openethereum/ethcore/light/src/net/mod.rs

1117 lines
34 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! PLP Protocol Version 1 implementation.
//!
//! This uses a "Provider" to answer requests.
use transaction::UnverifiedTransaction;
use io::TimerToken;
use network::{NetworkProtocolHandler, NetworkContext, PeerId};
use rlp::{RlpStream, Rlp};
use ethereum_types::{H256, U256};
use kvdb::DBValue;
use parking_lot::{Mutex, RwLock};
use std::time::{Duration, Instant};
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::sync::Arc;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::ops::{BitOr, BitAnd, Not};
use provider::Provider;
use request::{Request, NetworkRequests as Requests, Response};
use self::request_credits::{Credits, FlowParams};
use self::context::{Ctx, TickCtx};
use self::error::Punishment;
use self::load_timer::{LoadDistribution, NullStore};
use self::request_set::RequestSet;
use self::id_guard::IdGuard;
mod context;
mod error;
mod load_timer;
mod status;
mod request_set;
#[cfg(test)]
mod tests;
pub mod request_credits;
pub use self::context::{BasicContext, EventContext, IoContext};
pub use self::error::Error;
pub use self::load_timer::{SampleStore, FileStore};
pub use self::status::{Status, Capabilities, Announcement};
const TIMEOUT: TimerToken = 0;
const TIMEOUT_INTERVAL: Duration = Duration::from_secs(1);
const TICK_TIMEOUT: TimerToken = 1;
const TICK_TIMEOUT_INTERVAL: Duration = Duration::from_secs(5);
const PROPAGATE_TIMEOUT: TimerToken = 2;
const PROPAGATE_TIMEOUT_INTERVAL: Duration = Duration::from_secs(5);
const RECALCULATE_COSTS_TIMEOUT: TimerToken = 3;
const RECALCULATE_COSTS_INTERVAL: Duration = Duration::from_secs(60 * 60);
// minimum interval between updates.
const UPDATE_INTERVAL: Duration = Duration::from_millis(5000);
/// Packet count for PIP.
const PACKET_COUNT_V1: u8 = 9;
/// Supported protocol versions.
pub const PROTOCOL_VERSIONS: &'static [(u8, u8)] = &[
(1, PACKET_COUNT_V1),
];
/// Max protocol version.
pub const MAX_PROTOCOL_VERSION: u8 = 1;
// packet ID definitions.
mod packet {
// the status packet.
pub const STATUS: u8 = 0x00;
// announcement of new block hashes or capabilities.
pub const ANNOUNCE: u8 = 0x01;
// request and response.
pub const REQUEST: u8 = 0x02;
pub const RESPONSE: u8 = 0x03;
// request credits update and acknowledgement.
pub const UPDATE_CREDITS: u8 = 0x04;
pub const ACKNOWLEDGE_UPDATE: u8 = 0x05;
// relay transactions to peers.
pub const SEND_TRANSACTIONS: u8 = 0x06;
// two packets were previously meant to be reserved for epoch proofs.
// these have since been moved to requests.
}
// timeouts for different kinds of requests. all values are in milliseconds.
mod timeout {
use std::time::Duration;
pub const HANDSHAKE: Duration = Duration::from_millis(4_000);
pub const ACKNOWLEDGE_UPDATE: Duration = Duration::from_millis(5_000);
pub const BASE: u64 = 2_500; // base timeout for packet.
// timeouts per request within packet.
pub const HEADERS: u64 = 250; // per header?
pub const TRANSACTION_INDEX: u64 = 100;
pub const BODY: u64 = 50;
pub const RECEIPT: u64 = 50;
pub const PROOF: u64 = 100; // state proof
pub const CONTRACT_CODE: u64 = 100;
pub const HEADER_PROOF: u64 = 100;
pub const TRANSACTION_PROOF: u64 = 1000; // per gas?
pub const EPOCH_SIGNAL: u64 = 200;
}
/// A request id.
#[cfg(not(test))]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd, Hash)]
pub struct ReqId(usize);
#[cfg(test)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd, Hash)]
pub struct ReqId(pub usize);
impl fmt::Display for ReqId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Request #{}", self.0)
}
}
// A pending peer: one we've sent our status to but
// may not have received one for.
struct PendingPeer {
sent_head: H256,
last_update: Instant,
}
/// Relevant data to each peer. Not accessible publicly, only `pub` due to
/// limitations of the privacy system.
pub struct Peer {
local_credits: Credits, // their credits relative to us
status: Status,
capabilities: Capabilities,
remote_flow: Option<(Credits, FlowParams)>,
sent_head: H256, // last chain head we've given them.
last_update: Instant,
pending_requests: RequestSet,
failed_requests: Vec<ReqId>,
propagated_transactions: HashSet<H256>,
skip_update: bool,
local_flow: Arc<FlowParams>,
awaiting_acknowledge: Option<(Instant, Arc<FlowParams>)>,
}
/// Whether or not a peer was kept by a handler
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum PeerStatus {
/// The peer was kept
Kept,
/// The peer was not kept
Unkept,
}
impl Not for PeerStatus {
type Output = Self;
fn not(self) -> Self {
use self::PeerStatus::*;
match self {
Kept => Unkept,
Unkept => Kept,
}
}
}
impl BitAnd for PeerStatus {
type Output = Self;
fn bitand(self, other: Self) -> Self {
use self::PeerStatus::*;
match (self, other) {
(Kept, Kept) => Kept,
_ => Unkept,
}
}
}
impl BitOr for PeerStatus {
type Output = Self;
fn bitor(self, other: Self) -> Self {
use self::PeerStatus::*;
match (self, other) {
(_, Kept) | (Kept, _) => Kept,
_ => Unkept,
}
}
}
/// A light protocol event handler.
