openethereum/util/fetch/src/client.rs
Nick Sanders 68ca8df22f Replace tokio_core with tokio (ring -> 0.13) (#9657)
* Replace `tokio_core` with `tokio`.

* Remove `tokio-core` and replace with `tokio` in

    - `ethcore/stratum`

    - `secret_store`

    - `util/fetch`

    - `util/reactor`

* Bump hyper to 0.12 in

    - `miner`

    - `util/fake-fetch`

    - `util/fetch`

    - `secret_store`

* Bump `jsonrpc-***` to 0.9 in

    - `parity`

    - `ethcore/stratum`

    - `ipfs`

    - `rpc`

    - `rpc_client`

    - `whisper`

* Bump `ring` to 0.13

* Use a more graceful shutdown process in `secret_store` tests.

* Convert some mutexes to rwlocks in `secret_store`.

* Consolidate Tokio Runtime use, remove `CpuPool`.

* Rename and move the `tokio_reactor` crate (`util/reactor`) to
  `tokio_runtime` (`util/runtime`).

* Rename `EventLoop` to `Runtime`.

    - Rename `EventLoop::spawn` to `Runtime::with_default_thread_count`.

    - Add the `Runtime::with_thread_count` method.

    - Rename `Remote` to `Executor`.

* Remove uses of `CpuPool` and spawn all tasks via the `Runtime` executor
  instead.

* Other changes related to `CpuPool` removal:

    - Remove `Reservations::with_pool`. `::new` now takes an `Executor` as an argument.

    - Remove `SenderReservations::with_pool`. `::new` now takes an `Executor` as an argument.
2018-10-22 09:40:50 +02:00

