
value: Bytes,
},
InsertCompressed {
col: Option<u32>,
key: ElasticArray32<u8>,
value: Bytes,
},
Delete {
col: Option<u32>,
key: ElasticArray32<u8>,
}
}
impl DBTransaction {
/// Create new transaction.
pub fn new(_db: &Database) -> DBTransaction {
DBTransaction {
ops: RwLock::new(Vec::with_capacity(256)),
}
}
/// Insert a key-value pair in the transaction. Any existing value value will be overwritten upon write.
pub fn put(&self, col: Option<u32>, key: &[u8], value: &[u8]) -> Result<(), String> {
let mut ekey = ElasticArray32::new();
ekey.append_slice(key);
self.ops.write().push(DBOp::Insert {
col: col,
key: ekey,
value: value.to_vec(),
});
Ok(())
}
/// Insert a key-value pair in the transaction. Any existing value value will be overwritten upon write.
pub fn put_vec(&self, col: Option<u32>, key: &[u8], value: Bytes) -> Result<(), String> {
let mut ekey = ElasticArray32::new();
ekey.append_slice(key);
self.ops.write().push(DBOp::Insert {
col: col,
key: ekey,
value: value,
});
Ok(())
}
/// Insert a key-value pair in the transaction. Any existing value value will be overwritten upon write.
/// Value will be RLP-compressed on flush
pub fn put_compressed(&self, col: Option<u32>, key: &[u8], value: Bytes) -> Result<(), String> {
let mut ekey = ElasticArray32::new();
ekey.append_slice(key);
self.ops.write().push(DBOp::InsertCompressed {
col: col,
key: ekey,
value: value,
});
Ok(())
}
/// Delete value by key.
pub fn delete(&self, col: Option<u32>, key: &[u8]) -> Result<(), String> {
let mut ekey = ElasticArray32::new();
ekey.append_slice(key);
self.ops.write().push(DBOp::Delete {
col: col,
key: ekey,
});
Ok(())
}
}
struct DBColumnOverlay {
insertions: HashMap<ElasticArray32<u8>, Bytes>,
compressed_insertions: HashMap<ElasticArray32<u8>, Bytes>,
deletions: HashSet<ElasticArray32<u8>>,
}
/// Compaction profile for the database settings
#[derive(Clone, Copy)]
pub struct CompactionProfile {
/// L0-L1 target file size
pub initial_file_size: u64,
/// L2-LN target file size multiplier
pub file_size_multiplier: i32,
/// rate limiter for background flushes and compactions, bytes/sec, if any
pub write_rate_limit: Option<u64>,
}
impl Default for CompactionProfile {
/// Default profile suitable for most storage
fn default() -> CompactionProfile {
CompactionProfile {
initial_file_size: 32 * 1024 * 1024,
file_size_multiplier: 2,
write_rate_limit: None,
}
}
}
impl CompactionProfile {
/// Slow hdd compaction profile
pub fn hdd() -> CompactionProfile {
CompactionProfile {
initial_file_size: 192 * 1024 * 1024,
file_size_multiplier: 1,
write_rate_limit: Some(8 * 1024 * 1024),
}
}
}
/// Database configuration
#[derive(Clone, Copy)]
pub struct DatabaseConfig {
/// Max number of open files.
pub max_open_files: i32,
/// Cache-size
pub cache_size: Option<usize>,
/// Compaction profile
pub compaction: CompactionProfile,
/// Set number of columns
pub columns: Option<u32>,
/// Should we keep WAL enabled?
pub wal: bool,
}
impl DatabaseConfig {
/// Create new `DatabaseConfig` with default parameters and specified set of columns.
pub fn with_columns(columns: Option<u32>) -> Self {
let mut config = Self::default();
config.columns = columns;
config
}
}
impl Default for DatabaseConfig {
fn default() -> DatabaseConfig {
DatabaseConfig {
cache_size: None,
max_open_files: 1024,
compaction: CompactionProfile::default(),
columns: None,
wal: true,
}
}
}
/// Database iterator for flushed data only
pub struct DatabaseIterator {
iter: DBIterator,
}
impl<'a> Iterator for DatabaseIterator {
type Item = (Box<[u8]>, Box<[u8]>);
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
/// Key-Value database.
pub struct Database {
db: DB,
write_opts: WriteOptions,
cfs: Vec<Column>,
overlay: RwLock<Vec<DBColumnOverlay>>,
}
impl Database {
/// Open database with default settings.
pub fn open_default(path: &str) -> Result<Database, String> {
Database::open(&DatabaseConfig::default(), path)
}
/// Open database file. Creates if it does not exist.
