openethereum/util/network-devp2p/src/connection.rs
Anton Gavrilov 834585d61b
Crypto primitives removed from ethkey (#11174)
* Crypto utils removed from ethkey

* Fix ethkey lib

* Switch ethsore to new crypto

* Accounts crate fixed

* Secret store crate switched to new crypto

* Ethcore builtin fixed

* Accounts crate fixed

* Ethcore crate fixed

* Util network fixed

* Util network-devp2p fixed

* Private tx fixed

* Ethcore sync fixed

* Secret store fixed

* Rpc fixed

* Parity fixed

* Ethkey cli fixed

* Local store fixed

* Ethcore blockchain fixed

* Cargo.lock pushed; doc comment added for reversed nonce

* Ethstore tests fixed

* Ethstore cli fixed

* Miner fixed

* Snapshot tests are fixed

* Single brackets removed

* Machine fixed

* Verification fixed

* Executive state fixed

* More single brackets removed

* Update version of parity-crypto

* Use published version 0.4.2 of parity-crypto

* New test in tx_filter fixed
2019-10-23 13:03:46 +02:00

767 lines
23 KiB
Rust

// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
use std::collections::VecDeque;
use std::io::{self, Cursor, Read, Write};
use std::net::SocketAddr;
use std::sync::atomic::{AtomicBool, Ordering as AtomicOrdering};
use std::time::Duration;
use bytes::{Buf, BufMut};
use parity_crypto::aes::{AesCtr256, AesEcb256};
use parity_crypto::publickey::Secret;
use ethereum_types::{H128, H256, H512};
use keccak_hash::{keccak, write_keccak};
use log::{debug, trace, warn};
use mio::{PollOpt, Ready, Token};
use mio::deprecated::{EventLoop, Handler, TryRead, TryWrite};
use mio::tcp::TcpStream;
use parity_bytes::Bytes;
use rlp::{Rlp, RlpStream};
use tiny_keccak::Keccak;
use ethcore_io::{IoContext, StreamToken};
use network::Error;
use crate::handshake::Handshake;
const ENCRYPTED_HEADER_LEN: usize = 32;
const RECEIVE_PAYLOAD: Duration = Duration::from_secs(30);
pub const MAX_PAYLOAD_SIZE: usize = (1 << 24) - 1;
/// Network responses should try not to go over this limit.
/// This should be lower than MAX_PAYLOAD_SIZE
pub const PAYLOAD_SOFT_LIMIT: usize = (1 << 22) - 1;
pub trait GenericSocket : Read + Write {
}
impl GenericSocket for TcpStream {
}
pub struct GenericConnection<Socket: GenericSocket> {
/// Connection id (token)
pub token: StreamToken,
/// Network socket
pub socket: Socket,
/// Receive buffer
rec_buf: Bytes,
/// Expected size
rec_size: usize,
/// Send out packets FIFO
send_queue: VecDeque<Cursor<Bytes>>,
/// Event flags this connection expects
interest: Ready,
/// Registered flag
registered: AtomicBool,
}
impl<Socket: GenericSocket> GenericConnection<Socket> {
pub fn expect(&mut self, size: usize) {
trace!(target:"network", "Expect to read {} bytes", size);
if self.rec_size != self.rec_buf.len() {
warn!(target:"network", "Unexpected connection read start");
}
self.rec_size = size;
}
/// Readable IO handler. Called when there is some data to be read.
pub fn readable(&mut self) -> io::Result<Option<Bytes>> {
if self.rec_size == 0 || self.rec_buf.len() >= self.rec_size {
return Ok(None);
}
let sock_ref = <Socket as Read>::by_ref(&mut self.socket);
loop {
let max = self.rec_size - self.rec_buf.len();
match sock_ref.take(max as u64).try_read(unsafe { self.rec_buf.bytes_mut() }) {
Ok(Some(size)) if size != 0 => {
unsafe { self.rec_buf.advance_mut(size); }
trace!(target:"network", "{}: Read {} of {} bytes", self.token, self.rec_buf.len(), self.rec_size);
if self.rec_size != 0 && self.rec_buf.len() == self.rec_size {
self.rec_size = 0;
return Ok(Some(::std::mem::replace(&mut self.rec_buf, Bytes::new())))
}
else if self.rec_buf.len() > self.rec_size {
warn!(target:"network", "Read past buffer {} bytes", self.rec_buf.len() - self.rec_size);
return Ok(Some(::std::mem::replace(&mut self.rec_buf, Bytes::new())))
}
},
Ok(_) => return Ok(None),
Err(e) => {