955 lines
26 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use futures::future::{self, Loop};
use futures::sync::{mpsc, oneshot};
use futures::{self, Future, Async, Sink, Stream};
use hyper::header::{self, HeaderMap, HeaderValue, IntoHeaderName};
use hyper::{self, Method, StatusCode};
use hyper_rustls;
use std;
use std::cmp::min;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::mpsc::RecvTimeoutError;
use std::thread;
use std::time::Duration;
use std::{io, fmt};
use tokio::{self, util::FutureExt};
use url::{self, Url};
use bytes::Bytes;
const MAX_SIZE: usize = 64 * 1024 * 1024;
const MAX_SECS: Duration = Duration::from_secs(5);
const MAX_REDR: usize = 5;
/// A handle to abort requests.
///
/// Requests are either aborted based on reaching thresholds such as
/// maximum response size, timeouts or too many redirects, or else
/// they can be aborted explicitly by the calling code.
#[derive(Clone, Debug)]
pub struct Abort {
abort: Arc<AtomicBool>,
size: usize,
time: Duration,
redir: usize,
}
impl Default for Abort {
fn default() -> Abort {
Abort {
abort: Arc::new(AtomicBool::new(false)),
size: MAX_SIZE,
time: MAX_SECS,
redir: MAX_REDR,
}
}
}
impl From<Arc<AtomicBool>> for Abort {
fn from(a: Arc<AtomicBool>) -> Abort {
Abort {
abort: a,
size: MAX_SIZE,
time: MAX_SECS,
redir: MAX_REDR,
}
}
}
impl Abort {
/// True if `abort` has been invoked.
pub fn is_aborted(&self) -> bool {
self.abort.load(Ordering::SeqCst)
}
/// The maximum response body size.
pub fn max_size(&self) -> usize {
self.size
}
/// The maximum total time, including redirects.
pub fn max_duration(&self) -> Duration {
self.time
}
/// The maximum number of redirects to allow.
pub fn max_redirects(&self) -> usize {
self.redir
}
/// Mark as aborted.
pub fn abort(&self) {
self.abort.store(true, Ordering::SeqCst)
}
/// Set the maximum reponse body size.
pub fn with_max_size(self, n: usize) -> Abort {
Abort { size: n, .. self }
}
/// Set the maximum duration (including redirects).
pub fn with_max_duration(self, d: Duration) -> Abort {
Abort { time: d, .. self }
}
/// Set the maximum number of redirects to follow.
pub fn with_max_redirects(self, n: usize) -> Abort {
Abort { redir: n, .. self }
}
}
/// Types which retrieve content from some URL.
pub trait Fetch: Clone + Send + Sync + 'static {
/// The result future.
type Result: Future<Item = Response, Error = Error> + Send + 'static;
/// Make a request to given URL
fn fetch(&self, request: Request, abort: Abort) -> Self::Result;
/// Get content from some URL.
fn get(&self, url: &str, abort: Abort) -> Self::Result;
/// Post content to some URL.
fn post(&self, url: &str, abort: Abort) -> Self::Result;
}
type TxResponse = oneshot::Sender<Result<Response, Error>>;
type TxStartup = std::sync::mpsc::SyncSender<Result<(), tokio::io::Error>>;
type ChanItem = Option<(Request, Abort, TxResponse)>;
/// An implementation of `Fetch` using a `hyper` client.
// Due to the `Send` bound of `Fetch` we spawn a background thread for
// actual request/response processing as `hyper::Client` itself does
// not implement `Send` currently.
#[derive(Debug)]
pub struct Client {
runtime: mpsc::Sender<ChanItem>,
refs: Arc<AtomicUsize>,
}
// When cloning a client we increment the internal reference counter.
impl Clone for Client {
fn clone(&self) -> Client {
self.refs.fetch_add(1, Ordering::SeqCst);
Client {
runtime: self.runtime.clone(),
refs: self.refs.clone(),
}
}
}
// When dropping a client, we decrement the reference counter.
// Once it reaches 0 we terminate the background thread.
impl Drop for Client {
fn drop(&mut self) {
if self.refs.fetch_sub(1, Ordering::SeqCst) == 1 {
// ignore send error as it means the background thread is gone already
let _ = self.runtime.clone().send(None).wait();
}
}
}
impl Client {
/// Create a new fetch client.
pub fn new(num_dns_threads: usize) -> Result<Self, Error> {
let (tx_start, rx_start) = std::sync::mpsc::sync_channel(1);
let (tx_proto, rx_proto) = mpsc::channel(64);
