openethereum/rpc/src/v1/helpers/dispatch.rs

880 lines
27 KiB
Rust

// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
//! Utilities and helpers for transaction dispatch.
use std::fmt::Debug;
use std::ops::Deref;
use std::sync::Arc;
use light::cache::Cache as LightDataCache;
use light::client::LightChainClient;
use light::on_demand::{request, OnDemand};
use light::TransactionQueue as LightTransactionQueue;
use hash::keccak;
use ethereum_types::{H256, H520, Address, U256};
use bytes::Bytes;
use parking_lot::{Mutex, RwLock};
use stats::Corpus;
use crypto::DEFAULT_MAC;
use ethcore::account_provider::AccountProvider;
use ethcore::client::BlockChainClient;
use ethcore::miner::{self, MinerService};
use ethkey::{Password, Signature};
use sync::LightSync;
use types::transaction::{Action, SignedTransaction, PendingTransaction, Transaction, Error as TransactionError};
use types::basic_account::BasicAccount;
use types::ids::BlockId;
use jsonrpc_core::{BoxFuture, Result, Error};
use jsonrpc_core::futures::{future, Future, Poll, Async, IntoFuture};
use jsonrpc_core::futures::future::Either;
use v1::helpers::{errors, nonce, TransactionRequest, FilledTransactionRequest, ConfirmationPayload};
use v1::types::{
H520 as RpcH520, Bytes as RpcBytes,
RichRawTransaction as RpcRichRawTransaction,
ConfirmationPayload as RpcConfirmationPayload,
ConfirmationResponse,
EthSignRequest as RpcEthSignRequest,
EIP191SignRequest as RpcSignRequest,
DecryptRequest as RpcDecryptRequest,
};
use rlp;
pub use self::nonce::Reservations;
/// Has the capability to dispatch, sign, and decrypt.
///
/// Requires a clone implementation, with the implication that it be cheap;
/// usually just bumping a reference count or two.
pub trait Dispatcher: Send + Sync + Clone {
// TODO: when ATC exist, use zero-cost
// type Out<T>: IntoFuture<T, Error>
/// Fill optional fields of a transaction request, fetching gas price but not nonce.
fn fill_optional_fields(&self, request: TransactionRequest, default_sender: Address, force_nonce: bool)
-> BoxFuture<FilledTransactionRequest>;
/// Sign the given transaction request, fetching appropriate nonce and executing the PostSign action
fn sign<P>(
&self,
accounts: Arc<AccountProvider>,
filled: FilledTransactionRequest,
password: SignWith,
post_sign: P
) -> BoxFuture<P::Item>
where
P: PostSign + 'static,
<P::Out as futures::future::IntoFuture>::Future: Send;
/// Converts a `SignedTransaction` into `RichRawTransaction`
fn enrich(&self, signed: SignedTransaction) -> RpcRichRawTransaction;
/// "Dispatch" a local transaction.
fn dispatch_transaction(&self, signed_transaction: PendingTransaction)
-> Result<H256>;
}
/// A dispatcher which uses references to a client and miner in order to sign
/// requests locally.
#[derive(Debug)]
pub struct FullDispatcher<C, M> {
client: Arc<C>,
miner: Arc<M>,
nonces: Arc<Mutex<nonce::Reservations>>,
gas_price_percentile: usize,
}
impl<C, M> FullDispatcher<C, M> {
/// Create a `FullDispatcher` from Arc references to a client and miner.
pub fn new(
client: Arc<C>,
miner: Arc<M>,
nonces: Arc<Mutex<nonce::Reservations>>,
gas_price_percentile: usize,
) -> Self {
FullDispatcher {
client,
miner,
nonces,
gas_price_percentile,
}
}
}
impl<C, M> Clone for FullDispatcher<C, M> {
fn clone(&self) -> Self {
FullDispatcher {
client: self.client.clone(),
miner: self.miner.clone(),
nonces: self.nonces.clone(),
gas_price_percentile: self.gas_price_percentile,
}
}
}
impl<C: miner::BlockChainClient, M: MinerService> FullDispatcher<C, M> {
fn state_nonce(&self, from: &Address) -> U256 {
self.miner.next_nonce(&*self.client, from)
}
/// Imports transaction to the miner's queue.
