openethereum/ethcore/light/src/client/header_chain.rs

384 lines
12 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Light client header chain.
//!
//! Unlike a full node's `BlockChain` this doesn't store much in the database.
//! It stores candidates for the last 2048-4096 blocks as well as CHT roots for
//! historical blocks all the way to the genesis.
//!
//! This is separate from the `BlockChain` for two reasons:
//! - It stores only headers (and a pruned subset of them)
//! - To allow for flexibility in the database layout once that's incorporated.
// TODO: use DB instead of memory. DB Layout: just the contents of `candidates`/`headers`
//
use std::collections::{BTreeMap, HashMap};
use cht;
use ethcore::block_status::BlockStatus;
use ethcore::error::BlockError;
use ethcore::ids::BlockId;
use ethcore::views::HeaderView;
use util::{Bytes, H256, U256, HeapSizeOf, Mutex, RwLock};
use smallvec::SmallVec;
/// Store at least this many candidate headers at all times.
/// Also functions as the delay for computing CHTs as they aren't
/// relevant to any blocks we've got in memory.
const HISTORY: u64 = 2048;
/// Information about a block.
#[derive(Debug, Clone)]
pub struct BlockDescriptor {
/// The block's hash
pub hash: H256,
/// The block's number
pub number: u64,
/// The block's total difficulty.
pub total_difficulty: U256,
}
// candidate block description.
struct Candidate {
hash: H256,
parent_hash: H256,
total_difficulty: U256,
}
struct Entry {
candidates: SmallVec<[Candidate; 3]>, // 3 arbitrarily chosen
canonical_hash: H256,
}
impl HeapSizeOf for Entry {
fn heap_size_of_children(&self) -> usize {
match self.candidates.spilled() {
false => 0,
true => self.candidates.capacity() * ::std::mem::size_of::<Candidate>(),
}
}
}
/// Header chain. See module docs for more details.
pub struct HeaderChain {
genesis_header: Bytes, // special-case the genesis.
candidates: RwLock<BTreeMap<u64, Entry>>,
headers: RwLock<HashMap<H256, Bytes>>,
best_block: RwLock<BlockDescriptor>,
cht_roots: Mutex<Vec<H256>>,
}
impl HeaderChain {
/// Create a new header chain given this genesis block.
pub fn new(genesis: &[u8]) -> Self {
let g_view = HeaderView::new(genesis);
HeaderChain {
genesis_header: genesis.to_owned(),
best_block: RwLock::new(BlockDescriptor {
hash: g_view.hash(),
number: 0,
total_difficulty: g_view.difficulty(),
}),
candidates: RwLock::new(BTreeMap::new()),
headers: RwLock::new(HashMap::new()),
cht_roots: Mutex::new(Vec::new()),
}
}
/// Insert a pre-verified header.
///
/// This blindly trusts that the data given to it is
/// a) valid RLP encoding of a header and
/// b) has sensible data contained within it.
pub fn insert(&self, header: Bytes) -> Result<(), BlockError> {
let view = HeaderView::new(&header);
let hash = view.hash();
let number = view.number();
let parent_hash = view.parent_hash();
// hold candidates the whole time to guard import order.
let mut candidates = self.candidates.write();
// find parent details.
let parent_td =
if number == 1 {
let g_view = HeaderView::new(&self.genesis_header);
g_view.difficulty()
} else {
candidates.get(&(number - 1))
.and_then(|entry| entry.candidates.iter().find(|c| c.hash == parent_hash))
.map(|c| c.total_difficulty)
.ok_or_else(|| BlockError::UnknownParent(parent_hash))?