Client::background_thread(tx_start, rx_proto, num_dns_threads)?;
match rx_start.recv_timeout(Duration::from_secs(10)) {
Err(RecvTimeoutError::Timeout) => {
error!(target: "fetch", "timeout starting background thread");
return Err(Error::BackgroundThreadDead)
}
Err(RecvTimeoutError::Disconnected) => {
error!(target: "fetch", "background thread gone");
return Err(Error::BackgroundThreadDead)
}
Ok(Err(e)) => {
error!(target: "fetch", "error starting background thread: {}", e);
return Err(e.into())
}
Ok(Ok(())) => {}
}
Ok(Client {
runtime: tx_proto,
refs: Arc::new(AtomicUsize::new(1)),
})
}
fn background_thread(tx_start: TxStartup, rx_proto: mpsc::Receiver<ChanItem>, num_dns_threads: usize) -> io::Result<thread::JoinHandle<()>> {
thread::Builder::new().name("fetch".into()).spawn(move || {
let mut runtime = match tokio::runtime::current_thread::Runtime::new() {
Ok(c) => c,
Err(e) => return tx_start.send(Err(e)).unwrap_or(())
};
let hyper = hyper::Client::builder()
.build(hyper_rustls::HttpsConnector::new(num_dns_threads));
let future = rx_proto.take_while(|item| Ok(item.is_some()))
.map(|item| item.expect("`take_while` is only passing on channel items != None; qed"))
.for_each(|(request, abort, sender)|
{
trace!(target: "fetch", "new request to {}", request.url());
if abort.is_aborted() {
return future::ok(sender.send(Err(Error::Aborted)).unwrap_or(()))
}
let ini = (hyper.clone(), request, abort, 0);
let fut = future::loop_fn(ini, |(client, request, abort, redirects)| {
let request2 = request.clone();
let url2 = request2.url().clone();
let abort2 = abort.clone();
client.request(request.into())
.map(move |resp| Response::new(url2, resp, abort2))
.from_err()
.and_then(move |resp| {
if abort.is_aborted() {
debug!(target: "fetch", "fetch of {} aborted", request2.url());
return Err(Error::Aborted)
}
if let Some((next_url, preserve_method)) = redirect_location(request2.url().clone(), &resp) {
if redirects >= abort.max_redirects() {
return Err(Error::TooManyRedirects)
}
let request = if preserve_method {
let mut request2 = request2.clone();
request2.set_url(next_url);
request2
} else {
Request::new(next_url, Method::GET)
};
Ok(Loop::Continue((client, request, abort, redirects + 1)))
} else {
if let Some(ref h_val) = resp.headers.get(header::CONTENT_LENGTH) {
let content_len = h_val
.to_str()?
.parse::<u64>()?;
if content_len > abort.max_size() as u64 {
return Err(Error::SizeLimit)
}
}
Ok(Loop::Break(resp))
}
})
})
.then(|result| {
future::ok(sender.send(result).unwrap_or(()))
});
tokio::spawn(fut);
trace!(target: "fetch", "waiting for next request ...");
future::ok(())
});
tx_start.send(Ok(())).unwrap_or(());
debug!(target: "fetch", "processing requests ...");
if let Err(()) = runtime.block_on(future) {
error!(target: "fetch", "error while executing future")
}
debug!(target: "fetch", "fetch background thread finished")
})
}
}
impl Fetch for Client {
type Result = Box<Future<Item=Response, Error=Error> + Send + 'static>;
fn fetch(&self, request: Request, abort: Abort) -> Self::Result {
debug!(target: "fetch", "fetching: {:?}", request.url());
if abort.is_aborted() {
return Box::new(future::err(Error::Aborted))
}
let (tx_res, rx_res) = oneshot::channel();
let maxdur = abort.max_duration();
let sender = self.runtime.clone();
let future = sender.send(Some((request, abort, tx_res)))
.map_err(|e| {
error!(target: "fetch", "failed to schedule request: {}", e);
Error::BackgroundThreadDead
})
.and_then(|_| rx_res.map_err(|oneshot::Canceled| Error::BackgroundThreadDead))
.and_then(future::result);
Box::new(future.timeout(maxdur)
.map_err(|err| {
if err.is_inner() {
Error::from(err.into_inner().unwrap())
} else {
Error::from(err)
}
})
)
}
/// Get content from some URL.
fn get(&self, url: &str, abort: Abort) -> Self::Result {
let url: Url = match url.parse() {
Ok(u) => u,
Err(e) => return Box::new(future::err(e.into()))
};
self.fetch(Request::get(url), abort)
}
/// Post content to some URL.
