2b05eb43a9
* Add `util/mem` to zero out memory on drop. * Remove nonsense. * Remove `Into` impls for `Memzero`. * Update ethereum-types and remove H256Mut.
1080 lines
42 KiB
Rust
1080 lines
42 KiB
Rust
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
|
|
// This file is part of Parity.
|
|
|
|
// Parity is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// Parity is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
use ethkey::{Public, Secret, Signature, Random, Generator, math};
|
|
use ethereum_types::{H256, U256};
|
|
use hash::keccak;
|
|
use key_server_cluster::Error;
|
|
|
|
/// Encryption result.
|
|
#[derive(Debug)]
|
|
pub struct EncryptedSecret {
|
|
/// Common encryption point.
|
|
pub common_point: Public,
|
|
/// Ecnrypted point.
|
|
pub encrypted_point: Public,
|
|
}
|
|
|
|
/// Create zero scalar.
|
|
pub fn zero_scalar() -> Secret {
|
|
Secret::zero()
|
|
}
|
|
|
|
/// Convert hash to EC scalar (modulo curve order).
|
|
pub fn to_scalar(hash: H256) -> Result<Secret, Error> {
|
|
let scalar: U256 = hash.into();
|
|
let scalar: H256 = (scalar % math::curve_order()).into();
|
|
let scalar = Secret::from(scalar.0);
|
|
scalar.check_validity()?;
|
|
Ok(scalar)
|
|
}
|
|
|
|
/// Generate random scalar.
|
|
pub fn generate_random_scalar() -> Result<Secret, Error> {
|
|
Ok(Random.generate()?.secret().clone())
|
|
}
|
|
|
|
/// Generate random point.
|
|
pub fn generate_random_point() -> Result<Public, Error> {
|
|
Ok(Random.generate()?.public().clone())
|
|
}
|
|
|
|
/// Get X coordinate of point.
|
|
fn public_x(public: &Public) -> H256 {
|
|
public[0..32].into()
|
|
}
|
|
|
|
/// Get Y coordinate of point.
|
|
fn public_y(public: &Public) -> H256 {
|
|
public[32..64].into()
|
|
}
|
|
|
|
/// Compute publics sum.
|
|
pub fn compute_public_sum<'a, I>(mut publics: I) -> Result<Public, Error> where I: Iterator<Item=&'a Public> {
|
|
let mut sum = publics.next().expect("compute_public_sum is called when there's at least one public; qed").clone();
|
|
while let Some(public) = publics.next() {
|
|
math::public_add(&mut sum, &public)?;
|
|
}
|
|
Ok(sum)
|
|
}
|
|
|
|
/// Compute secrets sum.
|
|
pub fn compute_secret_sum<'a, I>(mut secrets: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
let mut sum = secrets.next().expect("compute_secret_sum is called when there's at least one secret; qed").clone();
|
|
while let Some(secret) = secrets.next() {
|
|
sum.add(secret)?;
|
|
}
|
|
Ok(sum)
|
|
}
|
|
|
|
/// Compute secrets multiplication.
|
|
pub fn compute_secret_mul(secret1: &Secret, secret2: &Secret) -> Result<Secret, Error> {
|
|
let mut secret_mul = secret1.clone();
|
|
secret_mul.mul(secret2)?;
|
|
Ok(secret_mul)
|
|
}
|
|
|
|
/// Compute secrets 'shadow' multiplication: coeff * multiplication(s[j] / (s[i] - s[j])) for every i != j
|
|
pub fn compute_shadow_mul<'a, I>(coeff: &Secret, self_secret: &Secret, mut other_secrets: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
// when there are no other secrets, only coeff is left
|
|
let other_secret = match other_secrets.next() {
|
|
Some(other_secret) => other_secret,
|
|
None => return Ok(coeff.clone()),
|
|
};
|
|
|
|
let mut shadow_mul = self_secret.clone();
|
|
shadow_mul.sub(other_secret)?;
|
|
shadow_mul.inv()?;
|
|
shadow_mul.mul(other_secret)?;
|
|
while let Some(other_secret) = other_secrets.next() {
|
|
let mut shadow_mul_element = self_secret.clone();
|
|
shadow_mul_element.sub(other_secret)?;
|
|
shadow_mul_element.inv()?;
|
|
shadow_mul_element.mul(other_secret)?;
|
|
shadow_mul.mul(&shadow_mul_element)?;
|
|
}
|
|
|
|
shadow_mul.mul(coeff)?;
|
|
Ok(shadow_mul)
|
|
}
|
|
|
|
/// Update point by multiplying to random scalar
|
|
pub fn update_random_point(point: &mut Public) -> Result<(), Error> {
|
|
Ok(math::public_mul_secret(point, &generate_random_scalar()?)?)
|
|
}
|
|
|
|
/// Generate random polynom of threshold degree
|
|
pub fn generate_random_polynom(threshold: usize) -> Result<Vec<Secret>, Error> {
|
|
(0..threshold + 1)
|
|
.map(|_| generate_random_scalar())
|
|
.collect()
|
|
}
|
|
|
|
/// Compute value of polynom, using `node_number` as argument
|
|
pub fn compute_polynom(polynom: &[Secret], node_number: &Secret) -> Result<Secret, Error> {
|
|
debug_assert!(!polynom.is_empty());
|
|
|
|
let mut result = polynom[0].clone();
|
|
for i in 1..polynom.len() {
|
|
// calculate pow(node_number, i)
|
|
let mut appendum = node_number.clone();
|
|
appendum.pow(i)?;
|
|
|
|
// calculate coeff * pow(point, i)
|
|
appendum.mul(&polynom[i])?;
|
|
|
|
// calculate result + coeff * pow(point, i)
|
|
result.add(&appendum)?;
|
|
}
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
/// Generate public keys for other participants.
|
|
pub fn public_values_generation(threshold: usize, derived_point: &Public, polynom1: &[Secret], polynom2: &[Secret]) -> Result<Vec<Public>, Error> {
|
|
debug_assert_eq!(polynom1.len(), threshold + 1);
|
|
debug_assert_eq!(polynom2.len(), threshold + 1);
|
|
|
|
// compute t+1 public values
|
|
let mut publics = Vec::with_capacity(threshold + 1);
|
|
for i in 0..threshold + 1 {
|
|
let coeff1 = &polynom1[i];
|
|
|
|
let mut multiplication1 = math::generation_point();
|
|
math::public_mul_secret(&mut multiplication1, &coeff1)?;
|
|
|
|
let coeff2 = &polynom2[i];
|
|
let mut multiplication2 = derived_point.clone();
|
|
math::public_mul_secret(&mut multiplication2, &coeff2)?;
|
|
|
|
math::public_add(&mut multiplication1, &multiplication2)?;
|
|
|
|
publics.push(multiplication1);
|
|
}
|
|
debug_assert_eq!(publics.len(), threshold + 1);
|
|
|
|
Ok(publics)
|
|
}
|
|
|
|
/// Check keys passed by other participants.