debug!(target:"network", "Read error {} ({})", self.token, e);
return Err(e)
}
}
}
}
/// Add a packet to send queue.
pub fn send<Message>(&mut self, io: &IoContext<Message>, data: Bytes) where Message: Send + Clone + Sync + 'static {
if !data.is_empty() {
trace!(target:"network", "{}: Sending {} bytes", self.token, data.len());
self.send_queue.push_back(Cursor::new(data));
if !self.interest.is_writable() {
self.interest.insert(Ready::writable());
}
io.update_registration(self.token).ok();
}
}
/// Check if this connection has data to be sent.
pub fn is_sending(&self) -> bool {
self.interest.is_writable()
}
/// Writable IO handler. Called when the socket is ready to send.
pub fn writable<Message>(&mut self, io: &IoContext<Message>) -> Result<WriteStatus, Error> where Message: Send + Clone + Sync + 'static {
{
let buf = match self.send_queue.front_mut() {
Some(buf) => buf,
None => return Ok(WriteStatus::Complete),
};
let send_size = buf.get_ref().len();
let pos = buf.position() as usize;
if (pos as usize) >= send_size {
warn!(target:"net", "Unexpected connection data");
return Ok(WriteStatus::Complete)
}
match self.socket.try_write(Buf::bytes(&buf)) {
Ok(Some(size)) if (pos + size) < send_size => {
buf.advance(size);
Ok(WriteStatus::Ongoing)
},
Ok(Some(size)) if (pos + size) == send_size => {
trace!(target:"network", "{}: Wrote {} bytes", self.token, send_size);
Ok(WriteStatus::Complete)
},
Ok(Some(_)) => { panic!("Wrote past buffer");},
Ok(None) => Ok(WriteStatus::Ongoing),
Err(e) => Err(e)?
}
}.and_then(|r| {
if r == WriteStatus::Complete {
self.send_queue.pop_front();
}
if self.send_queue.is_empty() {
self.interest.remove(Ready::writable());
}
io.update_registration(self.token)?;
Ok(r)
})
}
}
/// Low level tcp connection
pub type Connection = GenericConnection<TcpStream>;
impl Connection {
/// Create a new connection with given id and socket.
pub fn new(token: StreamToken, socket: TcpStream) -> Connection {
Connection {
token,
socket,
send_queue: VecDeque::new(),
rec_buf: Bytes::new(),
rec_size: 0,
interest: Ready::hup() | Ready::readable(),
registered: AtomicBool::new(false),
}
}
/// Get socket token
pub fn token(&self) -> StreamToken {
self.token
}
/// Get remote peer address
pub fn remote_addr(&self) -> io::Result<SocketAddr> {
self.socket.peer_addr()
}
/// Get remote peer address string
pub fn remote_addr_str(&self) -> String {
self.socket.peer_addr().map(|a| a.to_string()).unwrap_or_else(|err| {
debug!("error occurred getting peer_addr: {}, connection token: {}", err, self.token);
"Unknown peer address".to_owned()
})
}
/// Get local peer address string
pub fn local_addr_str(&self) -> String {
self.socket.local_addr().map(|a| a.to_string()).unwrap_or_else(|_| "Unknown".to_owned())
}
/// Clone this connection. Clears the receiving buffer of the returned connection.
pub fn try_clone(&self) -> io::Result<Self> {
Ok(Connection {
token: self.token,
socket: self.socket.try_clone()?,
rec_buf: Vec::new(),
rec_size: 0,
send_queue: self.send_queue.clone(),
interest: Ready::hup(),
registered: AtomicBool::new(false),
})
}
/// Register this connection with the IO event loop.
pub fn register_socket<Host: Handler>(&self, reg: Token, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
if self.registered.load(AtomicOrdering::SeqCst) {
return Ok(());
}
trace!(target: "network", "connection register; token={:?}", reg);
if let Err(e) = event_loop.register(&self.socket, reg, self.interest, PollOpt::edge() /* | PollOpt::oneshot() */) { // TODO: oneshot is broken on windows
trace!(target: "network", "Failed to register {:?}, {:?}", reg, e);
}
self.registered.store(true, AtomicOrdering::SeqCst);
Ok(())
}
/// Update connection registration. Should be called at the end of the IO handler.
pub fn update_socket<Host: Handler>(&self, reg: Token, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