fn post(&self, url: &str, abort: Abort) -> Self::Result {
let url: Url = match url.parse() {
Ok(u) => u,
Err(e) => return Box::new(future::err(e.into()))
};
self.fetch(Request::post(url), abort)
}
}
// Extract redirect location from response. The second return value indicate whether the original method should be preserved.
fn redirect_location(u: Url, r: &Response) -> Option<(Url, bool)> {
let preserve_method = match r.status() {
StatusCode::TEMPORARY_REDIRECT | StatusCode::PERMANENT_REDIRECT => true,
_ => false,
};
match r.status() {
StatusCode::MOVED_PERMANENTLY
| StatusCode::PERMANENT_REDIRECT
| StatusCode::TEMPORARY_REDIRECT
| StatusCode::FOUND
| StatusCode::SEE_OTHER => {
r.headers.get(header::LOCATION).and_then(|loc| {
loc.to_str().ok().and_then(|loc_s| {
u.join(loc_s).ok().map(|url| (url, preserve_method))
})
})
}
_ => None
}
}
/// A wrapper for hyper::Request using Url and with methods.
#[derive(Debug, Clone)]
pub struct Request {
url: Url,
method: Method,
headers: HeaderMap,
body: Bytes,
}
impl Request {
/// Create a new request, with given url and method.
pub fn new(url: Url, method: Method) -> Request {
Request {
url, method,
headers: HeaderMap::new(),
body: Default::default(),
}
}
/// Create a new GET request.
pub fn get(url: Url) -> Request {
Request::new(url, Method::GET)
}
/// Create a new empty POST request.
pub fn post(url: Url) -> Request {
Request::new(url, Method::POST)
}
/// Read the url.
pub fn url(&self) -> &Url {
&self.url
}
/// Read the request headers.
pub fn headers(&self) -> &HeaderMap {
&self.headers
}
/// Get a mutable reference to the headers.
pub fn headers_mut(&mut self) -> &mut HeaderMap {
&mut self.headers
}
/// Set the body of the request.
pub fn set_body<T: Into<Bytes>>(&mut self, body: T) {
self.body = body.into();
}
/// Set the url of the request.
pub fn set_url(&mut self, url: Url) {
self.url = url;
}
/// Consume self, and return it with the added given header.
pub fn with_header<K>(mut self, key: K, val: HeaderValue) -> Self
where K: IntoHeaderName,
{
self.headers_mut().append(key, val);
self
}
/// Consume self, and return it with the body.
pub fn with_body<T: Into<Bytes>>(mut self, body: T) -> Self {
self.set_body(body);
self
}
}
impl From<Request> for hyper::Request<hyper::Body> {
fn from(req: Request) -> hyper::Request<hyper::Body> {
let uri: hyper::Uri = req.url.as_ref().parse().expect("Every valid URLis also a URI.");
hyper::Request::builder()
.method(req.method)
.uri(uri)
.header(header::USER_AGENT, HeaderValue::from_static("Parity Fetch Neo"))
.body(req.body.into())
.expect("Header, uri, method, and body are already valid and can not fail to parse; qed")
}
}
/// An HTTP response.
#[derive(Debug)]
pub struct Response {
url: Url,
status: StatusCode,
headers: HeaderMap,
body: hyper::Body,
abort: Abort,
nread: usize,
}
impl Response {
/// Create a new response, wrapping a hyper response.
pub fn new(u: Url, r: hyper::Response<hyper::Body>, a: Abort) -> Response {
Response {
url: u,
status: r.status(),
headers: r.headers().clone(),
body: r.into_body(),
abort: a,
nread: 0,
}
}
/// The response status.
pub fn status(&self) -> StatusCode {
self.status
}
/// Status code == OK (200)?
pub fn is_success(&self) -> bool {
self.status() == StatusCode::OK
}
/// Status code == 404.
pub fn is_not_found(&self) -> bool {
self.status() == StatusCode::NOT_FOUND
}
/// Is the content-type text/html?
pub fn is_html(&self) -> bool {
self.headers.get(header::CONTENT_TYPE).and_then(|ct_val| {
ct_val.to_str().ok().map(|ct_str| {
ct_str.contains("text") && ct_str.contains("html")
})
}).unwrap_or(false)
}
}
impl Stream for Response {
type Item = hyper::Chunk;
type Error = Error;
fn poll(&mut self) -> futures::Poll<Option<Self::Item>, Self::Error> {
if self.abort.is_aborted() {
debug!(target: "fetch", "fetch of {} aborted", self.url);
return Err(Error::Aborted)
}
match try_ready!(self.body.poll()) {
None => Ok(Async::Ready(None)),
Some(c) => {
if self.nread + c.len() > self.abort.max_size() {