|
|
pub fn keys_verification(threshold: usize, derived_point: &Public, number_id: &Secret, secret1: &Secret, secret2: &Secret, publics: &[Public]) -> Result<bool, Error> {
|
|
// calculate left part
|
|
let mut multiplication1 = math::generation_point();
|
|
math::public_mul_secret(&mut multiplication1, secret1)?;
|
|
|
|
let mut multiplication2 = derived_point.clone();
|
|
math::public_mul_secret(&mut multiplication2, secret2)?;
|
|
|
|
math::public_add(&mut multiplication1, &multiplication2)?;
|
|
let left = multiplication1;
|
|
|
|
// calculate right part
|
|
let mut right = publics[0].clone();
|
|
for i in 1..threshold + 1 {
|
|
let mut secret_pow = number_id.clone();
|
|
secret_pow.pow(i)?;
|
|
|
|
let mut public_k = publics[i].clone();
|
|
math::public_mul_secret(&mut public_k, &secret_pow)?;
|
|
|
|
math::public_add(&mut right, &public_k)?;
|
|
}
|
|
|
|
Ok(left == right)
|
|
}
|
|
|
|
/// Compute secret subshare from passed secret value.
|
|
pub fn compute_secret_subshare<'a, I>(threshold: usize, secret_value: &Secret, sender_id_number: &Secret, other_id_numbers: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
let mut subshare = compute_shadow_mul(secret_value, sender_id_number, other_id_numbers)?;
|
|
if threshold % 2 != 0 {
|
|
subshare.neg()?;
|
|
}
|
|
|
|
Ok(subshare)
|
|
}
|
|
|
|
/// Compute secret share.
|
|
pub fn compute_secret_share<'a, I>(secret_values: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
compute_secret_sum(secret_values)
|
|
}
|
|
|
|
/// Compute public key share.
|
|
pub fn compute_public_share(self_secret_value: &Secret) -> Result<Public, Error> {
|
|
let mut public_share = math::generation_point();
|
|
math::public_mul_secret(&mut public_share, self_secret_value)?;
|
|
Ok(public_share)
|
|
}
|
|
|
|
/// Compute joint public key.
|
|
pub fn compute_joint_public<'a, I>(public_shares: I) -> Result<Public, Error> where I: Iterator<Item=&'a Public> {
|
|
compute_public_sum(public_shares)
|
|
}
|
|
|
|
/// Compute joint secret key from N secret coefficients.
|
|
#[cfg(test)]
|
|
pub fn compute_joint_secret<'a, I>(secret_coeffs: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
compute_secret_sum(secret_coeffs)
|
|
}
|
|
|
|
/// Compute joint secret key from t+1 secret shares.
|
|
pub fn compute_joint_secret_from_shares<'a>(t: usize, secret_shares: &[&'a Secret], id_numbers: &[&'a Secret]) -> Result<Secret, Error> {
|
|
let secret_share_0 = secret_shares[0];
|
|
let id_number_0 = id_numbers[0];
|
|
let other_nodes_numbers = id_numbers.iter().skip(1).cloned();
|
|
let mut result = compute_node_shadow(secret_share_0, id_number_0, other_nodes_numbers)?;
|
|
for i in 1..secret_shares.len() {
|
|
let secret_share_i = secret_shares[i];
|
|
let id_number_i = id_numbers[i];
|
|
let other_nodes_numbers = id_numbers.iter().enumerate().filter(|&(j, _)| j != i).map(|(_, n)| n).cloned();
|
|
let addendum = compute_node_shadow(secret_share_i, id_number_i, other_nodes_numbers)?;
|
|
result.add(&addendum)?;
|
|
}
|
|
|
|
if t % 2 != 0 {
|
|
result.neg()?;
|
|
}
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
/// Encrypt secret with joint public key.
|
|
pub fn encrypt_secret(secret: &Public, joint_public: &Public) -> Result<EncryptedSecret, Error> {
|
|
// this is performed by KS-cluster client (or KS master)
|
|
let key_pair = Random.generate()?;
|
|
|
|
// k * T
|
|
let mut common_point = math::generation_point();
|
|
math::public_mul_secret(&mut common_point, key_pair.secret())?;
|
|
|
|
// M + k * y
|
|
let mut encrypted_point = joint_public.clone();
|
|
math::public_mul_secret(&mut encrypted_point, key_pair.secret())?;
|
|
math::public_add(&mut encrypted_point, secret)?;
|
|
|
|
Ok(EncryptedSecret {
|
|
common_point: common_point,
|
|
encrypted_point: encrypted_point,
|
|
})
|
|
}
|
|
|
|
/// Compute shadow for the node.
|
|
pub fn compute_node_shadow<'a, I>(node_secret_share: &Secret, node_number: &Secret, other_nodes_numbers: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
compute_shadow_mul(node_secret_share, node_number, other_nodes_numbers)
|
|
}
|
|
|
|
/// Compute shadow point for the node.
|
|
pub fn compute_node_shadow_point(access_key: &Secret, common_point: &Public, node_shadow: &Secret, decrypt_shadow: Option<Secret>) -> Result<(Public, Option<Secret>), Error> {
|
|
let mut shadow_key = node_shadow.clone();
|
|
let decrypt_shadow = match decrypt_shadow {
|
|
None => None,
|
|
Some(mut decrypt_shadow) => {
|
|
// update shadow key
|
|
shadow_key.mul(&decrypt_shadow)?;
|
|
// now udate decrypt shadow itself
|
|
decrypt_shadow.dec()?;
|
|
decrypt_shadow.mul(node_shadow)?;
|
|
Some(decrypt_shadow)
|
|
}
|
|
};
|
|
shadow_key.mul(access_key)?;
|
|
|
|
let mut node_shadow_point = common_point.clone();
|
|
math::public_mul_secret(&mut node_shadow_point, &shadow_key)?;
|
|
Ok((node_shadow_point, decrypt_shadow))
|
|
}
|
|
|
|
/// Compute joint shadow point.
|
|
pub fn compute_joint_shadow_point<'a, I>(nodes_shadow_points: I) -> Result<Public, Error> where I: Iterator<Item=&'a Public> {
|
|
compute_public_sum(nodes_shadow_points)
|
|
}
|
|
|
|
/// Compute joint shadow point (version for tests).
|
|
#[cfg(test)]
|
|
pub fn compute_joint_shadow_point_test<'a, I>(access_key: &Secret, common_point: &Public, nodes_shadows: I) -> Result<Public, Error> where I: Iterator<Item=&'a Secret> {
|
|
let mut joint_shadow = compute_secret_sum(nodes_shadows)?;
|
|
joint_shadow.mul(access_key)?;
|
|
|
|
let mut joint_shadow_point = common_point.clone();
|
|
math::public_mul_secret(&mut joint_shadow_point, &joint_shadow)?;
|
|
Ok(joint_shadow_point)
|
|
}
|
|
|
|
/// Decrypt data using joint shadow point.