trace!(target: "network", "connection reregister; token={:?}", reg);
if !self.registered.load(AtomicOrdering::SeqCst) {
self.register_socket(reg, event_loop)
} else {
event_loop.reregister(&self.socket, reg, self.interest, PollOpt::edge() /* | PollOpt::oneshot() */ ).unwrap_or_else(|e| { // TODO: oneshot is broken on windows
trace!(target: "network", "Failed to reregister {:?}, {:?}", reg, e);
});
Ok(())
}
}
/// Delete connection registration. Should be called at the end of the IO handler.
pub fn deregister_socket<Host: Handler>(&self, event_loop: &mut EventLoop<Host>) -> io::Result<()> {
trace!(target: "network", "connection deregister; token={:?}", self.token);
event_loop.deregister(&self.socket).ok(); // ignore errors here
Ok(())
}
}
/// Connection write status.
#[derive(PartialEq, Eq)]
pub enum WriteStatus {
/// Some data is still pending for current packet
Ongoing,
/// All data sent.
Complete
}
/// `RLPx` packet
pub struct Packet {
pub protocol: u16,
pub data: Bytes,
}
/// Encrypted connection receiving state.
enum EncryptedConnectionState {
/// Reading a header.
Header,
/// Reading the rest of the packet.
Payload,
}
/// Connection implementing `RLPx` framing
/// https://github.com/ethereum/devp2p/blob/master/rlpx.md#framing
pub struct EncryptedConnection {
/// Underlying tcp connection
pub connection: Connection,
/// Egress data encryptor
encoder: AesCtr256,
/// Ingress data decryptor
decoder: AesCtr256,
/// Ingress data decryptor
mac_encoder_key: Secret,
/// MAC for egress data
egress_mac: Keccak,
/// MAC for ingress data
ingress_mac: Keccak,
/// Read state
read_state: EncryptedConnectionState,
/// Protocol id for the last received packet
protocol_id: u16,
/// Payload expected to be received for the last header.
payload_len: usize,
}
const NULL_IV : [u8; 16] = [0;16];
impl EncryptedConnection {
/// Create an encrypted connection out of the handshake.
pub fn new(handshake: &mut Handshake) -> Result<EncryptedConnection, Error> {
let shared = parity_crypto::publickey::ecdh::agree(handshake.ecdhe.secret(), &handshake.remote_ephemeral)?;
let mut nonce_material = H512::default();
if handshake.originated {
(&mut nonce_material[0..32]).copy_from_slice(handshake.remote_nonce.as_bytes());
(&mut nonce_material[32..64]).copy_from_slice(handshake.nonce.as_bytes());
}
else {
(&mut nonce_material[0..32]).copy_from_slice(handshake.nonce.as_bytes());
(&mut nonce_material[32..64]).copy_from_slice(handshake.remote_nonce.as_bytes());
}
let mut key_material = H512::default();
(&mut key_material[0..32]).copy_from_slice(shared.as_bytes());
write_keccak(&nonce_material, &mut key_material[32..64]);
let key_material_keccak = keccak(&key_material);
(&mut key_material[32..64]).copy_from_slice(key_material_keccak.as_bytes());
let key_material_keccak = keccak(&key_material);
(&mut key_material[32..64]).copy_from_slice(key_material_keccak.as_bytes());
// Using a 0 IV with CTR is fine as long as the same IV is never reused with the same key.
// This is the case here: ecdh creates a new secret which will be the symmetric key used
// only for this session the 0 IV is only use once with this secret, so we are in the case
// of same IV use for different key.
let encoder = AesCtr256::new(&key_material[32..64], &NULL_IV)?;
let decoder = AesCtr256::new(&key_material[32..64], &NULL_IV)?;
let key_material_keccak = keccak(&key_material);
(&mut key_material[32..64]).copy_from_slice(key_material_keccak.as_bytes());
let mac_encoder_key: Secret = Secret::copy_from_slice(&key_material[32..64]).expect("can create Secret from 32 bytes; qed");
let mut egress_mac = Keccak::new_keccak256();
let mut mac_material = H256::from_slice(&key_material[32..64]) ^ handshake.remote_nonce;
egress_mac.update(mac_material.as_bytes());