};
let total_difficulty = parent_td + view.difficulty();
// insert headers and candidates entries.
candidates.entry(number).or_insert_with(|| Entry { candidates: SmallVec::new(), canonical_hash: hash })
.candidates.push(Candidate {
hash: hash,
parent_hash: parent_hash,
total_difficulty: total_difficulty,
});
self.headers.write().insert(hash, header.clone());
// reorganize ancestors so canonical entries are first in their
// respective candidates vectors.
if self.best_block.read().total_difficulty < total_difficulty {
let mut canon_hash = hash;
for (&height, entry) in candidates.iter_mut().rev().skip_while(|&(height, _)| *height > number) {
if height != number && entry.canonical_hash == canon_hash { break; }
trace!(target: "chain", "Setting new canonical block {} for block height {}",
canon_hash, height);
let canon_pos = entry.candidates.iter().position(|x| x.hash == canon_hash)
.expect("blocks are only inserted if parent is present; or this is the block we just added; qed");
// move the new canonical entry to the front and set the
// era's canonical hash.
entry.candidates.swap(0, canon_pos);
entry.canonical_hash = canon_hash;
// what about reorgs > cht::SIZE + HISTORY?
// resetting to the last block of a given CHT should be possible.
canon_hash = entry.candidates[0].parent_hash;
}
trace!(target: "chain", "New best block: ({}, {}), TD {}", number, hash, total_difficulty);
*self.best_block.write() = BlockDescriptor {
hash: hash,
number: number,
total_difficulty: total_difficulty,
};
// produce next CHT root if it's time.
let earliest_era = *candidates.keys().next().expect("at least one era just created; qed");
if earliest_era + HISTORY + cht::SIZE <= number {
let mut values = Vec::with_capacity(cht::SIZE as usize);
{
let mut headers = self.headers.write();
for i in (0..cht::SIZE).map(|x| x + earliest_era) {
let era_entry = candidates.remove(&i)
.expect("all eras are sequential with no gaps; qed");
for ancient in &era_entry.candidates {
headers.remove(&ancient.hash);
}
values.push((
::rlp::encode(&i).to_vec(),
::rlp::encode(&era_entry.canonical_hash).to_vec(),
));
}
}
let cht_root = ::util::triehash::trie_root(values);
debug!(target: "chain", "Produced CHT {} root: {:?}", (earliest_era - 1) % cht::SIZE, cht_root);
self.cht_roots.lock().push(cht_root);
}
}
Ok(())
}
/// Get a block header. In the case of query by number, only canonical blocks
/// will be returned.
pub fn get_header(&self, id: BlockId) -> Option<Bytes> {
match id {
BlockId::Earliest | BlockId::Number(0) => Some(self.genesis_header.clone()),
BlockId::Hash(hash) => self.headers.read().get(&hash).map(|x| x.to_vec()),
BlockId::Number(num) => {
if self.best_block.read().number < num { return None }
self.candidates.read().get(&num).map(|entry| entry.canonical_hash)
.and_then(|hash| self.headers.read().get(&hash).map(|x| x.to_vec()))
}
BlockId::Latest | BlockId::Pending => {
let hash = self.best_block.read().hash;
self.headers.read().get(&hash).map(|x| x.to_vec())
}
}
}
/// Get the nth CHT root, if it's been computed.
///
/// CHT root 0 is from block `1..2048`.
/// CHT root 1 is from block `2049..4096`
/// and so on.
///
/// This is because it's assumed that the genesis hash is known,
/// so including it within a CHT would be redundant.
pub fn cht_root(&self, n: usize) -> Option<H256> {
self.cht_roots.lock().get(n).map(|h| h.clone())
}
/// Get the genesis hash.
pub fn genesis_hash(&self) -> H256 {
::util::Hashable::sha3(&self.genesis_header)
}
/// Get the best block's data.
pub fn best_block(&self) -> BlockDescriptor {
self.best_block.read().clone()
}
/// If there is a gap between the genesis and the rest
/// of the stored blocks, return the first post-gap block.