debug!(target: "fetch", "size limit {:?} for {} exceeded", self.abort.max_size(), self.url);
return Err(Error::SizeLimit)
}
self.nread += c.len();
Ok(Async::Ready(Some(c)))
}
}
}
}
/// `BodyReader` serves as an adapter from async to sync I/O.
///
/// It implements `io::Read` by repedately waiting for the next `Chunk`
/// of hyper's response `Body` which blocks the current thread.
pub struct BodyReader {
chunk: hyper::Chunk,
body: Option<hyper::Body>,
abort: Abort,
offset: usize,
count: usize,
}
impl BodyReader {
/// Create a new body reader for the given response.
pub fn new(r: Response) -> BodyReader {
BodyReader {
body: Some(r.body),
chunk: Default::default(),
abort: r.abort,
offset: 0,
count: 0,
}
}
}
impl io::Read for BodyReader {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let mut n = 0;
while self.body.is_some() {
// Can we still read from the current chunk?
if self.offset < self.chunk.len() {
let k = min(self.chunk.len() - self.offset, buf.len() - n);
if self.count + k > self.abort.max_size() {
debug!(target: "fetch", "size limit {:?} exceeded", self.abort.max_size());
return Err(io::Error::new(io::ErrorKind::PermissionDenied, "size limit exceeded"))
}
let c = &self.chunk[self.offset .. self.offset + k];
(&mut buf[n .. n + k]).copy_from_slice(c);
self.offset += k;
self.count += k;
n += k;
if n == buf.len() {
break
}
} else {
let body = self.body.take().expect("loop condition ensures `self.body` is always defined; qed");
match body.into_future().wait() { // wait for next chunk
Err((e, _)) => {
error!(target: "fetch", "failed to read chunk: {}", e);
return Err(io::Error::new(io::ErrorKind::Other, "failed to read body chunk"))
}
Ok((None, _)) => break, // body is exhausted, break out of the loop
Ok((Some(c), b)) => {
self.body = Some(b);
self.chunk = c;
self.offset = 0
}
}
}
}
Ok(n)
}
}
/// Fetch error cases.
#[derive(Debug)]
pub enum Error {
/// Hyper gave us an error.
Hyper(hyper::Error),
/// A hyper header conversion error.
HyperHeaderToStrError(hyper::header::ToStrError),
/// An integer parsing error.
ParseInt(std::num::ParseIntError),
/// Some I/O error occured.
Io(io::Error),
/// Invalid URLs where attempted to parse.
Url(url::ParseError),
/// Calling code invoked `Abort::abort`.
Aborted,
/// Too many redirects have been encountered.
TooManyRedirects,
/// tokio-timer inner future gave us an error.
TokioTimeoutInnerVal(String),
/// tokio-timer gave us an error.
TokioTimer(Option<tokio::timer::Error>),
/// The maximum duration was reached.
Timeout,
/// The response body is too large.
SizeLimit,
/// The background processing thread does not run.
BackgroundThreadDead,
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Aborted => write!(fmt, "The request has been aborted."),
Error::Hyper(ref e) => write!(fmt, "{}", e),
Error::HyperHeaderToStrError(ref e) => write!(fmt, "{}", e),
Error::ParseInt(ref e) => write!(fmt, "{}", e),
Error::Url(ref e) => write!(fmt, "{}", e),
Error::Io(ref e) => write!(fmt, "{}", e),
Error::BackgroundThreadDead => write!(fmt, "background thread gond"),
Error::TooManyRedirects => write!(fmt, "too many redirects"),
Error::TokioTimeoutInnerVal(ref s) => write!(fmt, "tokio timer inner value error: {:?}", s),
Error::TokioTimer(ref e) => write!(fmt, "tokio timer error: {:?}", e),
Error::Timeout => write!(fmt, "request timed out"),
Error::SizeLimit => write!(fmt, "size limit reached"),
}
}
}
impl ::std::error::Error for Error {
fn description(&self) -> &str { "Fetch client error" }
fn cause(&self) -> Option<&::std::error::Error> { None }
}
impl From<hyper::Error> for Error {
fn from(e: hyper::Error) -> Self {
Error::Hyper(e)
}
}
impl From<hyper::header::ToStrError> for Error {
fn from(e: hyper::header::ToStrError) -> Self {
Error::HyperHeaderToStrError(e)
}
}
impl From<std::num::ParseIntError> for Error {
fn from(e: std::num::ParseIntError) -> Self {
Error::ParseInt(e)
}
}
impl From<io::Error> for Error {
fn from(e: io::Error) -> Self {
Error::Io(e)
}
}