pub fn open(config: &DatabaseConfig, path: &str) -> Result<Database, String> {
let mut opts = Options::new();
if let Some(rate_limit) = config.compaction.write_rate_limit {
try!(opts.set_parsed_options(&format!("rate_limiter_bytes_per_sec={}", rate_limit)));
}
opts.set_max_open_files(config.max_open_files);
opts.create_if_missing(true);
opts.set_use_fsync(false);
// compaction settings
opts.set_compaction_style(DBCompactionStyle::DBUniversalCompaction);
opts.set_target_file_size_base(config.compaction.initial_file_size);
opts.set_target_file_size_multiplier(config.compaction.file_size_multiplier);
opts.set_max_background_flushes(DB_BACKGROUND_FLUSHES);
opts.set_max_background_compactions(DB_BACKGROUND_COMPACTIONS);
if let Some(cache_size) = config.cache_size {
let mut block_opts = BlockBasedOptions::new();
// all goes to read cache
block_opts.set_cache(Cache::new(cache_size * 1024 * 1024));
opts.set_block_based_table_factory(&block_opts);
}
let mut write_opts = WriteOptions::new();
if !config.wal {
write_opts.disable_wal(true);
}
let mut cfs: Vec<Column> = Vec::new();
let db = match config.columns {
Some(columns) => {
let cfnames: Vec<_> = (0..columns).map(|c| format!("col{}", c)).collect();
let cfnames: Vec<&str> = cfnames.iter().map(|n| n as &str).collect();
match DB::open_cf(&opts, path, &cfnames) {
Ok(db) => {
cfs = cfnames.iter().map(|n| db.cf_handle(n).unwrap()).collect();
assert!(cfs.len() == columns as usize);
Ok(db)
}
Err(_) => {
// retry and create CFs
match DB::open_cf(&opts, path, &[]) {
Ok(mut db) => {
cfs = cfnames.iter().map(|n| db.create_cf(n, &opts).unwrap()).collect();
Ok(db)
},
err @ Err(_) => err,
}
}
}
},
None => DB::open(&opts, path)
};
let db = match db {
Ok(db) => db,
Err(ref s) if s.starts_with("Corruption:") => {
info!("{}", s);
info!("Attempting DB repair for {}", path);
try!(DB::repair(&opts, path));
try!(DB::open(&opts, path))
},
Err(s) => { return Err(s); }
};
Ok(Database {
db: db,
write_opts: write_opts,
overlay: RwLock::new((0..(cfs.len() + 1)).map(|_| DBColumnOverlay {
insertions: HashMap::new(),
compressed_insertions: HashMap::new(),
deletions: HashSet::new(),
}).collect()),
cfs: cfs,
})
}
/// Creates new transaction for this database.
pub fn transaction(&self) -> DBTransaction {
DBTransaction::new(self)
}
fn to_overly_column(col: Option<u32>) -> usize {
col.map_or(0, |c| (c + 1) as usize)
}
/// Commit transaction to database.
pub fn write_buffered(&self, tr: DBTransaction) -> Result<(), String> {
let mut overlay = self.overlay.write();
let ops = mem::replace(&mut *tr.ops.write(), Vec::new());
for op in ops {
match op {
DBOp::Insert { col, key, value } => {
let c = Self::to_overly_column(col);
overlay[c].deletions.remove(&key);
overlay[c].compressed_insertions.remove(&key);
overlay[c].insertions.insert(key, value);
},
DBOp::InsertCompressed { col, key, value } => {
let c = Self::to_overly_column(col);
overlay[c].deletions.remove(&key);
overlay[c].insertions.remove(&key);
overlay[c].compressed_insertions.insert(key, value);
},
DBOp::Delete { col, key } => {
let c = Self::to_overly_column(col);
overlay[c].insertions.remove(&key);
overlay[c].compressed_insertions.remove(&key);
overlay[c].deletions.insert(key);
},
}
};
Ok(())
}
/// Commit buffered changes to database.
pub fn flush(&self) -> Result<(), String> {
let batch = WriteBatch::new();
let mut overlay = self.overlay.write();
let mut c = 0;
for column in overlay.iter_mut() {
let insertions = mem::replace(&mut column.insertions, HashMap::new());
let compressed_insertions = mem::replace(&mut column.compressed_insertions, HashMap::new());
let deletions = mem::replace(&mut column.deletions, HashSet::new());
for d in deletions.into_iter() {
if c > 0 {
try!(batch.delete_cf(self.cfs[c - 1], &d));
} else {
try!(batch.delete(&d));
}
}
for (key, value) in insertions.into_iter() {
if c > 0 {
try!(batch.put_cf(self.cfs[c - 1], &key, &value));
} else {
try!(batch.put(&key, &value));
}
}
for (key, value) in compressed_insertions.into_iter() {
let compressed = UntrustedRlp::new(&value).compress(RlpType::Blocks);
if c > 0 {
try!(batch.put_cf(self.cfs[c - 1], &key, &compressed));
} else {
try!(batch.put(&key, &compressed));
}
}
c += 1;
}
self.db.write_opt(batch, &self.write_opts)
}
/// Commit transaction to database.