pub fn dispatch_transaction(client: &C, miner: &M, signed_transaction: PendingTransaction, trusted: bool) -> Result<H256> {
let hash = signed_transaction.transaction.hash();
// use `import_claimed_local_transaction` so we can decide (based on config flags) if we want to treat
// it as local or not. Nodes with public RPC interfaces will want these transactions to be treated like
// external transactions.
miner.import_claimed_local_transaction(client, signed_transaction, trusted)
.map_err(errors::transaction)
.map(|_| hash)
}
}
impl<C: miner::BlockChainClient + BlockChainClient, M: MinerService> Dispatcher for FullDispatcher<C, M> {
fn fill_optional_fields(&self, request: TransactionRequest, default_sender: Address, force_nonce: bool)
-> BoxFuture<FilledTransactionRequest>
{
let request = request;
let from = request.from.unwrap_or(default_sender);
let nonce = if force_nonce {
request.nonce.or_else(|| Some(self.state_nonce(&from)))
} else {
request.nonce
};
Box::new(future::ok(FilledTransactionRequest {
from,
used_default_from: request.from.is_none(),
to: request.to,
nonce,
gas_price: request.gas_price.unwrap_or_else(|| {
default_gas_price(&*self.client, &*self.miner, self.gas_price_percentile)
}),
gas: request.gas.unwrap_or_else(|| self.miner.sensible_gas_limit()),
value: request.value.unwrap_or_else(|| 0.into()),
data: request.data.unwrap_or_else(Vec::new),
condition: request.condition,
}))
}
fn sign<P>(
&self,
accounts: Arc<AccountProvider>,
filled: FilledTransactionRequest,
password: SignWith,
post_sign: P
) -> BoxFuture<P::Item>
where
P: PostSign + 'static,
<P::Out as futures::future::IntoFuture>::Future: Send
{
let chain_id = self.client.signing_chain_id();
if let Some(nonce) = filled.nonce {
let future = sign_transaction(&*accounts, filled, chain_id, nonce, password)
.into_future()
.and_then(move |signed| post_sign.execute(signed));
Box::new(future)
} else {
let state = self.state_nonce(&filled.from);
let reserved = self.nonces.lock().reserve(filled.from, state);
Box::new(ProspectiveSigner::new(accounts, filled, chain_id, reserved, password, post_sign))
}
}
fn enrich(&self, signed_transaction: SignedTransaction) -> RpcRichRawTransaction {
RpcRichRawTransaction::from_signed(signed_transaction)
}
fn dispatch_transaction(&self, signed_transaction: PendingTransaction) -> Result<H256> {
Self::dispatch_transaction(&*self.client, &*self.miner, signed_transaction, true)
}
}
/// Get a recent gas price corpus.
// TODO: this could be `impl Trait`.
pub fn fetch_gas_price_corpus(
sync: Arc<LightSync>,
client: Arc<LightChainClient>,
on_demand: Arc<OnDemand>,
cache: Arc<Mutex<LightDataCache>>,
) -> BoxFuture<Corpus<U256>> {
const GAS_PRICE_SAMPLE_SIZE: usize = 100;
if let Some(cached) = { cache.lock().gas_price_corpus() } {
return Box::new(future::ok(cached))
}
let cache = cache.clone();
let eventual_corpus = sync.with_context(|ctx| {
// get some recent headers with gas used,
// and request each of the blocks from the network.
let block_requests = client.ancestry_iter(BlockId::Latest)
.filter(|hdr| hdr.gas_used() != U256::default())
.take(GAS_PRICE_SAMPLE_SIZE)
.map(|hdr| request::Body(hdr.into()))
.collect::<Vec<_>>();
// when the blocks come in, collect gas prices into a vector
on_demand.request(ctx, block_requests)
.expect("no back-references; therefore all back-references are valid; qed")
.map(|bodies| {
bodies.into_iter().fold(Vec::new(), |mut v, block| {
for t in block.transaction_views().iter() {
v.push(t.gas_price())
}
v
})
})
.map(move |prices| {
// produce a corpus from the vector and cache it.
