518 lines
18 KiB
Rust
518 lines
18 KiB
Rust
// Copyright 2015-2019 Parity Technologies (UK) Ltd.
|
|
// This file is part of Parity Ethereum.
|
|
|
|
// Parity Ethereum is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// Parity Ethereum is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
//! Extended keys
|
|
|
|
use secret::Secret;
|
|
use Public;
|
|
use ethereum_types::H256;
|
|
pub use self::derivation::Error as DerivationError;
|
|
|
|
/// Represents label that can be stored as a part of key derivation
|
|
pub trait Label {
|
|
/// Length of the data that label occupies
|
|
fn len() -> usize;
|
|
|
|
/// Store label data to the key derivation sequence
|
|
/// Must not use more than `len()` bytes from slice
|
|
fn store(&self, target: &mut [u8]);
|
|
}
|
|
|
|
impl Label for u32 {
|
|
fn len() -> usize { 4 }
|
|
|
|
fn store(&self, target: &mut [u8]) {
|
|
let bytes = self.to_be_bytes();
|
|
target[0..4].copy_from_slice(&bytes);
|
|
}
|
|
}
|
|
|
|
/// Key derivation over generic label `T`
|
|
pub enum Derivation<T: Label> {
|
|
/// Soft key derivation (allow proof of parent)
|
|
Soft(T),
|
|
/// Hard key derivation (does not allow proof of parent)
|
|
Hard(T),
|
|
}
|
|
|
|
impl From<u32> for Derivation<u32> {
|
|
fn from(index: u32) -> Self {
|
|
if index < (2 << 30) {
|
|
Derivation::Soft(index)
|
|
}
|
|
else {
|
|
Derivation::Hard(index)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Label for H256 {
|
|
fn len() -> usize { 32 }
|
|
|
|
fn store(&self, target: &mut [u8]) {
|
|
(&mut target[0..32]).copy_from_slice(self.as_bytes());
|
|
}
|
|
}
|
|
|
|
/// Extended secret key, allows deterministic derivation of subsequent keys.
|
|
pub struct ExtendedSecret {
|
|
secret: Secret,
|
|
chain_code: H256,
|
|
}
|
|
|
|
impl ExtendedSecret {
|
|
/// New extended key from given secret and chain code.
|
|
pub fn with_code(secret: Secret, chain_code: H256) -> ExtendedSecret {
|
|
ExtendedSecret {
|
|
secret: secret,
|
|
chain_code: chain_code,
|
|
}
|
|
}
|
|
|
|
/// New extended key from given secret with the random chain code.
|
|
pub fn new_random(secret: Secret) -> ExtendedSecret {
|
|
ExtendedSecret::with_code(secret, H256::random())
|
|
}
|
|
|
|
/// New extended key from given secret.
|
|
/// Chain code will be derived from the secret itself (in a deterministic way).
|
|
pub fn new(secret: Secret) -> ExtendedSecret {
|
|
let chain_code = derivation::chain_code(*secret);
|
|
ExtendedSecret::with_code(secret, chain_code)
|
|
}
|
|
|
|
/// Derive new private key
|
|
pub fn derive<T>(&self, index: Derivation<T>) -> ExtendedSecret where T: Label {
|
|
let (derived_key, next_chain_code) = derivation::private(*self.secret, self.chain_code, index);
|
|
|
|
let derived_secret = Secret::from(derived_key.0);
|
|
|
|
ExtendedSecret::with_code(derived_secret, next_chain_code)
|
|
}
|
|
|
|
/// Private key component of the extended key.
|
|
pub fn as_raw(&self) -> &Secret {
|
|
&self.secret
|
|
}
|
|
}
|
|
|
|
/// Extended public key, allows deterministic derivation of subsequent keys.