|
|
pub fn decrypt_with_joint_shadow(threshold: usize, access_key: &Secret, encrypted_point: &Public, joint_shadow_point: &Public) -> Result<Public, Error> {
|
|
let mut inv_access_key = access_key.clone();
|
|
inv_access_key.inv()?;
|
|
|
|
let mut mul = joint_shadow_point.clone();
|
|
math::public_mul_secret(&mut mul, &inv_access_key)?;
|
|
|
|
let mut decrypted_point = encrypted_point.clone();
|
|
if threshold % 2 != 0 {
|
|
math::public_add(&mut decrypted_point, &mul)?;
|
|
} else {
|
|
math::public_sub(&mut decrypted_point, &mul)?;
|
|
}
|
|
|
|
Ok(decrypted_point)
|
|
}
|
|
|
|
/// Prepare common point for shadow decryption.
|
|
pub fn make_common_shadow_point(threshold: usize, mut common_point: Public) -> Result<Public, Error> {
|
|
if threshold % 2 != 1 {
|
|
Ok(common_point)
|
|
} else {
|
|
math::public_negate(&mut common_point)?;
|
|
Ok(common_point)
|
|
}
|
|
}
|
|
|
|
/// Decrypt shadow-encrypted secret.
|
|
#[cfg(test)]
|
|
pub fn decrypt_with_shadow_coefficients(mut decrypted_shadow: Public, mut common_shadow_point: Public, shadow_coefficients: Vec<Secret>) -> Result<Public, Error> {
|
|
let shadow_coefficients_sum = compute_secret_sum(shadow_coefficients.iter())?;
|
|
math::public_mul_secret(&mut common_shadow_point, &shadow_coefficients_sum)?;
|
|
math::public_add(&mut decrypted_shadow, &common_shadow_point)?;
|
|
Ok(decrypted_shadow)
|
|
}
|
|
|
|
/// Decrypt data using joint secret (version for tests).
|
|
#[cfg(test)]
|
|
pub fn decrypt_with_joint_secret(encrypted_point: &Public, common_point: &Public, joint_secret: &Secret) -> Result<Public, Error> {
|
|
let mut common_point_mul = common_point.clone();
|
|
math::public_mul_secret(&mut common_point_mul, joint_secret)?;
|
|
|
|
let mut decrypted_point = encrypted_point.clone();
|
|
math::public_sub(&mut decrypted_point, &common_point_mul)?;
|
|
|
|
Ok(decrypted_point)
|
|
}
|
|
|
|
/// Combine message hash with public key X coordinate.
|
|
pub fn combine_message_hash_with_public(message_hash: &H256, public: &Public) -> Result<Secret, Error> {
|
|
// buffer is just [message_hash | public.x]
|
|
let mut buffer = [0; 64];
|
|
buffer[0..32].copy_from_slice(&message_hash[0..32]);
|
|
buffer[32..64].copy_from_slice(&public[0..32]);
|
|
|
|
// calculate hash of buffer
|
|
let hash = keccak(&buffer[..]);
|
|
|
|
// map hash to EC finite field value
|
|
to_scalar(hash)
|
|
}
|
|
|
|
/// Compute Schnorr signature share.
|
|
pub fn compute_schnorr_signature_share<'a, I>(threshold: usize, combined_hash: &Secret, one_time_secret_coeff: &Secret, node_secret_share: &Secret, node_number: &Secret, other_nodes_numbers: I)
|
|
-> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
let mut sum = one_time_secret_coeff.clone();
|
|
let mut subtrahend = compute_shadow_mul(combined_hash, node_number, other_nodes_numbers)?;
|
|
subtrahend.mul(node_secret_share)?;
|
|
if threshold % 2 == 0 {
|
|
sum.sub(&subtrahend)?;
|
|
} else {
|
|
sum.add(&subtrahend)?;
|
|
}
|
|
Ok(sum)
|
|
}
|
|
|
|
/// Check Schnorr signature share.
|
|
pub fn _check_schnorr_signature_share<'a, I>(_combined_hash: &Secret, _signature_share: &Secret, _public_share: &Public, _one_time_public_share: &Public, _node_numbers: I)
|
|
-> Result<bool, Error> where I: Iterator<Item=&'a Secret> {
|
|
// TODO [Trust]: in paper partial signature is checked using comparison:
|
|
// sig[i] * T = r[i] - c * lagrange_coeff(i) * y[i]
|
|
// => (k[i] - c * lagrange_coeff(i) * s[i]) * T = r[i] - c * lagrange_coeff(i) * y[i]
|
|
// => k[i] * T - c * lagrange_coeff(i) * s[i] * T = k[i] * T - c * lagrange_coeff(i) * y[i]
|
|
// => this means that y[i] = s[i] * T
|
|
// but when verifying signature (for t = 1), nonce public (r) is restored using following expression:
|
|
// r = (sig[0] + sig[1]) * T - c * y
|
|
// r = (k[0] - c * lagrange_coeff(0) * s[0] + k[1] - c * lagrange_coeff(1) * s[1]) * T - c * y
|
|
// r = (k[0] + k[1]) * T - c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T - c * y
|
|
// r = r - c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T - c * y
|
|
// => -c * y = c * (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T
|
|
// => -y = (lagrange_coeff(0) * s[0] + lagrange_coeff(1) * s[1]) * T
|
|
// => y[i] != s[i] * T
|
|
// => some other way is required
|
|
Ok(true)
|
|
}
|
|
|
|
/// Compute Schnorr signature.
|
|
pub fn compute_schnorr_signature<'a, I>(signature_shares: I) -> Result<Secret, Error> where I: Iterator<Item=&'a Secret> {
|
|
compute_secret_sum(signature_shares)
|
|
}
|
|
|
|
/// Locally compute Schnorr signature as described in https://en.wikipedia.org/wiki/Schnorr_signature#Signing.
|
|
#[cfg(test)]
|
|
pub fn local_compute_schnorr_signature(nonce: &Secret, secret: &Secret, message_hash: &Secret) -> Result<(Secret, Secret), Error> {
|
|
let mut nonce_public = math::generation_point();
|
|
math::public_mul_secret(&mut nonce_public, &nonce).unwrap();
|
|
|
|
let combined_hash = combine_message_hash_with_public(message_hash, &nonce_public)?;
|
|
|
|
let mut sig_subtrahend = combined_hash.clone();
|
|
sig_subtrahend.mul(secret)?;
|
|
let mut sig = nonce.clone();
|
|
sig.sub(&sig_subtrahend)?;
|
|
|
|
Ok((combined_hash, sig))
|
|
}
|
|
|
|
/// Verify Schnorr signature as described in https://en.wikipedia.org/wiki/Schnorr_signature#Verifying.
|
|
#[cfg(test)]
|
|
pub fn verify_schnorr_signature(public: &Public, signature: &(Secret, Secret), message_hash: &H256) -> Result<bool, Error> {
|
|
let mut addendum = math::generation_point();
|
|
math::public_mul_secret(&mut addendum, &signature.1)?;
|
|
let mut nonce_public = public.clone();
|
|
math::public_mul_secret(&mut nonce_public, &signature.0)?;
|
|
math::public_add(&mut nonce_public, &addendum)?;
|
|
|
|
let combined_hash = combine_message_hash_with_public(message_hash, &nonce_public)?;
|
|
Ok(combined_hash == signature.0)
|
|
}
|
|
|
|
/// Compute R part of ECDSA signature.