// It's later used to get a percentile for default gas price.
let corpus: ::stats::Corpus<_> = prices.into();
cache.lock().set_gas_price_corpus(corpus.clone());
corpus
})
});
match eventual_corpus {
Some(corp) => Box::new(corp.map_err(|_| errors::no_light_peers())),
None => Box::new(future::err(errors::network_disabled())),
}
}
/// Returns a eth_sign-compatible hash of data to sign.
/// The data is prepended with special message to prevent
/// malicious DApps from using the function to sign forged transactions.
pub fn eth_data_hash(mut data: Bytes) -> H256 {
let mut message_data =
format!("\x19Ethereum Signed Message:\n{}", data.len())
.into_bytes();
message_data.append(&mut data);
keccak(message_data)
}
/// Dispatcher for light clients -- fetches default gas price, next nonce, etc. from network.
#[derive(Clone)]
pub struct LightDispatcher {
/// Sync service.
pub sync: Arc<LightSync>,
/// Header chain client.
pub client: Arc<LightChainClient>,
/// On-demand request service.
pub on_demand: Arc<OnDemand>,
/// Data cache.
pub cache: Arc<Mutex<LightDataCache>>,
/// Transaction queue.
pub transaction_queue: Arc<RwLock<LightTransactionQueue>>,
/// Nonce reservations
pub nonces: Arc<Mutex<nonce::Reservations>>,
/// Gas Price percentile value used as default gas price.
pub gas_price_percentile: usize,
}
impl LightDispatcher {
/// Create a new `LightDispatcher` from its requisite parts.
///
/// For correct operation, the OnDemand service is assumed to be registered as a network handler,
pub fn new(
sync: Arc<LightSync>,
client: Arc<LightChainClient>,
on_demand: Arc<OnDemand>,
cache: Arc<Mutex<LightDataCache>>,
transaction_queue: Arc<RwLock<LightTransactionQueue>>,
nonces: Arc<Mutex<nonce::Reservations>>,
gas_price_percentile: usize,
) -> Self {
LightDispatcher {
sync,
client,
on_demand,
cache,
transaction_queue,
nonces,
gas_price_percentile,
}
}
/// Get a recent gas price corpus.
// TODO: this could be `impl Trait`.
pub fn gas_price_corpus(&self) -> BoxFuture<Corpus<U256>> {
fetch_gas_price_corpus(
self.sync.clone(),
self.client.clone(),
self.on_demand.clone(),
self.cache.clone(),
)
}
/// Get an account's state
fn account(&self, addr: Address) -> BoxFuture<Option<BasicAccount>> {
let best_header = self.client.best_block_header();
let account_future = self.sync.with_context(|ctx| self.on_demand.request(ctx, request::Account {
header: best_header.into(),
address: addr,
}).expect("no back-references; therefore all back-references valid; qed"));
match account_future {
Some(response) => Box::new(response.map_err(|_| errors::no_light_peers())),
None => Box::new(future::err(errors::network_disabled())),
}
}
/// Get an account's next nonce.
pub fn next_nonce(&self, addr: Address) -> BoxFuture<U256> {
let account_start_nonce = self.client.engine().account_start_nonce(self.client.best_block_header().number());
Box::new(self.account(addr)
.and_then(move |maybe_account| {
future::ok(maybe_account.map_or(account_start_nonce, |account| account.nonce))
})
)
}
}
impl Dispatcher for LightDispatcher {
// Ignore the `force_nonce` flag in order to always query the network when fetching the nonce and
// the account state. If the nonce is specified in the transaction use that nonce instead but do the
// network request anyway to the account state (balance)
fn fill_optional_fields(&self, request: TransactionRequest, default_sender: Address, _force_nonce: bool)
-> BoxFuture<FilledTransactionRequest>
{
const DEFAULT_GAS_PRICE: U256 = U256([0, 0, 0, 21_000_000]);
let gas_limit = self.client.best_block_header().gas_limit();
let request_gas_price = request.gas_price.clone();
let from = request.from.unwrap_or(default_sender);
let with_gas_price = move |gas_price| {
let request = request;
FilledTransactionRequest {
from: from.clone(),
used_default_from: request.from.is_none(),
to: request.to,
nonce: request.nonce,
gas_price: gas_price,
gas: request.gas.unwrap_or_else(|| gas_limit / 3),
value: request.value.unwrap_or_else(|| 0.into()),
data: request.data.unwrap_or_else(Vec::new),
condition: request.condition,
}
};
// fast path for known gas price.