|
|
pub struct ExtendedPublic {
|
|
public: Public,
|
|
chain_code: H256,
|
|
}
|
|
|
|
impl ExtendedPublic {
|
|
/// New extended public key from known parent and chain code
|
|
pub fn new(public: Public, chain_code: H256) -> Self {
|
|
ExtendedPublic { public: public, chain_code: chain_code }
|
|
}
|
|
|
|
/// Create new extended public key from known secret
|
|
pub fn from_secret(secret: &ExtendedSecret) -> Result<Self, DerivationError> {
|
|
Ok(
|
|
ExtendedPublic::new(
|
|
derivation::point(**secret.as_raw())?,
|
|
secret.chain_code.clone(),
|
|
)
|
|
)
|
|
}
|
|
|
|
/// Derive new public key
|
|
/// Operation is defined only for index belongs [0..2^31)
|
|
pub fn derive<T>(&self, index: Derivation<T>) -> Result<Self, DerivationError> where T: Label {
|
|
let (derived_key, next_chain_code) = derivation::public(self.public, self.chain_code, index)?;
|
|
Ok(ExtendedPublic::new(derived_key, next_chain_code))
|
|
}
|
|
|
|
pub fn public(&self) -> &Public {
|
|
&self.public
|
|
}
|
|
}
|
|
|
|
pub struct ExtendedKeyPair {
|
|
secret: ExtendedSecret,
|
|
public: ExtendedPublic,
|
|
}
|
|
|
|
impl ExtendedKeyPair {
|
|
pub fn new(secret: Secret) -> Self {
|
|
let extended_secret = ExtendedSecret::new(secret);
|
|
let extended_public = ExtendedPublic::from_secret(&extended_secret)
|
|
.expect("Valid `Secret` always produces valid public; qed");
|
|
ExtendedKeyPair {
|
|
secret: extended_secret,
|
|
public: extended_public,
|
|
}
|
|
}
|
|
|
|
pub fn with_code(secret: Secret, public: Public, chain_code: H256) -> Self {
|
|
ExtendedKeyPair {
|
|
secret: ExtendedSecret::with_code(secret, chain_code.clone()),
|
|
public: ExtendedPublic::new(public, chain_code),
|
|
}
|
|
}
|
|
|
|
pub fn with_secret(secret: Secret, chain_code: H256) -> Self {
|
|
let extended_secret = ExtendedSecret::with_code(secret, chain_code);
|
|
let extended_public = ExtendedPublic::from_secret(&extended_secret)
|
|
.expect("Valid `Secret` always produces valid public; qed");
|
|
ExtendedKeyPair {
|
|
secret: extended_secret,
|
|
public: extended_public,
|
|
}
|
|
}
|
|
|
|
pub fn with_seed(seed: &[u8]) -> Result<ExtendedKeyPair, DerivationError> {
|
|
let (master_key, chain_code) = derivation::seed_pair(seed);
|
|
Ok(ExtendedKeyPair::with_secret(
|
|
Secret::from_unsafe_slice(master_key.as_bytes()).map_err(|_| DerivationError::InvalidSeed)?,
|
|
chain_code,
|
|
))
|
|
}
|
|
|
|
pub fn secret(&self) -> &ExtendedSecret {
|
|
&self.secret
|
|
}
|
|
|
|
pub fn public(&self) -> &ExtendedPublic {
|
|
&self.public
|
|
}
|
|
|
|
pub fn derive<T>(&self, index: Derivation<T>) -> Result<Self, DerivationError> where T: Label {
|
|
let derived = self.secret.derive(index);
|
|
|
|
Ok(ExtendedKeyPair {
|
|
public: ExtendedPublic::from_secret(&derived)?,
|
|
secret: derived,
|
|
})
|
|
}
|
|
}
|
|
|
|
// Derivation functions for private and public keys
|
|
// Work is based on BIP0032
|
|
// https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
|
|
mod derivation {
|
|
use parity_crypto::hmac;
|
|
use ethereum_types::{BigEndianHash, U256, U512, H512, H256};
|
|
use secp256k1::key::{SecretKey, PublicKey};
|
|
use SECP256K1;
|
|
use keccak;
|
|
use math::curve_order;
|
|
use super::{Label, Derivation};
|
|
use std::convert::TryInto;
|
|
|
|
#[derive(Debug)]
|
|
pub enum Error {
|
|
InvalidHardenedUse,
|
|
InvalidPoint,
|
|
MissingIndex,
|
|
InvalidSeed,
|
|
}
|
|
|
|
// Deterministic derivation of the key using secp256k1 elliptic curve.