|
|
pub fn compute_ecdsa_r(nonce_public: &Public) -> Result<Secret, Error> {
|
|
to_scalar(public_x(nonce_public))
|
|
}
|
|
|
|
/// Compute share of S part of ECDSA signature.
|
|
pub fn compute_ecdsa_s_share(inv_nonce_share: &Secret, inv_nonce_mul_secret: &Secret, signature_r: &Secret, message_hash: &Secret) -> Result<Secret, Error> {
|
|
let mut nonce_inv_share_mul_message_hash = inv_nonce_share.clone();
|
|
nonce_inv_share_mul_message_hash.mul(&message_hash.clone().into())?;
|
|
|
|
let mut nonce_inv_share_mul_secret_share_mul_r = inv_nonce_mul_secret.clone();
|
|
nonce_inv_share_mul_secret_share_mul_r.mul(signature_r)?;
|
|
|
|
let mut signature_s_share = nonce_inv_share_mul_message_hash;
|
|
signature_s_share.add(&nonce_inv_share_mul_secret_share_mul_r)?;
|
|
|
|
Ok(signature_s_share)
|
|
}
|
|
|
|
/// Compute S part of ECDSA signature from shares.
|
|
pub fn compute_ecdsa_s(t: usize, signature_s_shares: &[Secret], id_numbers: &[Secret]) -> Result<Secret, Error> {
|
|
let double_t = t * 2;
|
|
debug_assert!(id_numbers.len() >= double_t + 1);
|
|
debug_assert_eq!(signature_s_shares.len(), id_numbers.len());
|
|
|
|
compute_joint_secret_from_shares(double_t,
|
|
&signature_s_shares.iter().take(double_t + 1).collect::<Vec<_>>(),
|
|
&id_numbers.iter().take(double_t + 1).collect::<Vec<_>>())
|
|
}
|
|
|
|
/// Serialize ECDSA signature to [r][s]v form.
|
|
pub fn serialize_ecdsa_signature(nonce_public: &Public, signature_r: Secret, mut signature_s: Secret) -> Signature {
|
|
// compute recovery param
|
|
let mut signature_v = {
|
|
let nonce_public_x = public_x(nonce_public);
|
|
let nonce_public_y: U256 = public_y(nonce_public).into();
|
|
let nonce_public_y_is_odd = !(nonce_public_y % 2.into()).is_zero();
|
|
let bit0 = if nonce_public_y_is_odd { 1u8 } else { 0u8 };
|
|
let bit1 = if nonce_public_x != *signature_r { 2u8 } else { 0u8 };
|
|
bit0 | bit1
|
|
};
|
|
|
|
// fix high S
|
|
let curve_order = math::curve_order();
|
|
let curve_order_half = curve_order / 2.into();
|
|
let s_numeric: U256 = (*signature_s).into();
|
|
if s_numeric > curve_order_half {
|
|
let signature_s_hash: H256 = (curve_order - s_numeric).into();
|
|
signature_s = signature_s_hash.into();
|
|
signature_v ^= 1;
|
|
}
|
|
|
|
// serialize as [r][s]v
|
|
let mut signature = [0u8; 65];
|
|
signature[..32].copy_from_slice(&**signature_r);
|
|
signature[32..64].copy_from_slice(&**signature_s);
|
|
signature[64] = signature_v;
|
|
|
|
signature.into()
|
|
}
|
|
|
|
/// Compute share of ECDSA reversed-nonce coefficient. Result of this_coeff * secret_share gives us a share of inv(nonce).
|
|
pub fn compute_ecdsa_inversed_secret_coeff_share(secret_share: &Secret, nonce_share: &Secret, zero_share: &Secret) -> Result<Secret, Error> {
|
|
let mut coeff = secret_share.clone();
|
|
coeff.mul(nonce_share).unwrap();
|
|
coeff.add(zero_share).unwrap();
|
|
Ok(coeff)
|
|
}
|
|
|
|
/// Compute ECDSA reversed-nonce coefficient from its shares. Result of this_coeff * secret_share gives us a share of inv(nonce).
|
|
pub fn compute_ecdsa_inversed_secret_coeff_from_shares(t: usize, id_numbers: &[Secret], shares: &[Secret]) -> Result<Secret, Error> {
|
|
debug_assert_eq!(shares.len(), 2 * t + 1);
|
|
debug_assert_eq!(shares.len(), id_numbers.len());
|
|
|
|
let u_shares = (0..2*t+1).map(|i| compute_shadow_mul(&shares[i], &id_numbers[i], id_numbers.iter().enumerate()
|
|
.filter(|&(j, _)| i != j)
|
|
.map(|(_, id)| id)
|
|
.take(2 * t))).collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// compute u
|
|
let u = compute_secret_sum(u_shares.iter())?;
|
|
|
|
// compute inv(u)
|
|
let mut u_inv = u;
|
|
u_inv.inv()?;
|
|
Ok(u_inv)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use std::iter::once;
|
|
use ethkey::{KeyPair, recover, verify_public};
|
|
use super::*;
|
|
|
|
#[derive(Clone)]
|
|
struct KeyGenerationArtifacts {
|
|
id_numbers: Vec<Secret>,
|
|
polynoms1: Vec<Vec<Secret>>,
|
|
secrets1: Vec<Vec<Secret>>,
|
|
public_shares: Vec<Public>,
|
|
secret_shares: Vec<Secret>,
|
|
joint_public: Public,
|
|
}
|
|
|
|
struct ZeroGenerationArtifacts {
|
|
polynoms1: Vec<Vec<Secret>>,
|
|
secret_shares: Vec<Secret>,
|
|
}
|
|
|
|
fn prepare_polynoms1(t: usize, n: usize, secret_required: Option<Secret>) -> Vec<Vec<Secret>> {
|
|
let mut polynoms1: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
|
|
// if we need specific secret to be shared, update polynoms so that sum of their free terms = required secret
|
|
if let Some(mut secret_required) = secret_required {
|
|
for polynom1 in polynoms1.iter_mut().take(n - 1) {
|
|
let secret_coeff1 = generate_random_scalar().unwrap();
|
|
secret_required.sub(&secret_coeff1).unwrap();
|
|
polynom1[0] = secret_coeff1;
|
|
}
|
|
|
|
polynoms1[n - 1][0] = secret_required;
|
|
}
|
|
polynoms1
|
|
}
|
|
|
|
fn run_key_generation(t: usize, n: usize, id_numbers: Option<Vec<Secret>>, secret_required: Option<Secret>) -> KeyGenerationArtifacts {
|
|
// === PART1: DKG ===
|
|
|
|
// data, gathered during initialization
|
|
let derived_point = Random.generate().unwrap().public().clone();
|
|
let id_numbers: Vec<_> = match id_numbers {
|
|
Some(id_numbers) => id_numbers,
|
|
None => (0..n).map(|_| generate_random_scalar().unwrap()).collect(),