let gas_price_percentile = self.gas_price_percentile;
let gas_price = match request_gas_price {
Some(gas_price) => Either::A(future::ok(with_gas_price(gas_price))),
None => Either::B(fetch_gas_price_corpus(
self.sync.clone(),
self.client.clone(),
self.on_demand.clone(),
self.cache.clone()
).and_then(move |corp| match corp.percentile(gas_price_percentile) {
Some(percentile) => Ok(*percentile),
None => Ok(DEFAULT_GAS_PRICE), // fall back to default on error.
}).map(with_gas_price))
};
let future_account = self.account(from);
Box::new(gas_price.and_then(move |mut filled| {
future_account
.and_then(move |maybe_account| {
let cost = filled.value.saturating_add(filled.gas.saturating_mul(filled.gas_price));
match maybe_account {
Some(ref account) if cost > account.balance => {
Err(errors::transaction(TransactionError::InsufficientBalance {
balance: account.balance,
cost,
}))
}
Some(account) => {
if filled.nonce.is_none() {
filled.nonce = Some(account.nonce);
}
Ok(filled)
}
None => Err(errors::account("Account not found", "")),
}
})
}))
}
fn sign<P>(
&self,
accounts: Arc<AccountProvider>,
filled: FilledTransactionRequest,
password: SignWith,
post_sign: P
) -> BoxFuture<P::Item>
where
P: PostSign + 'static,
<P::Out as futures::future::IntoFuture>::Future: Send
{
let chain_id = self.client.signing_chain_id();
let nonce = filled.nonce.expect("nonce is always provided; qed");
let future = sign_transaction(&*accounts, filled, chain_id, nonce, password)
.into_future()
.and_then(move |signed| post_sign.execute(signed));
Box::new(future)
}
fn enrich(&self, signed_transaction: SignedTransaction) -> RpcRichRawTransaction {
RpcRichRawTransaction::from_signed(signed_transaction)
}
fn dispatch_transaction(&self, signed_transaction: PendingTransaction) -> Result<H256> {
let hash = signed_transaction.transaction.hash();
self.transaction_queue.write().import(signed_transaction)
.map_err(errors::transaction)
.map(|_| hash)
}
}
fn sign_transaction(
accounts: &AccountProvider,
filled: FilledTransactionRequest,
chain_id: Option<u64>,
nonce: U256,
password: SignWith,
) -> Result<WithToken<SignedTransaction>> {
let t = Transaction {
nonce: nonce,
action: filled.to.map_or(Action::Create, Action::Call),
gas: filled.gas,
gas_price: filled.gas_price,
value: filled.value,
data: filled.data,
};
if accounts.is_hardware_address(&filled.from) {
return hardware_signature(accounts, filled.from, t, chain_id).map(WithToken::No)
}
let hash = t.hash(chain_id);
let signature = signature(accounts, filled.from, hash, password)?;
Ok(signature.map(|sig| {
SignedTransaction::new(t.with_signature(sig, chain_id))
.expect("Transaction was signed by AccountsProvider; it never produces invalid signatures; qed")
}))
}
#[derive(Debug, Clone, Copy)]
enum ProspectiveSignerState {
TryProspectiveSign,
WaitForPostSign,
WaitForNonce,
}
struct ProspectiveSigner<P: PostSign> {
accounts: Arc<AccountProvider>,
filled: FilledTransactionRequest,
chain_id: Option<u64>,
reserved: nonce::Reserved,
password: SignWith,
state: ProspectiveSignerState,
prospective: Option<WithToken<SignedTransaction>>,
ready: Option<nonce::Ready>,
post_sign: Option<P>,
post_sign_future: Option<<P::Out as IntoFuture>::Future>
}
/// action to execute after signing
/// e.g importing a transaction into the chain
pub trait PostSign: Send {
/// item that this PostSign returns
type Item: Send;
/// incase you need to perform async PostSign actions
type Out: IntoFuture<Item = Self::Item, Error = Error> + Send;
/// perform an action with the signed transaction
fn execute(self, signer: WithToken<SignedTransaction>) -> Self::Out;
}
impl PostSign for () {
type Item = WithToken<SignedTransaction>;
type Out = Result<Self::Item>;
fn execute(self, signed: WithToken<SignedTransaction>) -> Self::Out {
Ok(signed)
}
}
impl<F: Send, T: Send> PostSign for F
where F: FnOnce(WithToken<SignedTransaction>) -> Result<T>
{
type Item = T;
type Out = Result<Self::Item>;
fn execute(self, signed: WithToken<SignedTransaction>) -> Self::Out {
(self)(signed)
}
}
impl<P: PostSign> ProspectiveSigner<P> {
pub fn new(
accounts: Arc<AccountProvider>,
filled: FilledTransactionRequest,
chain_id: Option<u64>,
reserved: nonce::Reserved,
password: SignWith,
post_sign: P
) -> Self {
// If the account is permanently unlocked we can try to sign
// using prospective nonce. This should speed up sending
// multiple subsequent transactions in multi-threaded RPC environment.