impl From<url::ParseError> for Error {
fn from(e: url::ParseError) -> Self {
Error::Url(e)
}
}
impl<T: std::fmt::Debug> From<tokio::timer::timeout::Error<T>> for Error {
fn from(e: tokio::timer::timeout::Error<T>) -> Self {
if e.is_inner() {
Error::TokioTimeoutInnerVal(format!("{:?}", e.into_inner().unwrap()))
} else if e.is_elapsed() {
Error::Timeout
} else {
Error::TokioTimer(e.into_timer())
}
}
}
impl From<tokio::timer::Error> for Error {
fn from(e: tokio::timer::Error) -> Self {
Error::TokioTimer(Some(e))
}
}
#[cfg(test)]
mod test {
use super::*;
use futures::future;
use futures::sync::oneshot;
use hyper::{
StatusCode,
service::Service,
};
use tokio::timer::Delay;
use tokio::runtime::current_thread::Runtime;
use std::io::Read;
use std::net::SocketAddr;
const ADDRESS: &str = "127.0.0.1:0";
#[test]
fn it_should_fetch() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
let future = client.get(&format!("http://{}?123", server.addr()), Abort::default())
.map(|resp| {
assert!(resp.is_success());
resp
})
.map(|resp| resp.concat2())
.flatten()
.map(|body| assert_eq!(&body[..], b"123"))
.map_err(|err| panic!(err));
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_fetch_in_light_mode() {
let server = TestServer::run();
let client = Client::new(1).unwrap();
let mut runtime = Runtime::new().unwrap();
let future = client.get(&format!("http://{}?123", server.addr()), Abort::default())
.map(|resp| {
assert!(resp.is_success());
resp
})
.map(|resp| resp.concat2())
.flatten()
.map(|body| assert_eq!(&body[..], b"123"))
.map_err(|err| panic!(err));
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_timeout() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
let abort = Abort::default().with_max_duration(Duration::from_secs(1));
let future = client.get(&format!("http://{}/delay?3", server.addr()), abort)
.then(|res| {
match res {
Err(Error::Timeout) => Ok::<_, ()>(()),
other => panic!("expected timeout, got {:?}", other),
}
});
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_follow_redirects() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
let abort = Abort::default();
let future = client.get(&format!("http://{}/redirect?http://{}/", server.addr(), server.addr()), abort)
.and_then(|resp| {
if resp.is_success() { Ok(()) } else { panic!("Response unsuccessful") }
});
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_follow_relative_redirects() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
let abort = Abort::default().with_max_redirects(4);
let future = client.get(&format!("http://{}/redirect?/", server.addr()), abort)
.and_then(|resp| {
if resp.is_success() { Ok(()) } else { panic!("Response unsuccessful") }
});
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_not_follow_too_many_redirects() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
let abort = Abort::default().with_max_redirects(3);
let future = client.get(&format!("http://{}/loop", server.addr()), abort)
.then(|res| {
match res {
Err(Error::TooManyRedirects) => Ok::<_, ()>(()),
other => panic!("expected too many redirects error, got {:?}", other)
}
});
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_read_data() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
let abort = Abort::default();
let future = client.get(&format!("http://{}?abcdefghijklmnopqrstuvwxyz", server.addr()), abort)
.and_then(|resp| {
if resp.is_success() { Ok(resp) } else { panic!("Response unsuccessful") }
})
.map(|resp| resp.concat2())
.flatten()
.map(|body| assert_eq!(&body[..], b"abcdefghijklmnopqrstuvwxyz"));
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_not_read_too_much_data() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
let abort = Abort::default().with_max_size(3);
let future = client.get(&format!("http://{}/?1234", server.addr()), abort)
.and_then(|resp| {
if resp.is_success() { Ok(resp) } else { panic!("Response unsuccessful") }
})
.map(|resp| resp.concat2())
.flatten()
.then(|body| {
match body {