pub fn write(&self, tr: DBTransaction) -> Result<(), String> {
let batch = WriteBatch::new();
let ops = mem::replace(&mut *tr.ops.write(), Vec::new());
for op in ops {
match op {
DBOp::Insert { col, key, value } => {
try!(col.map_or_else(|| batch.put(&key, &value), |c| batch.put_cf(self.cfs[c as usize], &key, &value)))
},
DBOp::InsertCompressed { col, key, value } => {
let compressed = UntrustedRlp::new(&value).compress(RlpType::Blocks);
try!(col.map_or_else(|| batch.put(&key, &compressed), |c| batch.put_cf(self.cfs[c as usize], &key, &compressed)))
},
DBOp::Delete { col, key } => {
try!(col.map_or_else(|| batch.delete(&key), |c| batch.delete_cf(self.cfs[c as usize], &key)))
},
}
}
self.db.write_opt(batch, &self.write_opts)
}
/// Get value by key.
pub fn get(&self, col: Option<u32>, key: &[u8]) -> Result<Option<Bytes>, String> {
let overlay = &self.overlay.read()[Self::to_overly_column(col)];
overlay.insertions.get(key).or_else(|| overlay.compressed_insertions.get(key)).map_or_else(||
col.map_or_else(
|| self.db.get(key).map(|r| r.map(|v| v.to_vec())),
|c| self.db.get_cf(self.cfs[c as usize], key).map(|r| r.map(|v| v.to_vec()))),
|value| Ok(Some(value.clone())))
}
/// Get value by partial key. Prefix size should match configured prefix size.
pub fn get_by_prefix(&self, col: Option<u32>, prefix: &[u8]) -> Option<Box<[u8]>> {
let mut iter = col.map_or_else(|| self.db.iterator(IteratorMode::From(prefix, Direction::Forward)),
|c| self.db.iterator_cf(self.cfs[c as usize], IteratorMode::From(prefix, Direction::Forward)).unwrap());
match iter.next() {
// TODO: use prefix_same_as_start read option (not availabele in C API currently)
Some((k, v)) => if k[0 .. prefix.len()] == prefix[..] { Some(v) } else { None },
_ => None
}
}
/// Check if there is anything in the database.
pub fn is_empty(&self, col: Option<u32>) -> bool {
self.iter(col).next().is_none()
}
/// Get database iterator.
pub fn iter(&self, col: Option<u32>) -> DatabaseIterator {
col.map_or_else(|| DatabaseIterator { iter: self.db.iterator(IteratorMode::Start) },
|c| DatabaseIterator { iter: self.db.iterator_cf(self.cfs[c as usize], IteratorMode::Start).unwrap() })
}
}
#[cfg(test)]
mod tests {
use hash::*;
use super::*;
use devtools::*;
use std::str::FromStr;
use std::ops::Deref;
fn test_db(config: &DatabaseConfig) {
let path = RandomTempPath::create_dir();
let db = Database::open(config, path.as_path().to_str().unwrap()).unwrap();
let key1 = H256::from_str("02c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let key2 = H256::from_str("03c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let key3 = H256::from_str("01c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let batch = db.transaction();
batch.put(None, &key1, b"cat").unwrap();
batch.put(None, &key2, b"dog").unwrap();
db.write(batch).unwrap();
assert_eq!(db.get(None, &key1).unwrap().unwrap().deref(), b"cat");
let contents: Vec<_> = db.iter(None).collect();
assert_eq!(contents.len(), 2);
assert_eq!(&*contents[0].0, key1.deref());
assert_eq!(&*contents[0].1, b"cat");
assert_eq!(&*contents[1].0, key2.deref());
assert_eq!(&*contents[1].1, b"dog");
let batch = db.transaction();
batch.delete(None, &key1).unwrap();
db.write(batch).unwrap();
assert!(db.get(None, &key1).unwrap().is_none());
let batch = db.transaction();
batch.put(None, &key1, b"cat").unwrap();
db.write(batch).unwrap();
let transaction = db.transaction();
transaction.put(None, &key3, b"elephant").unwrap();
transaction.delete(None, &key1).unwrap();
db.write(transaction).unwrap();
assert!(db.get(None, &key1).unwrap().is_none());
assert_eq!(db.get(None, &key3).unwrap().unwrap().deref(), b"elephant");
assert_eq!(db.get_by_prefix(None, &key3).unwrap().deref(), b"elephant");
assert_eq!(db.get_by_prefix(None, &key2).unwrap().deref(), b"dog");
}
#[test]
fn kvdb() {
let path = RandomTempPath::create_dir();
let smoke = Database::open_default(path.as_path().to_str().unwrap()).unwrap();
assert!(smoke.is_empty(None));
test_db(&DatabaseConfig::default());
}
}