|
|
};
|
|
|
|
// data, generated during keys dissemination
|
|
let polynoms1 = prepare_polynoms1(t, n, secret_required);
|
|
let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
|
|
|
|
// following data is used only on verification step
|
|
let polynoms2: Vec<_> = (0..n).map(|_| generate_random_polynom(t).unwrap()).collect();
|
|
let secrets2: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms2[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
|
|
let publics: Vec<_> = (0..n).map(|i| public_values_generation(t, &derived_point, &polynoms1[i], &polynoms2[i]).unwrap()).collect();
|
|
|
|
// keys verification
|
|
(0..n).map(|i| (0..n).map(|j| if i != j {
|
|
assert!(keys_verification(t, &derived_point, &id_numbers[i], &secrets1[j][i], &secrets2[j][i], &publics[j]).unwrap());
|
|
}).collect::<Vec<_>>()).collect::<Vec<_>>();
|
|
|
|
// data, generated during keys generation
|
|
let public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&polynoms1[i][0]).unwrap()).collect();
|
|
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(secrets1.iter().map(|s| &s[i])).unwrap()).collect();
|
|
|
|
// joint public key, as a result of DKG
|
|
let joint_public = compute_joint_public(public_shares.iter()).unwrap();
|
|
|
|
KeyGenerationArtifacts {
|
|
id_numbers: id_numbers,
|
|
polynoms1: polynoms1,
|
|
secrets1: secrets1,
|
|
public_shares: public_shares,
|
|
secret_shares: secret_shares,
|
|
joint_public: joint_public,
|
|
}
|
|
}
|
|
|
|
fn run_zero_key_generation(t: usize, n: usize, id_numbers: &[Secret]) -> ZeroGenerationArtifacts {
|
|
// data, generated during keys dissemination
|
|
let polynoms1 = prepare_polynoms1(t, n, Some(zero_scalar()));
|
|
let secrets1: Vec<_> = (0..n).map(|i| (0..n).map(|j| compute_polynom(&polynoms1[i], &id_numbers[j]).unwrap()).collect::<Vec<_>>()).collect();
|
|
|
|
// data, generated during keys generation
|
|
let secret_shares: Vec<_> = (0..n).map(|i| compute_secret_share(secrets1.iter().map(|s| &s[i])).unwrap()).collect();
|
|
|
|
ZeroGenerationArtifacts {
|
|
polynoms1: polynoms1,
|
|
secret_shares: secret_shares,
|
|
}
|
|
}
|
|
|
|
fn run_key_share_refreshing(old_t: usize, new_t: usize, new_n: usize, old_artifacts: &KeyGenerationArtifacts) -> KeyGenerationArtifacts {
|
|
// === share refreshing protocol from
|
|
// === based on "Verifiable Secret Redistribution for Threshold Sharing Schemes"
|
|
// === http://www.cs.cmu.edu/~wing/publications/CMU-CS-02-114.pdf
|
|
|
|
// generate new id_numbers for new nodes
|
|
let new_nodes = new_n.saturating_sub(old_artifacts.id_numbers.len());
|
|
let id_numbers: Vec<_> = old_artifacts.id_numbers.iter().take(new_n).cloned()
|
|
.chain((0..new_nodes).map(|_| generate_random_scalar().unwrap()))
|
|
.collect();
|
|
|
|
// on every authorized node: generate random polynomial ai(j) = si + ... + ai[new_t - 1] * j^(new_t - 1)
|
|
let mut subshare_polynoms = Vec::new();
|
|
for i in 0..old_t+1 {
|
|
let mut subshare_polynom = generate_random_polynom(new_t).unwrap();
|
|
subshare_polynom[0] = old_artifacts.secret_shares[i].clone();
|
|
subshare_polynoms.push(subshare_polynom);
|
|
}
|
|
|
|
// on every authorized node: calculate subshare for every new node
|
|
let mut subshares = Vec::new();
|
|
for j in 0..new_n {
|
|
let mut subshares_to_j = Vec::new();
|
|
for i in 0..old_t+1 {
|
|
let subshare_from_i_to_j = compute_polynom(&subshare_polynoms[i], &id_numbers[j]).unwrap();
|
|
subshares_to_j.push(subshare_from_i_to_j);
|
|
}
|
|
subshares.push(subshares_to_j);
|
|
}
|
|
|
|
// on every new node: generate new share using Lagrange interpolation
|
|
// on every node: generate new share using Lagrange interpolation
|
|
let mut new_secret_shares = Vec::new();
|
|
for j in 0..new_n {
|
|
let mut subshares_to_j = Vec::new();
|
|
for i in 0..old_t+1 {
|
|
let subshare_from_i = &subshares[j][i];
|
|
let id_number_i = &id_numbers[i];
|
|
let other_id_numbers = (0usize..old_t+1).filter(|j| *j != i).map(|j| &id_numbers[j]);
|
|
let mut subshare_from_i = compute_shadow_mul(subshare_from_i, id_number_i, other_id_numbers).unwrap();
|
|
if old_t % 2 != 0 {
|
|
subshare_from_i.neg().unwrap();
|
|
}
|
|
subshares_to_j.push(subshare_from_i);
|
|
}
|
|
new_secret_shares.push(compute_secret_sum(subshares_to_j.iter()).unwrap());
|
|
}
|
|
|
|
let mut result = old_artifacts.clone();
|
|
result.id_numbers = id_numbers;
|
|
result.secret_shares = new_secret_shares;
|
|
result
|
|
}
|
|
|
|
fn run_multiplication_protocol(t: usize, secret_shares1: &[Secret], secret_shares2: &[Secret]) -> Vec<Secret> {
|
|
let n = secret_shares1.len();
|
|
assert!(t * 2 + 1 <= n);
|
|
|
|
// shares of secrets multiplication = multiplication of secrets shares
|
|
let mul_shares: Vec<_> = (0..n).map(|i| {
|
|
let share1 = secret_shares1[i].clone();
|
|
let share2 = secret_shares2[i].clone();
|
|
let mut mul_share = share1;
|
|
mul_share.mul(&share2).unwrap();
|
|
mul_share
|
|
}).collect();
|
|
|
|
mul_shares
|
|
}
|
|
|
|
fn run_reciprocal_protocol(t: usize, artifacts: &KeyGenerationArtifacts) -> Vec<Secret> {
|
|
// === Given a secret x mod r which is shared among n players, it is
|
|
// === required to generate shares of inv(x) mod r with out revealing
|
|
// === any information about x or inv(x).