|
|
// Derivation can be either hardened or not.
|
|
// For hardened derivation, pass u32 index at least 2^31 or custom Derivation::Hard(T) enum
|
|
//
|
|
// Can panic if passed `private_key` is not a valid secp256k1 private key
|
|
// (outside of (0..curve_order()]) field
|
|
pub fn private<T>(private_key: H256, chain_code: H256, index: Derivation<T>) -> (H256, H256) where T: Label {
|
|
match index {
|
|
Derivation::Soft(index) => private_soft(private_key, chain_code, index),
|
|
Derivation::Hard(index) => private_hard(private_key, chain_code, index),
|
|
}
|
|
}
|
|
|
|
fn hmac_pair(data: &[u8], private_key: H256, chain_code: H256) -> (H256, H256) {
|
|
let private: U256 = private_key.into_uint();
|
|
|
|
// produces 512-bit derived hmac (I)
|
|
let skey = hmac::SigKey::sha512(chain_code.as_bytes());
|
|
let i_512 = hmac::sign(&skey, &data[..]);
|
|
|
|
// left most 256 bits are later added to original private key
|
|
let hmac_key: U256 = H256::from_slice(&i_512[0..32]).into_uint();
|
|
// right most 256 bits are new chain code for later derivations
|
|
let next_chain_code = H256::from_slice(&i_512[32..64]);
|
|
|
|
let child_key = BigEndianHash::from_uint(&private_add(hmac_key, private));
|
|
(child_key, next_chain_code)
|
|
}
|
|
|
|
// Can panic if passed `private_key` is not a valid secp256k1 private key
|
|
// (outside of (0..curve_order()]) field
|
|
fn private_soft<T>(private_key: H256, chain_code: H256, index: T) -> (H256, H256) where T: Label {
|
|
let mut data = vec![0u8; 33 + T::len()];
|
|
|
|
let sec_private = SecretKey::from_slice(&SECP256K1, private_key.as_bytes())
|
|
.expect("Caller should provide valid private key");
|
|
let sec_public = PublicKey::from_secret_key(&SECP256K1, &sec_private)
|
|
.expect("Caller should provide valid private key");
|
|
let public_serialized = sec_public.serialize_vec(&SECP256K1, true);
|
|
|
|
// curve point (compressed public key) -- index
|
|
// 0.33 -- 33..end
|
|
data[0..33].copy_from_slice(&public_serialized);
|
|
index.store(&mut data[33..]);
|
|
|
|
hmac_pair(&data, private_key, chain_code)
|
|
}
|
|
|
|
// Deterministic derivation of the key using secp256k1 elliptic curve
|
|
// This is hardened derivation and does not allow to associate
|
|
// corresponding public keys of the original and derived private keys
|
|
fn private_hard<T>(private_key: H256, chain_code: H256, index: T) -> (H256, H256) where T: Label {
|
|
let mut data: Vec<u8> = vec![0u8; 33 + T::len()];
|
|
let private: U256 = private_key.into_uint();
|
|
|
|
// 0x00 (padding) -- private_key -- index
|
|
// 0 -- 1..33 -- 33..end
|
|
private.to_big_endian(&mut data[1..33]);
|
|
index.store(&mut data[33..(33 + T::len())]);
|
|
|
|
hmac_pair(&data, private_key, chain_code)
|
|
}
|
|
|
|
fn private_add(k1: U256, k2: U256) -> U256 {
|
|
let sum = U512::from(k1) + U512::from(k2);
|
|
modulo(sum, curve_order())
|
|
}
|
|
|
|
// todo: surely can be optimized
|
|
fn modulo(u1: U512, u2: U256) -> U256 {
|
|
let m = u1 % U512::from(u2);
|
|
m.try_into().expect("U512 modulo U256 should fit into U256; qed")
|
|
}
|
|
|
|