let is_unlocked_permanently = accounts.is_unlocked_permanently(&filled.from);
let has_password = password.is_password();
ProspectiveSigner {
accounts,
filled,
chain_id,
reserved,
password,
state: if is_unlocked_permanently || has_password {
ProspectiveSignerState::TryProspectiveSign
} else {
ProspectiveSignerState::WaitForNonce
},
prospective: None,
ready: None,
post_sign: Some(post_sign),
post_sign_future: None
}
}
fn sign(&self, nonce: &U256) -> Result<WithToken<SignedTransaction>> {
sign_transaction(
&*self.accounts,
self.filled.clone(),
self.chain_id,
*nonce,
self.password.clone()
)
}
fn poll_reserved(&mut self) -> Poll<nonce::Ready, Error> {
self.reserved.poll().map_err(|_| errors::internal("Nonce reservation failure", ""))
}
}
impl<P: PostSign> Future for ProspectiveSigner<P> {
type Item = P::Item;
type Error = Error;
fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
use self::ProspectiveSignerState::*;
loop {
match self.state {
TryProspectiveSign => {
// Try to poll reserved, it might be ready.
match self.poll_reserved()? {
Async::NotReady => {
self.state = WaitForNonce;
self.prospective = Some(self.sign(self.reserved.prospective_value())?);
},
Async::Ready(nonce) => {
self.state = WaitForPostSign;
self.post_sign_future = Some(self.post_sign.take()
.expect("post_sign is set on creation; qed")
.execute(self.sign(nonce.value())?)
.into_future());
self.ready = Some(nonce);
},
}
},
WaitForNonce => {
let nonce = try_ready!(self.poll_reserved());
let prospective = match (self.prospective.take(), nonce.matches_prospective()) {
(Some(prospective), true) => prospective,
_ => self.sign(nonce.value())?,
};
self.ready = Some(nonce);
self.state = WaitForPostSign;
self.post_sign_future = Some(self.post_sign.take()
.expect("post_sign is set on creation; qed")
.execute(prospective)
.into_future());
},
WaitForPostSign => {
if let Some(mut fut) = self.post_sign_future.as_mut() {
match fut.poll()? {
Async::Ready(item) => {
let nonce = self.ready
.take()
.expect("nonce is set before state transitions to WaitForPostSign; qed");
nonce.mark_used();
return Ok(Async::Ready(item))
},
Async::NotReady => {
return Ok(Async::NotReady)
}
}
} else {
panic!("Poll after ready.");
}
}
}
}
}
}
/// Single-use account token.
pub type AccountToken = Password;
/// Values used to unlock accounts for signing.
#[derive(Clone, PartialEq)]
pub enum SignWith {
/// Nothing -- implies the account is already unlocked.
Nothing,
/// Unlock with password.
Password(Password),
/// Unlock with single-use token.