|
|
// === https://www.researchgate.net/publication/280531698_Robust_Threshold_Elliptic_Curve_Digital_Signature
|
|
|
|
// generate shared random secret e for given t
|
|
let n = artifacts.id_numbers.len();
|
|
assert!(t * 2 + 1 <= n);
|
|
let e_artifacts = run_key_generation(t, n, Some(artifacts.id_numbers.clone()), None);
|
|
|
|
// generate shares of zero for 2 * t threshold
|
|
let z_artifacts = run_zero_key_generation(2 * t, n, &artifacts.id_numbers);
|
|
|
|
// each player computes && broadcast u[i] = x[i] * e[i] + z[i]
|
|
let ui: Vec<_> = (0..n).map(|i| compute_ecdsa_inversed_secret_coeff_share(&artifacts.secret_shares[i],
|
|
&e_artifacts.secret_shares[i],
|
|
&z_artifacts.secret_shares[i]).unwrap()).collect();
|
|
|
|
// players can interpolate the polynomial of degree 2t and compute u && inv(u):
|
|
let u_inv = compute_ecdsa_inversed_secret_coeff_from_shares(t,
|
|
&artifacts.id_numbers.iter().take(2*t + 1).cloned().collect::<Vec<_>>(),
|
|
&ui.iter().take(2*t + 1).cloned().collect::<Vec<_>>()).unwrap();
|
|
|
|
// each player Pi computes his share of inv(x) as e[i] * inv(u)
|
|
let x_inv_shares: Vec<_> = (0..n).map(|i| {
|
|
let mut x_inv_share = e_artifacts.secret_shares[i].clone();
|
|
x_inv_share.mul(&u_inv).unwrap();
|
|
x_inv_share
|
|
}).collect();
|
|
|
|
x_inv_shares
|
|
}
|
|
|
|
pub fn do_encryption_and_decryption(t: usize, joint_public: &Public, id_numbers: &[Secret], secret_shares: &[Secret], joint_secret: Option<&Secret>, document_secret_plain: Public) -> (Public, Public) {
|
|
// === PART2: encryption using joint public key ===
|
|
|
|
// the next line is executed on KeyServer-client
|
|
let encrypted_secret = encrypt_secret(&document_secret_plain, &joint_public).unwrap();
|
|
|
|
// === PART3: decryption ===
|
|
|
|
// next line is executed on KeyServer client
|
|
let access_key = generate_random_scalar().unwrap();
|
|
|
|
// use t + 1 nodes to compute joint shadow point
|
|
let nodes_shadows: Vec<_> = (0..t + 1).map(|i|
|
|
compute_node_shadow(&secret_shares[i], &id_numbers[i], id_numbers.iter()
|
|
.enumerate()
|
|
.filter(|&(j, _)| j != i)
|
|
.take(t)
|
|
.map(|(_, id_number)| id_number)).unwrap()).collect();
|
|
|
|
let nodes_shadow_points: Vec<_> = nodes_shadows.iter()
|
|
.map(|s| compute_node_shadow_point(&access_key, &encrypted_secret.common_point, s, None).unwrap())
|
|
.map(|sp| sp.0)
|
|
.collect();
|
|
|
|
assert_eq!(nodes_shadows.len(), t + 1);
|
|
assert_eq!(nodes_shadow_points.len(), t + 1);
|
|
|
|
let joint_shadow_point = compute_joint_shadow_point(nodes_shadow_points.iter()).unwrap();
|
|
let joint_shadow_point_test = compute_joint_shadow_point_test(&access_key, &encrypted_secret.common_point, nodes_shadows.iter()).unwrap();
|
|
assert_eq!(joint_shadow_point, joint_shadow_point_test);
|
|
|
|
// decrypt encrypted secret using joint shadow point
|
|
let document_secret_decrypted = decrypt_with_joint_shadow(t, &access_key, &encrypted_secret.encrypted_point, &joint_shadow_point).unwrap();
|
|
|
|
// decrypt encrypted secret using joint secret [just for test]
|
|
let document_secret_decrypted_test = match joint_secret {
|
|
Some(joint_secret) => decrypt_with_joint_secret(&encrypted_secret.encrypted_point, &encrypted_secret.common_point, joint_secret).unwrap(),
|
|
None => document_secret_decrypted.clone(),
|
|
};
|
|
|
|
(document_secret_decrypted, document_secret_decrypted_test)
|
|
}
|
|
|
|
#[test]
|
|
fn full_encryption_math_session() {
|
|
let test_cases = [(0, 2), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5),
|
|
(1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)];
|
|
for &(t, n) in &test_cases {
|
|
let artifacts = run_key_generation(t, n, None, None);
|
|
|
|
// compute joint private key [just for test]
|
|
let joint_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
|
|
let joint_key_pair = KeyPair::from_secret(joint_secret.clone()).unwrap();
|
|
assert_eq!(&artifacts.joint_public, joint_key_pair.public());
|
|
|
|
// check secret shares computation [just for test]
|
|
let secret_shares_polynom: Vec<_> = (0..t + 1).map(|k| compute_secret_share(artifacts.polynoms1.iter().map(|p| &p[k])).unwrap()).collect();
|
|
let secret_shares_calculated_from_polynom: Vec<_> = artifacts.id_numbers.iter().map(|id_number| compute_polynom(&*secret_shares_polynom, id_number).unwrap()).collect();
|
|
assert_eq!(artifacts.secret_shares, secret_shares_calculated_from_polynom);
|
|
|
|
// now encrypt and decrypt data
|
|
let document_secret_plain = generate_random_point().unwrap();
|
|
let (document_secret_decrypted, document_secret_decrypted_test) =
|
|
do_encryption_and_decryption(t, &artifacts.joint_public, &artifacts.id_numbers, &artifacts.secret_shares, Some(&joint_secret), document_secret_plain.clone());
|
|
|
|
assert_eq!(document_secret_plain, document_secret_decrypted_test);
|
|
assert_eq!(document_secret_plain, document_secret_decrypted);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn local_signature_works() {
|
|
let key_pair = Random.generate().unwrap();
|
|
let message_hash = "0000000000000000000000000000000000000000000000000000000000000042".parse().unwrap();
|
|
let nonce = generate_random_scalar().unwrap();
|
|
let signature = local_compute_schnorr_signature(&nonce, key_pair.secret(), &message_hash).unwrap();
|
|
assert_eq!(verify_schnorr_signature(key_pair.public(), &signature, &message_hash), Ok(true));
|
|
}
|
|
|
|
#[test]
|
|
fn full_schnorr_signature_math_session() {
|
|
let test_cases = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (4, 5),
|
|
(1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10)];
|
|
for &(t, n) in &test_cases {
|
|
// hash of the message to be signed
|
|
let message_hash: Secret = "0000000000000000000000000000000000000000000000000000000000000042".parse().unwrap();
|
|
|
|
// === MiDS-S algorithm ===
|
|
// setup: all nodes share master secret key && every node knows master public key
|
|
let artifacts = run_key_generation(t, n, None, None);
|
|