pub fn first_block(&self) -> Option<BlockDescriptor> {
let candidates = self.candidates.read();
match candidates.iter().next() {
None | Some((&1, _)) => None,
Some((&height, entry)) => Some(BlockDescriptor {
number: height,
hash: entry.canonical_hash,
total_difficulty: entry.candidates.iter().find(|x| x.hash == entry.canonical_hash)
.expect("entry always stores canonical candidate; qed").total_difficulty,
})
}
}
/// Get block status.
pub fn status(&self, hash: &H256) -> BlockStatus {
match self.headers.read().contains_key(hash) {
true => BlockStatus::InChain,
false => BlockStatus::Unknown,
}
}
}
impl HeapSizeOf for HeaderChain {
fn heap_size_of_children(&self) -> usize {
self.candidates.read().heap_size_of_children() +
self.headers.read().heap_size_of_children() +
self.cht_roots.lock().heap_size_of_children()
}
}
#[cfg(test)]
mod tests {
use super::HeaderChain;
use ethcore::ids::BlockId;
use ethcore::header::Header;
use ethcore::spec::Spec;
#[test]
fn basic_chain() {
let spec = Spec::new_test();
let genesis_header = spec.genesis_header();
let chain = HeaderChain::new(&::rlp::encode(&genesis_header));
let mut parent_hash = genesis_header.hash();
let mut rolling_timestamp = genesis_header.timestamp();
for i in 1..10000 {
let mut header = Header::new();
header.set_parent_hash(parent_hash);
header.set_number(i);
header.set_timestamp(rolling_timestamp);
header.set_difficulty(*genesis_header.difficulty() * i.into());
chain.insert(::rlp::encode(&header).to_vec()).unwrap();
parent_hash = header.hash();
rolling_timestamp += 10;
}
assert!(chain.get_header(BlockId::Number(10)).is_none());
assert!(chain.get_header(BlockId::Number(9000)).is_some());
assert!(chain.cht_root(2).is_some());
assert!(chain.cht_root(3).is_none());
}
#[test]
fn reorganize() {
let spec = Spec::new_test();
let genesis_header = spec.genesis_header();
let chain = HeaderChain::new(&::rlp::encode(&genesis_header));
let mut parent_hash = genesis_header.hash();
let mut rolling_timestamp = genesis_header.timestamp();
for i in 1..6 {
let mut header = Header::new();
header.set_parent_hash(parent_hash);
header.set_number(i);
header.set_timestamp(rolling_timestamp);
header.set_difficulty(*genesis_header.difficulty() * i.into());
chain.insert(::rlp::encode(&header).to_vec()).unwrap();
parent_hash = header.hash();
rolling_timestamp += 10;
}
{
let mut rolling_timestamp = rolling_timestamp;
let mut parent_hash = parent_hash;
for i in 6..16 {
let mut header = Header::new();
header.set_parent_hash(parent_hash);
header.set_number(i);
header.set_timestamp(rolling_timestamp);
header.set_difficulty(*genesis_header.difficulty() * i.into());
chain.insert(::rlp::encode(&header).to_vec()).unwrap();
parent_hash = header.hash();
rolling_timestamp += 10;
}
}
assert_eq!(chain.best_block().number, 15);
{
let mut rolling_timestamp = rolling_timestamp;
let mut parent_hash = parent_hash;
// import a shorter chain which has better TD.
for i in 6..13 {
let mut header = Header::new();
header.set_parent_hash(parent_hash);
header.set_number(i);
header.set_timestamp(rolling_timestamp);
header.set_difficulty(*genesis_header.difficulty() * (i * i).into());
chain.insert(::rlp::encode(&header).to_vec()).unwrap();
parent_hash = header.hash();
rolling_timestamp += 11;
}
}
let (mut num, mut canon_hash) = (chain.best_block().number, chain.best_block().hash);
assert_eq!(num, 12);
while num > 0 {
let header: Header = ::rlp::decode(&chain.get_header(BlockId::Number(num)).unwrap());
assert_eq!(header.hash(), canon_hash);
canon_hash = *header.parent_hash();
num -= 1;
}
}
}