Token(AccountToken),
}
impl SignWith {
fn is_password(&self) -> bool {
if let SignWith::Password(_) = *self {
true
} else {
false
}
}
}
/// A value, potentially accompanied by a signing token.
pub enum WithToken<T> {
/// No token.
No(T),
/// With token.
Yes(T, AccountToken),
}
impl<T: Debug> Deref for WithToken<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
match *self {
WithToken::No(ref v) => v,
WithToken::Yes(ref v, _) => v,
}
}
}
impl<T: Debug> WithToken<T> {
/// Map the value with the given closure, preserving the token.
pub fn map<S, F>(self, f: F) -> WithToken<S> where
S: Debug,
F: FnOnce(T) -> S,
{
match self {
WithToken::No(v) => WithToken::No(f(v)),
WithToken::Yes(v, token) => WithToken::Yes(f(v), token),
}
}
/// Convert into inner value, ignoring possible token.
pub fn into_value(self) -> T {
match self {
WithToken::No(v) => v,
WithToken::Yes(v, _) => v,
}
}
/// Convert the `WithToken` into a tuple.
pub fn into_tuple(self) -> (T, Option<AccountToken>) {
match self {
WithToken::No(v) => (v, None),
WithToken::Yes(v, token) => (v, Some(token))
}
}
}
impl<T: Debug> From<(T, AccountToken)> for WithToken<T> {
fn from(tuple: (T, AccountToken)) -> Self {
WithToken::Yes(tuple.0, tuple.1)
}
}
impl<T: Debug> From<(T, Option<AccountToken>)> for WithToken<T> {
fn from(tuple: (T, Option<AccountToken>)) -> Self {
match tuple.1 {
Some(token) => WithToken::Yes(tuple.0, token),
None => WithToken::No(tuple.0),
}
}
}
/// Execute a confirmation payload.
pub fn execute<D: Dispatcher + 'static>(
dispatcher: D,
accounts: Arc<AccountProvider>,
payload: ConfirmationPayload,
pass: SignWith
) -> BoxFuture<WithToken<ConfirmationResponse>> {
match payload {
ConfirmationPayload::SendTransaction(request) => {
let condition = request.condition.clone().map(Into::into);
let cloned_dispatcher = dispatcher.clone();
let post_sign = move |with_token_signed: WithToken<SignedTransaction>| {
let (signed, token) = with_token_signed.into_tuple();
let signed_transaction = PendingTransaction::new(signed, condition);
cloned_dispatcher.dispatch_transaction(signed_transaction)
.map(|hash| (hash, token))
};
let future = dispatcher.sign(accounts, request, pass, post_sign)
.map(|(hash, token)| {
WithToken::from((ConfirmationResponse::SendTransaction(hash.into()), token))
});
Box::new(future)
},
ConfirmationPayload::SignTransaction(request) => {
Box::new(dispatcher.sign(accounts, request, pass, ())
.map(move |result| result
.map(move |tx| dispatcher.enrich(tx))
.map(ConfirmationResponse::SignTransaction)
))
},
ConfirmationPayload::EthSignMessage(address, data) => {
if accounts.is_hardware_address(&address) {
let signature = accounts.sign_message_with_hardware(&address, &data)
.map(|s| H520(s.into_electrum()))
.map(RpcH520::from)
.map(ConfirmationResponse::Signature)
// TODO: is this correct? I guess the `token` is the wallet in this context
.map(WithToken::No)
.map_err(|e| errors::account("Error signing message with hardware_wallet", e));
return Box::new(future::done(signature));
}
let hash = eth_data_hash(data);
let res = signature(&accounts, address, hash, pass)
.map(|result| result
.map(|rsv| H520(rsv.into_electrum()))
.map(RpcH520::from)
.map(ConfirmationResponse::Signature)
);
Box::new(future::done(res))
},
ConfirmationPayload::SignMessage(address, data) => {
if accounts.is_hardware_address(&address) {
return Box::new(future::err(errors::account("Error signing message with hardware_wallet",
"Message signing is unsupported")));
}
let res = signature(&accounts, address, data, pass)
.map(|result| result
.map(|rsv| H520(rsv.into_electrum()))
.map(RpcH520::from)
.map(ConfirmationResponse::Signature)
);
Box::new(future::done(res))
},
ConfirmationPayload::Decrypt(address, data) => {
if accounts.is_hardware_address(&address) {
return Box::new(future::err(errors::unsupported("Decrypting via hardware wallets is not supported.", None)));
}
let res = decrypt(&accounts, address, data, pass)
.map(|result| result
.map(RpcBytes)
.map(ConfirmationResponse::Decrypt)
);
Box::new(future::done(res))
},
}
}
fn signature(accounts: &AccountProvider, address: Address, hash: H256, password: SignWith) -> Result<WithToken<Signature>> {
match password.clone() {
SignWith::Nothing => accounts.sign(address, None, hash).map(WithToken::No),
SignWith::Password(pass) => accounts.sign(address, Some(pass), hash).map(WithToken::No),
SignWith::Token(token) => accounts.sign_with_token(address, token, hash).map(Into::into),
}.map_err(|e| match password {
SignWith::Nothing => errors::signing(e),
_ => errors::password(e),
})
}
// obtain a hardware signature from the given account.