|
|
// in this gap (not related to math):
|
|
// master node should ask every other node if it is able to do a signing
|
|
// if there are < than t+1 nodes, able to sign => error
|
|
// select t+1 nodes for signing session
|
|
// all steps below are for this subset of nodes
|
|
let n = t + 1;
|
|
|
|
// step 1: run DKG to generate one-time secret key (nonce)
|
|
let id_numbers = artifacts.id_numbers.iter().cloned().take(n).collect();
|
|
let one_time_artifacts = run_key_generation(t, n, Some(id_numbers), None);
|
|
|
|
// step 2: message hash && x coordinate of one-time public value are combined
|
|
let combined_hash = combine_message_hash_with_public(&message_hash, &one_time_artifacts.joint_public).unwrap();
|
|
|
|
// step 3: compute signature shares
|
|
let partial_signatures: Vec<_> = (0..n)
|
|
.map(|i| compute_schnorr_signature_share(
|
|
t,
|
|
&combined_hash,
|
|
&one_time_artifacts.polynoms1[i][0],
|
|
&artifacts.secret_shares[i],
|
|
&artifacts.id_numbers[i],
|
|
artifacts.id_numbers.iter()
|
|
.enumerate()
|
|
.filter(|&(j, _)| i != j)
|
|
.map(|(_, n)| n)
|
|
.take(t)
|
|
).unwrap())
|
|
.collect();
|
|
|
|
// step 4: receive and verify signatures shares from other nodes
|
|
let received_signatures: Vec<Vec<_>> = (0..n)
|
|
.map(|i| (0..n)
|
|
.filter(|j| i != *j)
|
|
.map(|j| {
|
|
let signature_share = partial_signatures[j].clone();
|
|
assert!(_check_schnorr_signature_share(&combined_hash,
|
|
&signature_share,
|
|
&artifacts.public_shares[j],
|
|
&one_time_artifacts.public_shares[j],
|
|
artifacts.id_numbers.iter().take(t)).unwrap_or(false));
|
|
signature_share
|
|
})
|
|
.collect())
|
|
.collect();
|
|
|
|
// step 5: compute signature
|
|
let signatures: Vec<_> = (0..n)
|
|
.map(|i| (combined_hash.clone(), compute_schnorr_signature(received_signatures[i].iter().chain(once(&partial_signatures[i]))).unwrap()))
|
|
.collect();
|
|
|
|
// === verify signature ===
|
|
let master_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
|
|
let nonce = compute_joint_secret(one_time_artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
|
|
let local_signature = local_compute_schnorr_signature(&nonce, &master_secret, &message_hash).unwrap();
|
|
for signature in &signatures {
|
|
assert_eq!(signature, &local_signature);
|
|
assert_eq!(verify_schnorr_signature(&artifacts.joint_public, signature, &message_hash), Ok(true));
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn full_ecdsa_signature_math_session() {
|
|
let test_cases = [(2, 5), (2, 6), (3, 11), (4, 11)];
|
|
for &(t, n) in &test_cases {
|
|
// values that can be hardcoded
|
|
let joint_secret: Secret = Random.generate().unwrap().secret().clone();
|
|
let joint_nonce: Secret = Random.generate().unwrap().secret().clone();
|
|
let message_hash: H256 = H256::random();
|
|
|
|
// convert message hash to EC scalar
|
|
let message_hash_scalar = to_scalar(message_hash.clone()).unwrap();
|
|
|
|
// generate secret key shares
|
|
let artifacts = run_key_generation(t, n, None, Some(joint_secret));
|
|
|
|
// generate nonce shares
|
|
let nonce_artifacts = run_key_generation(t, n, Some(artifacts.id_numbers.clone()), Some(joint_nonce));
|
|
|
|
// compute nonce public
|
|
// x coordinate (mapped to EC field) of this public is the r-portion of signature
|
|
let nonce_public_shares: Vec<_> = (0..n).map(|i| compute_public_share(&nonce_artifacts.polynoms1[i][0]).unwrap()).collect();
|
|
let nonce_public = compute_joint_public(nonce_public_shares.iter()).unwrap();
|
|
let signature_r = compute_ecdsa_r(&nonce_public).unwrap();
|
|
|
|
// compute shares of inv(nonce) so that both nonce && inv(nonce) are still unknown to all nodes
|
|
let nonce_inv_shares = run_reciprocal_protocol(t, &nonce_artifacts);
|
|
|
|
// compute multiplication of secret-shares * inv-nonce-shares
|
|
let mul_shares = run_multiplication_protocol(t, &artifacts.secret_shares, &nonce_inv_shares);
|
|
|
|
// compute shares for s portion of signature: nonce_inv * (message_hash + secret * signature_r)
|
|
// every node broadcasts this share
|
|
let double_t = 2 * t;
|
|
let signature_s_shares: Vec<_> = (0..double_t+1).map(|i| compute_ecdsa_s_share(
|
|
&nonce_inv_shares[i],
|
|
&mul_shares[i],
|
|
&signature_r,
|
|
&message_hash_scalar
|
|
).unwrap()).collect();
|
|
|
|
// compute signature_s from received shares
|
|
let signature_s = compute_ecdsa_s(t,
|
|
&signature_s_shares,
|
|
&artifacts.id_numbers.iter().take(double_t + 1).cloned().collect::<Vec<_>>()
|
|
).unwrap();
|
|
|
|
// check signature
|
|
let signature_actual = serialize_ecdsa_signature(&nonce_public, signature_r, signature_s);
|
|
let joint_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
|
|
let joint_secret_pair = KeyPair::from_secret(joint_secret).unwrap();
|
|
assert_eq!(recover(&signature_actual, &message_hash).unwrap(), *joint_secret_pair.public());
|
|
assert!(verify_public(joint_secret_pair.public(), &signature_actual, &message_hash).unwrap());
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn full_generation_math_session_with_refreshing_shares() {
|
|
let test_cases = vec![(1, 4), (6, 10)];
|
|
for (t, n) in test_cases {
|
|
// generate key using t-of-n session
|
|
let artifacts1 = run_key_generation(t, n, None, None);
|
|
let joint_secret1 = compute_joint_secret(artifacts1.polynoms1.iter().map(|p1| &p1[0])).unwrap();
|
|
|
|
// let's say we want to refresh existing secret shares
|
|
// by doing this every T seconds, and assuming that in each T-second period adversary KS is not able to collect t+1 secret shares
|
|
// we can be sure that the scheme is secure
|
|
let artifacts2 = run_key_share_refreshing(t, t, n, &artifacts1);
|
|
let joint_secret2 = compute_joint_secret_from_shares(t, &artifacts2.secret_shares.iter().take(t + 1).collect::<Vec<_>>(),
|
|
&artifacts2.id_numbers.iter().take(t + 1).collect::<Vec<_>>()).unwrap();
|
|
assert_eq!(joint_secret1, joint_secret2);
|
|
|
|
// refresh again
|
|
let artifacts3 = run_key_share_refreshing(t, t, n, &artifacts2);