egress_mac.update(if handshake.originated { &handshake.auth_cipher } else { &handshake.ack_cipher });
let mut ingress_mac = Keccak::new_keccak256();
mac_material = H256::from_slice(&key_material[32..64]) ^ handshake.nonce;
ingress_mac.update(mac_material.as_bytes());
ingress_mac.update(if handshake.originated { &handshake.ack_cipher } else { &handshake.auth_cipher });
let old_connection = handshake.connection.try_clone()?;
let connection = ::std::mem::replace(&mut handshake.connection, old_connection);
let mut enc = EncryptedConnection {
connection,
encoder,
decoder,
mac_encoder_key,
egress_mac,
ingress_mac,
read_state: EncryptedConnectionState::Header,
protocol_id: 0,
payload_len: 0,
};
enc.connection.expect(ENCRYPTED_HEADER_LEN);
Ok(enc)
}
/// Send a packet
pub fn send_packet<Message>(&mut self, io: &IoContext<Message>, payload: &[u8]) -> Result<(), Error> where Message: Send + Clone + Sync + 'static {
const HEADER_LEN: usize = 16;
let mut header = RlpStream::new();
let len = payload.len();
if len > MAX_PAYLOAD_SIZE {
return Err(Error::OversizedPacket);
}
header.append_raw(&[(len >> 16) as u8, (len >> 8) as u8, len as u8], 1);
header.append_raw(&[0xc2u8, 0x80u8, 0x80u8], 1);
let padding = (16 - (len % 16)) % 16;
let mut packet = vec![0u8; 16 + 16 + len + padding + 16];
let mut header = header.out();
header.resize(HEADER_LEN, 0u8);
&mut packet[..HEADER_LEN].copy_from_slice(&mut header);
self.encoder.encrypt(&mut packet[..HEADER_LEN])?;
EncryptedConnection::update_mac(&mut self.egress_mac, &self.mac_encoder_key, &packet[..HEADER_LEN])?;
self.egress_mac.clone().finalize(&mut packet[HEADER_LEN..32]);
&mut packet[32..32 + len].copy_from_slice(payload);
self.encoder.encrypt(&mut packet[32..32 + len])?;
if padding != 0 {
self.encoder.encrypt(&mut packet[(32 + len)..(32 + len + padding)])?;
}
self.egress_mac.update(&packet[32..(32 + len + padding)]);
EncryptedConnection::update_mac(&mut self.egress_mac, &self.mac_encoder_key, &[0u8; 0])?;
self.egress_mac.clone().finalize(&mut packet[(32 + len + padding)..]);
self.connection.send(io, packet);
Ok(())
}
/// Decrypt and authenticate an incoming packet header. Prepare for receiving payload.
fn read_header(&mut self, mut header: Bytes) -> Result<(), Error> {
if header.len() != ENCRYPTED_HEADER_LEN {
return Err(Error::Auth);
}
EncryptedConnection::update_mac(&mut self.ingress_mac, &self.mac_encoder_key, &header[0..16])?;
let mac = &header[16..];
let mut expected = H256::zero();
self.ingress_mac.clone().finalize(expected.as_bytes_mut());
if mac != &expected[0..16] {
return Err(Error::Auth);
}
self.decoder.decrypt(&mut header[..16])?;
let length = ((((header[0] as u32) << 8) + (header[1] as u32)) << 8) + (header[2] as u32);
let header_rlp = Rlp::new(&header[3..6]);
let protocol_id = header_rlp.val_at::<u16>(0)?;
self.payload_len = length as usize;
self.protocol_id = protocol_id;
self.read_state = EncryptedConnectionState::Payload;
let padding = (16 - (length % 16)) % 16;
let full_length = length + padding + 16;
self.connection.expect(full_length as usize);
Ok(())
}
/// Decrypt and authenticate packet payload.
fn read_payload(&mut self, mut payload: Bytes) -> Result<Packet, Error> {
let padding = (16 - (self.payload_len % 16)) % 16;
let full_length = self.payload_len + padding + 16;
if payload.len() != full_length {
return Err(Error::Auth);
}
self.ingress_mac.update(&payload[0..payload.len() - 16]);
EncryptedConnection::update_mac(&mut self.ingress_mac, &self.mac_encoder_key, &[0u8; 0])?;
let mac = &payload[(payload.len() - 16)..];
let mut expected = H128::default();
self.ingress_mac.clone().finalize(expected.as_bytes_mut());
if mac != &expected[..] {
return Err(Error::Auth);
}
self.decoder.decrypt(&mut payload[..self.payload_len + padding])?;
payload.truncate(self.payload_len);
Ok(Packet {
protocol: self.protocol_id,
data: payload
})
}