pub fn public<T>(public_key: H512, chain_code: H256, derivation: Derivation<T>) -> Result<(H512, H256), Error> where T: Label {
|
|
let index = match derivation {
|
|
Derivation::Soft(index) => index,
|
|
Derivation::Hard(_) => { return Err(Error::InvalidHardenedUse); }
|
|
};
|
|
|
|
let mut public_sec_raw = [0u8; 65];
|
|
public_sec_raw[0] = 4;
|
|
public_sec_raw[1..65].copy_from_slice(public_key.as_bytes());
|
|
let public_sec = PublicKey::from_slice(&SECP256K1, &public_sec_raw).map_err(|_| Error::InvalidPoint)?;
|
|
let public_serialized = public_sec.serialize_vec(&SECP256K1, true);
|
|
|
|
let mut data = vec![0u8; 33 + T::len()];
|
|
// curve point (compressed public key) -- index
|
|
// 0.33 -- 33..end
|
|
data[0..33].copy_from_slice(&public_serialized);
|
|
index.store(&mut data[33..(33 + T::len())]);
|
|
|
|
// HMAC512SHA produces [derived private(256); new chain code(256)]
|
|
let skey = hmac::SigKey::sha512(chain_code.as_bytes());
|
|
let i_512 = hmac::sign(&skey, &data[..]);
|
|
|
|
let new_private = H256::from_slice(&i_512[0..32]);
|
|
let new_chain_code = H256::from_slice(&i_512[32..64]);
|
|
|
|
// Generated private key can (extremely rarely) be out of secp256k1 key field
|
|
if curve_order() <= new_private.into_uint() { return Err(Error::MissingIndex); }
|
|
let new_private_sec = SecretKey::from_slice(&SECP256K1, new_private.as_bytes())
|
|
.expect("Private key belongs to the field [0..CURVE_ORDER) (checked above); So initializing can never fail; qed");
|
|
let mut new_public = PublicKey::from_secret_key(&SECP256K1, &new_private_sec)
|
|
.expect("Valid private key produces valid public key");
|
|
|
|
// Adding two points on the elliptic curves (combining two public keys)
|
|
new_public.add_assign(&SECP256K1, &public_sec)
|
|
.expect("Addition of two valid points produce valid point");
|
|
|
|
let serialized = new_public.serialize_vec(&SECP256K1, false);
|
|
|
|
Ok((
|
|
H512::from_slice(&serialized[1..65]),
|
|
new_chain_code,
|
|
))
|
|
}
|
|
|
|
fn sha3(slc: &[u8]) -> H256 {
|
|
keccak::Keccak256::keccak256(slc).into()
|
|
}
|
|
|
|
pub fn chain_code(secret: H256) -> H256 {
|
|
// 10,000 rounds of sha3
|
|
let mut running_sha3 = sha3(secret.as_bytes());
|
|
for _ in 0..99999 { running_sha3 = sha3(running_sha3.as_bytes()); }
|
|
running_sha3
|
|
}
|
|
|
|
pub fn point(secret: H256) -> Result<H512, Error> {
|
|
let sec = SecretKey::from_slice(&SECP256K1, secret.as_bytes())
|
|
.map_err(|_| Error::InvalidPoint)?;
|
|
let public_sec = PublicKey::from_secret_key(&SECP256K1, &sec)
|
|
.map_err(|_| Error::InvalidPoint)?;
|
|
let serialized = public_sec.serialize_vec(&SECP256K1, false);
|
|
Ok(H512::from_slice(&serialized[1..65]))
|
|
}
|
|
|
|
pub fn seed_pair(seed: &[u8]) -> (H256, H256) {
|
|
let skey = hmac::SigKey::sha512(b"Bitcoin seed");
|
|
let i_512 = hmac::sign(&skey, seed);
|
|
|
|
let master_key = H256::from_slice(&i_512[0..32]);
|
|
let chain_code = H256::from_slice(&i_512[32..64]);
|
|
|
|
(master_key, chain_code)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{ExtendedSecret, ExtendedPublic, ExtendedKeyPair};
|
|
use secret::Secret;
|
|
use std::str::FromStr;
|
|
use ethereum_types::{H128, H256, H512};
|
|