|
|
let joint_secret3 = compute_joint_secret_from_shares(t, &artifacts3.secret_shares.iter().take(t + 1).collect::<Vec<_>>(),
|
|
&artifacts3.id_numbers.iter().take(t + 1).collect::<Vec<_>>()).unwrap();
|
|
assert_eq!(joint_secret1, joint_secret3);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn full_generation_math_session_with_adding_new_nodes() {
|
|
let test_cases = vec![(1, 3), (1, 4), (6, 10)];
|
|
for (t, n) in test_cases {
|
|
// generate key using t-of-n session
|
|
let artifacts1 = run_key_generation(t, n, None, None);
|
|
let joint_secret1 = compute_joint_secret(artifacts1.polynoms1.iter().map(|p1| &p1[0])).unwrap();
|
|
|
|
// let's say we want to include additional couple of servers to the set
|
|
// so that scheme becames t-of-n+2
|
|
let artifacts2 = run_key_share_refreshing(t, t, n + 2, &artifacts1);
|
|
let joint_secret2 = compute_joint_secret_from_shares(t, &artifacts2.secret_shares.iter().take(t + 1).collect::<Vec<_>>(),
|
|
&artifacts2.id_numbers.iter().take(t + 1).collect::<Vec<_>>()).unwrap();
|
|
assert_eq!(joint_secret1, joint_secret2);
|
|
|
|
// include another server (t-of-n+3)
|
|
let artifacts3 = run_key_share_refreshing(t, t, n + 3, &artifacts2);
|
|
let joint_secret3 = compute_joint_secret_from_shares(t, &artifacts3.secret_shares.iter().take(t + 1).collect::<Vec<_>>(),
|
|
&artifacts3.id_numbers.iter().take(t + 1).collect::<Vec<_>>()).unwrap();
|
|
assert_eq!(joint_secret1, joint_secret3);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn full_generation_math_session_with_decreasing_threshold() {
|
|
let (t, n) = (3, 5);
|
|
|
|
// generate key using t-of-n session
|
|
let artifacts1 = run_key_generation(t, n, None, None);
|
|
|
|
let joint_secret1 = compute_joint_secret(artifacts1.polynoms1.iter().map(|p1| &p1[0])).unwrap();
|
|
|
|
// let's say we want to decrease threshold so that it becames (t-1)-of-n
|
|
let new_t = t - 1;
|
|
let artifacts2 = run_key_share_refreshing(t, new_t, n, &artifacts1);
|
|
let joint_secret2 = compute_joint_secret_from_shares(new_t, &artifacts2.secret_shares.iter().take(new_t + 1).collect::<Vec<_>>(),
|
|
&artifacts2.id_numbers.iter().take(new_t + 1).collect::<Vec<_>>()).unwrap();
|
|
assert_eq!(joint_secret1, joint_secret2);
|
|
|
|
// let's say we want to decrease threshold once again so that it becames (t-2)-of-n
|
|
let t = t - 1;
|
|
let new_t = t - 2;
|
|
let artifacts3 = run_key_share_refreshing(t, new_t, n, &artifacts2);
|
|
let joint_secret3 = compute_joint_secret_from_shares(new_t, &artifacts3.secret_shares.iter().take(new_t + 1).collect::<Vec<_>>(),
|
|
&artifacts3.id_numbers.iter().take(new_t + 1).collect::<Vec<_>>()).unwrap();
|
|
assert_eq!(joint_secret1, joint_secret3);
|
|
}
|
|
|
|
#[test]
|
|
fn full_zero_secret_generation_math_session() {
|
|
let test_cases = vec![(1, 4), (2, 4)];
|
|
for (t, n) in test_cases {
|
|
// run joint zero generation session
|
|
let id_numbers: Vec<_> = (0..n).map(|_| generate_random_scalar().unwrap()).collect();
|
|
let artifacts = run_zero_key_generation(t, n, &id_numbers);
|
|
|
|
// check that zero secret is generated
|
|
// we can't compute secrets sum here, because result will be zero (invalid secret, unsupported by SECP256k1)
|
|
// so just use complement trick: x + (-x) = 0
|
|
// TODO [Refac]: switch to SECP256K1-free scalar EC arithmetic
|
|
let partial_joint_secret = compute_secret_sum(artifacts.polynoms1.iter().take(n - 1).map(|p| &p[0])).unwrap();
|
|
let mut partial_joint_secret_complement = artifacts.polynoms1[n - 1][0].clone();
|
|
partial_joint_secret_complement.neg().unwrap();
|
|
assert_eq!(partial_joint_secret, partial_joint_secret_complement);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn full_generation_with_multiplication() {
|
|
let test_cases = vec![(1, 3), (2, 5), (2, 7), (3, 8)];
|
|
for (t, n) in test_cases {
|
|
// generate two shared secrets
|
|
let artifacts1 = run_key_generation(t, n, None, None);
|
|
let artifacts2 = run_key_generation(t, n, Some(artifacts1.id_numbers.clone()), None);
|
|
|
|
// multiplicate original secrets
|
|
let joint_secret1 = compute_joint_secret(artifacts1.polynoms1.iter().map(|p| &p[0])).unwrap();
|
|
let joint_secret2 = compute_joint_secret(artifacts2.polynoms1.iter().map(|p| &p[0])).unwrap();
|
|
let mut expected_joint_secret_mul = joint_secret1;
|
|
expected_joint_secret_mul.mul(&joint_secret2).unwrap();
|
|
|
|
// run multiplication protocol
|
|
let joint_secret_mul_shares = run_multiplication_protocol(t, &artifacts1.secret_shares, &artifacts2.secret_shares);
|
|
|
|
// calculate actual secrets multiplication
|
|
let double_t = t * 2;
|
|
let actual_joint_secret_mul = compute_joint_secret_from_shares(double_t,
|
|
&joint_secret_mul_shares.iter().take(double_t + 1).collect::<Vec<_>>(),
|
|
&artifacts1.id_numbers.iter().take(double_t + 1).collect::<Vec<_>>()).unwrap();
|
|
|
|
assert_eq!(actual_joint_secret_mul, expected_joint_secret_mul);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn full_generation_with_reciprocal() {
|
|
let test_cases = vec![(1, 3), (2, 5), (2, 7), (2, 7), (3, 8)];
|
|
for (t, n) in test_cases {
|
|
// generate shared secret
|
|
let artifacts = run_key_generation(t, n, None, None);
|
|
|
|
// calculate inversion of original shared secret
|
|
let joint_secret = compute_joint_secret(artifacts.polynoms1.iter().map(|p| &p[0])).unwrap();
|
|
let mut expected_joint_secret_inv = joint_secret.clone();
|
|
expected_joint_secret_inv.inv().unwrap();
|
|
|
|
// run inversion protocol
|
|
let reciprocal_shares = run_reciprocal_protocol(t, &artifacts);
|
|
|
|
// calculate actual secret inversion
|
|
let double_t = t * 2;
|
|
let actual_joint_secret_inv = compute_joint_secret_from_shares(double_t,
|
|
&reciprocal_shares.iter().take(double_t + 1).collect::<Vec<_>>(),
|
|
&artifacts.id_numbers.iter().take(double_t + 1).collect::<Vec<_>>()).unwrap();
|
|
|
|
assert_eq!(actual_joint_secret_inv, expected_joint_secret_inv);
|
|
}
|
|
}
|
|
}
|