fn hardware_signature(accounts: &AccountProvider, address: Address, t: Transaction, chain_id: Option<u64>)
-> Result<SignedTransaction>
{
debug_assert!(accounts.is_hardware_address(&address));
let mut stream = rlp::RlpStream::new();
t.rlp_append_unsigned_transaction(&mut stream, chain_id);
let signature = accounts.sign_transaction_with_hardware(&address, &t, chain_id, &stream.as_raw())
.map_err(|e| {
debug!(target: "miner", "Error signing transaction with hardware wallet: {}", e);
errors::account("Error signing transaction with hardware wallet", e)
})?;
SignedTransaction::new(t.with_signature(signature, chain_id))
.map_err(|e| {
debug!(target: "miner", "Hardware wallet has produced invalid signature: {}", e);
errors::account("Invalid signature generated", e)
})
}
fn decrypt(accounts: &AccountProvider, address: Address, msg: Bytes, password: SignWith) -> Result<WithToken<Bytes>> {
match password.clone() {
SignWith::Nothing => accounts.decrypt(address, None, &DEFAULT_MAC, &msg).map(WithToken::No),
SignWith::Password(pass) => accounts.decrypt(address, Some(pass), &DEFAULT_MAC, &msg).map(WithToken::No),
SignWith::Token(token) => accounts.decrypt_with_token(address, token, &DEFAULT_MAC, &msg).map(Into::into),
}.map_err(|e| match password {
SignWith::Nothing => errors::signing(e),
_ => errors::password(e),
})
}
/// Extract the default gas price from a client and miner.
pub fn default_gas_price<C, M>(client: &C, miner: &M, percentile: usize) -> U256 where
C: BlockChainClient,
M: MinerService,
{
client.gas_price_corpus(100).percentile(percentile).cloned().unwrap_or_else(|| miner.sensible_gas_price())
}
/// Convert RPC confirmation payload to signer confirmation payload.
/// May need to resolve in the future to fetch things like gas price.
pub fn from_rpc<D>(payload: RpcConfirmationPayload, default_account: Address, dispatcher: &D) -> BoxFuture<ConfirmationPayload>
where D: Dispatcher
{
match payload {
RpcConfirmationPayload::SendTransaction(request) => {
Box::new(dispatcher.fill_optional_fields(request.into(), default_account, false)
.map(ConfirmationPayload::SendTransaction))
},
RpcConfirmationPayload::SignTransaction(request) => {
Box::new(dispatcher.fill_optional_fields(request.into(), default_account, false)
.map(ConfirmationPayload::SignTransaction))
},
RpcConfirmationPayload::Decrypt(RpcDecryptRequest { address, msg }) => {
Box::new(future::ok(ConfirmationPayload::Decrypt(address.into(), msg.into())))
},
RpcConfirmationPayload::EthSignMessage(RpcEthSignRequest { address, data }) => {
Box::new(future::ok(ConfirmationPayload::EthSignMessage(address.into(), data.into())))
},
RpcConfirmationPayload::EIP191SignMessage(RpcSignRequest { address, data }) => {
Box::new(future::ok(ConfirmationPayload::SignMessage(address.into(), data.into())))
},
}
}