use super::{derivation, Derivation};
|
|
|
|
fn master_chain_basic() -> (H256, H256) {
|
|
let seed = H128::from_str("000102030405060708090a0b0c0d0e0f")
|
|
.expect("Seed should be valid H128")
|
|
.as_bytes()
|
|
.to_vec();
|
|
|
|
derivation::seed_pair(&*seed)
|
|
}
|
|
|
|
fn test_extended<F>(f: F, test_private: H256) where F: Fn(ExtendedSecret) -> ExtendedSecret {
|
|
let (private_seed, chain_code) = master_chain_basic();
|
|
let extended_secret = ExtendedSecret::with_code(Secret::from(private_seed.0), chain_code);
|
|
let derived = f(extended_secret);
|
|
assert_eq!(**derived.as_raw(), test_private);
|
|
}
|
|
|
|
#[test]
|
|
fn smoky() {
|
|
let secret = Secret::from_str("a100df7a048e50ed308ea696dc600215098141cb391e9527329df289f9383f65").unwrap();
|
|
let extended_secret = ExtendedSecret::with_code(secret.clone(), H256::zero());
|
|
|
|
// hardened
|
|
assert_eq!(&**extended_secret.as_raw(), &*secret);
|
|
assert_eq!(
|
|
**extended_secret.derive(2147483648.into()).as_raw(),
|
|
H256::from_str("0927453daed47839608e414a3738dfad10aed17c459bbd9ab53f89b026c834b6").unwrap(),
|
|
);
|
|
assert_eq!(
|
|
**extended_secret.derive(2147483649.into()).as_raw(),
|
|
H256::from_str("44238b6a29c6dcbe9b401364141ba11e2198c289a5fed243a1c11af35c19dc0f").unwrap(),
|
|
);
|
|
|
|
// normal
|
|
assert_eq!(**extended_secret.derive(0.into()).as_raw(), H256::from_str("bf6a74e3f7b36fc4c96a1e12f31abc817f9f5904f5a8fc27713163d1f0b713f6").unwrap());
|
|
assert_eq!(**extended_secret.derive(1.into()).as_raw(), H256::from_str("bd4fca9eb1f9c201e9448c1eecd66e302d68d4d313ce895b8c134f512205c1bc").unwrap());
|
|
assert_eq!(**extended_secret.derive(2.into()).as_raw(), H256::from_str("86932b542d6cab4d9c65490c7ef502d89ecc0e2a5f4852157649e3251e2a3268").unwrap());
|
|
|
|
let extended_public = ExtendedPublic::from_secret(&extended_secret).expect("Extended public should be created");
|
|
let derived_public = extended_public.derive(0.into()).expect("First derivation of public should succeed");
|
|
assert_eq!(
|
|
*derived_public.public(),
|
|
H512::from_str("f7b3244c96688f92372bfd4def26dc4151529747bab9f188a4ad34e141d47bd66522ff048bc6f19a0a4429b04318b1a8796c000265b4fa200dae5f6dda92dd94").unwrap(),
|
|
);
|
|
|
|
let keypair = ExtendedKeyPair::with_secret(
|
|
Secret::from_str("a100df7a048e50ed308ea696dc600215098141cb391e9527329df289f9383f65").unwrap(),
|
|
H256::from_low_u64_be(64),
|
|
);
|
|
assert_eq!(
|
|
**keypair.derive(2147483648u32.into()).expect("Derivation of keypair should succeed").secret().as_raw(),
|
|
H256::from_str("edef54414c03196557cf73774bc97a645c9a1df2164ed34f0c2a78d1375a930c").unwrap(),
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn h256_soft_match() {
|
|
let secret = Secret::from_str("a100df7a048e50ed308ea696dc600215098141cb391e9527329df289f9383f65").unwrap();
|
|
let derivation_secret = H256::from_str("51eaf04f9dbbc1417dc97e789edd0c37ecda88bac490434e367ea81b71b7b015").unwrap();
|
|
|
|
let extended_secret = ExtendedSecret::with_code(secret.clone(), H256::zero());
|
|
let extended_public = ExtendedPublic::from_secret(&extended_secret).expect("Extended public should be created");
|
|
|
|