/// Update MAC after reading or writing any data.
fn update_mac(mac: &mut Keccak, mac_encoder_key: &Secret, seed: &[u8]) -> Result<(), Error> {
let mut prev = H128::default();
mac.clone().finalize(prev.as_bytes_mut());
let mut enc = H128::default();
&mut enc[..].copy_from_slice(prev.as_bytes());
let mac_encoder = AesEcb256::new(mac_encoder_key.as_bytes())?;
mac_encoder.encrypt(enc.as_bytes_mut())?;
enc = enc ^ if seed.is_empty() { prev } else { H128::from_slice(seed) };
mac.update(enc.as_bytes());
Ok(())
}
/// Readable IO handler. Tracker receive status and returns decoded packet if available.
pub fn readable<Message>(&mut self, io: &IoContext<Message>) -> Result<Option<Packet>, Error> where Message: Send + Clone + Sync + 'static {
io.clear_timer(self.connection.token)?;
if let EncryptedConnectionState::Header = self.read_state {
if let Some(data) = self.connection.readable()? {
self.read_header(data)?;
io.register_timer(self.connection.token, RECEIVE_PAYLOAD)?;
}
};
if let EncryptedConnectionState::Payload = self.read_state {
match self.connection.readable()? {
Some(data) => {
self.read_state = EncryptedConnectionState::Header;
self.connection.expect(ENCRYPTED_HEADER_LEN);
Ok(Some(self.read_payload(data)?))
},
None => Ok(None)
}
} else {
Ok(None)
}
}
/// Writable IO handler. Processes send queue.
pub fn writable<Message>(&mut self, io: &IoContext<Message>) -> Result<(), Error> where Message: Send + Clone + Sync + 'static {
self.connection.writable(io)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::cmp;
use std::collections::VecDeque;
use std::io::{Cursor, Error, ErrorKind, Read, Result, Write};
use std::sync::atomic::AtomicBool;
use mio::Ready;
use parity_bytes::Bytes;
use ethcore_io::*;
use super::*;
pub struct TestSocket {
pub read_buffer: Vec<u8>,
pub write_buffer: Vec<u8>,
pub cursor: usize,
pub buf_size: usize,
}
impl Default for TestSocket {
fn default() -> Self {
TestSocket::new()
}
}
impl TestSocket {
pub fn new() -> Self {
TestSocket {
read_buffer: vec![],
write_buffer: vec![],
cursor: 0,
buf_size: 0,
}
}
pub fn new_buf(buf_size: usize) -> TestSocket {
TestSocket {
read_buffer: vec![],
write_buffer: vec![],
cursor: 0,
buf_size,
}
}
}
impl Read for TestSocket {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let end_position = cmp::min(self.read_buffer.len(), self.cursor+buf.len());
if self.cursor > end_position { return Ok(0) }
let len = cmp::max(end_position - self.cursor, 0);
match len {
0 => Ok(0),
_ => {
for i in self.cursor..end_position {
buf[i-self.cursor] = self.read_buffer[i];
}
self.cursor = end_position;
Ok(len)
}
}
}
}
impl Write for TestSocket {
fn write(&mut self, buf: &[u8]) -> Result<usize> {
if self.buf_size == 0 || buf.len() < self.buf_size {
self.write_buffer.extend(buf.iter().cloned());
Ok(buf.len())
}
else {
self.write_buffer.extend(buf.iter().take(self.buf_size).cloned());
Ok(self.buf_size)
}
}
fn flush(&mut self) -> Result<()> {
unimplemented!();
}
}
impl GenericSocket for TestSocket {}
struct TestBrokenSocket {
error: String
}
impl Read for TestBrokenSocket {
fn read(&mut self, _: &mut [u8]) -> Result<usize> {
Err(Error::new(ErrorKind::Other, self.error.clone()))
}
}
impl Write for TestBrokenSocket {
fn write(&mut self, _: &[u8]) -> Result<usize> {
Err(Error::new(ErrorKind::Other, self.error.clone()))
}
fn flush(&mut self) -> Result<()> {
unimplemented!();
}
}
impl GenericSocket for TestBrokenSocket {}
type TestConnection = GenericConnection<TestSocket>;
impl Default for TestConnection {
fn default() -> Self {
TestConnection::new()
}
}
impl TestConnection {
pub fn new() -> Self {
TestConnection {
token: 999998888usize,
socket: TestSocket::new(),
send_queue: VecDeque::new(),
rec_buf: Bytes::new(),
rec_size: 0,
interest: Ready::hup() | Ready::readable(),
registered: AtomicBool::new(false),
}
}
}