Err(Error::SizeLimit) => Ok::<_, ()>(()),
other => panic!("expected size limit error, got {:?}", other),
}
});
runtime.block_on(future).unwrap();
}
#[test]
fn it_should_not_read_too_much_data_sync() {
let server = TestServer::run();
let client = Client::new(4).unwrap();
let mut runtime = Runtime::new().unwrap();
// let abort = Abort::default().with_max_size(3);
// let resp = client.get(&format!("http://{}/?1234", server.addr()), abort).wait().unwrap();
// assert!(resp.is_success());
// let mut buffer = Vec::new();
// let mut reader = BodyReader::new(resp);
// match reader.read_to_end(&mut buffer) {
// Err(ref e) if e.kind() == io::ErrorKind::PermissionDenied => {}
// other => panic!("expected size limit error, got {:?}", other)
// }
// FIXME (c0gent): The prior version of this test (pre-hyper-0.12,
// commented out above) is not possible to recreate. It relied on an
// apparent bug in `Client::background_thread` which suppressed the
// `SizeLimit` error from occurring. This is due to the headers
// collection not returning a value for content length when queried.
// The precise reason why this was happening is unclear.
let abort = Abort::default().with_max_size(3);
let future = client.get(&format!("http://{}/?1234", server.addr()), abort)
.and_then(|resp| {
assert_eq!(true, false, "Unreachable. (see FIXME note)");
assert!(resp.is_success());
let mut buffer = Vec::new();
let mut reader = BodyReader::new(resp);
match reader.read_to_end(&mut buffer) {
Err(ref e) if e.kind() == io::ErrorKind::PermissionDenied => Ok(()),
other => panic!("expected size limit error, got {:?}", other)
}
});
// FIXME: This simply demonstrates the above point.
match runtime.block_on(future) {
Err(Error::SizeLimit) => {},
other => panic!("Expected `Error::SizeLimit`, got: {:?}", other),
}
}
struct TestServer;
impl Service for TestServer {
type ReqBody = hyper::Body;
type ResBody = hyper::Body;
type Error = Error;
type Future = Box<Future<Item=hyper::Response<Self::ResBody>, Error=Self::Error> + Send + 'static>;
fn call(&mut self, req: hyper::Request<hyper::Body>) -> Self::Future {
match req.uri().path() {
"/" => {
let body = req.uri().query().unwrap_or("").to_string();
let res = hyper::Response::new(body.into());
Box::new(future::ok(res))
}
"/redirect" => {
let loc = req.uri().query().unwrap_or("/").to_string();
let res = hyper::Response::builder()
.status(StatusCode::MOVED_PERMANENTLY)
.header(hyper::header::LOCATION, loc)
.body(hyper::Body::empty())
.expect("Unable to create response");
Box::new(future::ok(res))
}
"/loop" => {
let res = hyper::Response::builder()
.status(StatusCode::MOVED_PERMANENTLY)
.header(hyper::header::LOCATION, "/loop")
.body(hyper::Body::empty())
.expect("Unable to create response");
Box::new(future::ok(res))
}
"/delay" => {
let dur = Duration::from_secs(req.uri().query().unwrap_or("0").parse().unwrap());
let delayed_res = Delay::new(std::time::Instant::now() + dur)
.and_then(|_| Ok::<_, _>(hyper::Response::new(hyper::Body::empty())))
.from_err();
Box::new(delayed_res)
}
_ => {
let res = hyper::Response::builder()
.status(StatusCode::NOT_FOUND)
.body(hyper::Body::empty())
.expect("Unable to create response");
Box::new(future::ok(res))
}
}
}
}
impl TestServer {
fn run() -> Handle {
let (tx_start, rx_start) = std::sync::mpsc::sync_channel(1);
let (tx_end, rx_end) = oneshot::channel();
let rx_end_fut = rx_end.map(|_| ()).map_err(|_| ());
thread::spawn(move || {
let addr = ADDRESS.parse().unwrap();
let server = hyper::server::Server::bind(&addr)
.serve(|| future::ok::<_, hyper::Error>(TestServer));
tx_start.send(server.local_addr()).unwrap_or(());
tokio::run(
server.with_graceful_shutdown(rx_end_fut)
.map_err(|e| panic!("server error: {}", e))
);
});
Handle(rx_start.recv().unwrap(), Some(tx_end))
}
}
struct Handle(SocketAddr, Option<oneshot::Sender<()>>);
impl Handle {
fn addr(&self) -> SocketAddr {
self.0
}
}
impl Drop for Handle {
fn drop(&mut self) {
self.1.take().unwrap().send(()).unwrap();
}
}
}