let derived_secret0 = extended_secret.derive(Derivation::Soft(derivation_secret));
|
|
let derived_public0 = extended_public.derive(Derivation::Soft(derivation_secret)).expect("First derivation of public should succeed");
|
|
|
|
let public_from_secret0 = ExtendedPublic::from_secret(&derived_secret0).expect("Extended public should be created");
|
|
|
|
assert_eq!(public_from_secret0.public(), derived_public0.public());
|
|
}
|
|
|
|
#[test]
|
|
fn h256_hard() {
|
|
let secret = Secret::from_str("a100df7a048e50ed308ea696dc600215098141cb391e9527329df289f9383f65").unwrap();
|
|
let derivation_secret = H256::from_str("51eaf04f9dbbc1417dc97e789edd0c37ecda88bac490434e367ea81b71b7b015").unwrap();
|
|
let extended_secret = ExtendedSecret::with_code(secret.clone(), H256::from_low_u64_be(1));
|
|
|
|
assert_eq!(
|
|
**extended_secret.derive(Derivation::Hard(derivation_secret)).as_raw(),
|
|
H256::from_str("2bc2d696fb744d77ff813b4a1ef0ad64e1e5188b622c54ba917acc5ebc7c5486").unwrap(),
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn match_() {
|
|
let secret = Secret::from_str("a100df7a048e50ed308ea696dc600215098141cb391e9527329df289f9383f65").unwrap();
|
|
let extended_secret = ExtendedSecret::with_code(secret.clone(), H256::from_low_u64_be(1));
|
|
let extended_public = ExtendedPublic::from_secret(&extended_secret).expect("Extended public should be created");
|
|
|
|
let derived_secret0 = extended_secret.derive(0.into());
|
|
let derived_public0 = extended_public.derive(0.into()).expect("First derivation of public should succeed");
|
|
|
|
let public_from_secret0 = ExtendedPublic::from_secret(&derived_secret0).expect("Extended public should be created");
|
|
|
|
assert_eq!(public_from_secret0.public(), derived_public0.public());
|
|
}
|
|
|
|
#[test]
|
|
fn test_seeds() {
|
|
let seed = H128::from_str("000102030405060708090a0b0c0d0e0f")
|
|
.expect("Seed should be valid H128")
|
|
.as_bytes()
|
|
.to_vec();
|
|
|
|
// private key from bitcoin test vector
|
|
// xprv9wTYmMFdV23N2TdNG573QoEsfRrWKQgWeibmLntzniatZvR9BmLnvSxqu53Kw1UmYPxLgboyZQaXwTCg8MSY3H2EU4pWcQDnRnrVA1xe8fs
|
|
let test_private = H256::from_str("e8f32e723decf4051aefac8e2c93c9c5b214313817cdb01a1494b917c8436b35")
|
|
.expect("Private should be decoded ok");
|
|
|
|
let (private_seed, _) = derivation::seed_pair(&*seed);
|
|
|
|
assert_eq!(private_seed, test_private);
|
|
}
|
|
|
|
#[test]
|
|
fn test_vector_1() {
|
|
// xprv9uHRZZhk6KAJC1avXpDAp4MDc3sQKNxDiPvvkX8Br5ngLNv1TxvUxt4cV1rGL5hj6KCesnDYUhd7oWgT11eZG7XnxHrnYeSvkzY7d2bhkJ7
|
|
// H(0)
|
|
test_extended(
|
|
|secret| secret.derive(2147483648.into()),
|
|
H256::from_str("edb2e14f9ee77d26dd93b4ecede8d16ed408ce149b6cd80b0715a2d911a0afea")
|
|
.expect("Private should be decoded ok")
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_vector_2() {
|
|
// xprv9wTYmMFdV23N2TdNG573QoEsfRrWKQgWeibmLntzniatZvR9BmLnvSxqu53Kw1UmYPxLgboyZQaXwTCg8MSY3H2EU4pWcQDnRnrVA1xe8fs
|
|
// H(0)/1
|
|
test_extended(
|
|
|secret| secret.derive(2147483648.into()).derive(1.into()),
|
|
H256::from_str("3c6cb8d0f6a264c91ea8b5030fadaa8e538b020f0a387421a12de9319dc93368")
|
|
.expect("Private should be decoded ok")
|
|
);
|
|
}
|
|
}
|