type TestBrokenConnection = GenericConnection<TestBrokenSocket>;
impl Default for TestBrokenConnection {
fn default() -> Self {
TestBrokenConnection::new()
}
}
impl TestBrokenConnection {
pub fn new() -> Self {
TestBrokenConnection {
token: 999998888usize,
socket: TestBrokenSocket { error: "test broken socket".to_owned() },
send_queue: VecDeque::new(),
rec_buf: Bytes::new(),
rec_size: 0,
interest: Ready::hup() | Ready::readable(),
registered: AtomicBool::new(false),
}
}
}
fn test_io() -> IoContext<i32> {
IoContext::new(IoChannel::disconnected(), 0)
}
#[test]
pub fn test_encryption() {
use ethereum_types::{H256, H128};
use std::str::FromStr;
let key = H256::from_str("2212767d793a7a3d66f869ae324dd11bd17044b82c9f463b8a541a4d089efec5").unwrap();
let before = H128::from_str("12532abaec065082a3cf1da7d0136f15").unwrap();
let before2 = H128::from_str("7e99f682356fdfbc6b67a9562787b18a").unwrap();
let after = H128::from_str("89464c6b04e7c99e555c81d3f7266a05").unwrap();
let after2 = H128::from_str("85c070030589ef9c7a2879b3a8489316").unwrap();
let mut got = H128::default();
let encoder = AesEcb256::new(key.as_bytes()).unwrap();
got.as_bytes_mut().copy_from_slice(before.as_bytes());
encoder.encrypt(got.as_bytes_mut()).unwrap();
assert_eq!(got, after);
let encoder = AesEcb256::new(key.as_bytes()).unwrap();
got = H128::default();
got.as_bytes_mut().copy_from_slice(&before2.as_bytes());
encoder.encrypt(got.as_bytes_mut()).unwrap();
assert_eq!(got, after2);
}
#[test]
fn connection_expect() {
let mut connection = TestConnection::new();
connection.expect(1024);
assert_eq!(1024, connection.rec_size);
}
#[test]
fn connection_write_empty() {
let mut connection = TestConnection::new();
let status = connection.writable(&test_io());
assert!(status.is_ok());
assert!(WriteStatus::Complete == status.unwrap());
}
#[test]
fn connection_write() {
let mut connection = TestConnection::new();
let data = Cursor::new(vec![0; 10240]);
connection.send_queue.push_back(data);
let status = connection.writable(&test_io());
assert!(status.is_ok());
assert!(WriteStatus::Complete == status.unwrap());
assert_eq!(10240, connection.socket.write_buffer.len());
}
#[test]
fn connection_write_is_buffered() {
let mut connection = TestConnection::new();
connection.socket = TestSocket::new_buf(1024);
let data = Cursor::new(vec![0; 10240]);
connection.send_queue.push_back(data);
let status = connection.writable(&test_io());
assert!(status.is_ok());
assert!(WriteStatus::Ongoing == status.unwrap());
assert_eq!(1024, connection.socket.write_buffer.len());
}
#[test]
fn connection_write_to_broken() {
let mut connection = TestBrokenConnection::new();
let data = Cursor::new(vec![0; 10240]);
connection.send_queue.push_back(data);
let status = connection.writable(&test_io());
assert!(!status.is_ok());
assert_eq!(1, connection.send_queue.len());
}
#[test]
fn connection_read() {
let mut connection = TestConnection::new();
connection.rec_size = 2048;
connection.rec_buf = vec![10; 1024];
connection.socket.read_buffer = vec![99; 2048];
let status = connection.readable();
assert!(status.is_ok());
assert_eq!(1024, connection.socket.cursor);
}
#[test]
fn connection_read_from_broken() {
let mut connection = TestBrokenConnection::new();
connection.rec_size = 2048;
let status = connection.readable();
assert!(!status.is_ok());
assert_eq!(0, connection.rec_buf.len());
}
#[test]
fn connection_read_nothing() {
let mut connection = TestConnection::new();
connection.rec_size = 2048;
let status = connection.readable();
assert!(status.is_ok());
assert_eq!(0, connection.rec_buf.len());
}
#[test]
fn connection_read_full() {
let mut connection = TestConnection::new();
connection.rec_size = 1024;
connection.rec_buf = vec![76;1024];
let status = connection.readable();
assert!(status.is_ok());
assert_eq!(0, connection.socket.cursor);
}
}