///
/// Each handler function takes a context which describes the relevant peer
/// and gives references to the IO layer and protocol structure so new messages
/// can be dispatched immediately.
///
/// Request responses are not guaranteed to be complete or valid, but passed IDs will be correct.
/// Response handlers are not given a copy of the original request; it is assumed
/// that relevant data will be stored by interested handlers.
pub trait Handler: Send + Sync {
/// Called when a peer connects.
fn on_connect(
&self,
_ctx: &EventContext,
_status: &Status,
_capabilities: &Capabilities
) -> PeerStatus { PeerStatus::Kept }
/// Called when a peer disconnects, with a list of unfulfilled request IDs as
/// of yet.
fn on_disconnect(&self, _ctx: &EventContext, _unfulfilled: &[ReqId]) { }
/// Called when a peer makes an announcement.
fn on_announcement(&self, _ctx: &EventContext, _announcement: &Announcement) { }
/// Called when a peer requests relay of some transactions.
fn on_transactions(&self, _ctx: &EventContext, _relay: &[UnverifiedTransaction]) { }
/// Called when a peer responds to requests.
/// Responses not guaranteed to contain valid data and are not yet checked against
/// the requests they correspond to.
fn on_responses(&self, _ctx: &EventContext, _req_id: ReqId, _responses: &[Response]) { }
/// Called when a peer responds with a transaction proof. Each proof is a vector of state items.
fn on_transaction_proof(&self, _ctx: &EventContext, _req_id: ReqId, _state_items: &[DBValue]) { }
/// Called to "tick" the handler periodically.
fn tick(&self, _ctx: &BasicContext) { }
/// Called on abort. This signals to handlers that they should clean up
/// and ignore peers.
// TODO: coreresponding `on_activate`?
fn on_abort(&self) { }
}
/// Configuration.
pub struct Config {
/// How many stored seconds of credits peers should be able to accumulate.
pub max_stored_seconds: u64,
/// How much of the total load capacity each peer should be allowed to take.
pub load_share: f64,
}
impl Default for Config {
fn default() -> Self {
const LOAD_SHARE: f64 = 1.0 / 25.0;
const MAX_ACCUMULATED: u64 = 60 * 5; // only charge for 5 minutes.
Config {
max_stored_seconds: MAX_ACCUMULATED,
load_share: LOAD_SHARE,
}
}
}
/// Protocol initialization parameters.
pub struct Params {
/// Network id.
pub network_id: u64,
/// Config.
pub config: Config,
/// Initial capabilities.
pub capabilities: Capabilities,
/// The sample store (`None` if data shouldn't persist between runs).
pub sample_store: Option<Box<SampleStore>>,
}
/// Type alias for convenience.
pub type PeerMap = HashMap<PeerId, Mutex<Peer>>;
mod id_guard {
use network::PeerId;
use parking_lot::RwLockReadGuard;
use super::{PeerMap, ReqId};
// Guards success or failure of given request.
// On drop, inserts the req_id into the "failed requests"
// set for the peer unless defused. In separate module to enforce correct usage.
pub struct IdGuard<'a> {
peers: RwLockReadGuard<'a, PeerMap>,
peer_id: PeerId,
req_id: ReqId,
active: bool,
}
impl<'a> IdGuard<'a> {
/// Create a new `IdGuard`, which will prevent access of the inner ReqId
/// (for forming responses, triggering handlers) until defused
pub fn new(peers: RwLockReadGuard<'a, PeerMap>, peer_id: PeerId, req_id: ReqId) -> Self {
IdGuard {
peers: peers,
peer_id: peer_id,
req_id: req_id,
active: true,
}
}
/// Defuse the guard, signalling that the request has been successfully decoded.
pub fn defuse(mut self) -> ReqId {
// can't use the mem::forget trick here since we need the
// read guard to drop.
self.active = false;
self.req_id
}
}
impl<'a> Drop for IdGuard<'a> {
fn drop(&mut self) {
if !self.active { return }
if let Some(p) = self.peers.get(&self.peer_id) {
p.lock().failed_requests.push(self.req_id);
}
}
}
}
/// This is an implementation of the light ethereum network protocol, abstracted
/// over a `Provider` of data and a p2p network.
///
/// This is simply designed for request-response purposes. Higher level uses
/// of the protocol, such as synchronization, will function as wrappers around
/// this system.
//
// LOCK ORDER:
// Locks must be acquired in the order declared, and when holding a read lock
// on the peers, only one peer may be held at a time.
pub struct LightProtocol {
provider: Arc<Provider>,
config: Config,
genesis_hash: H256,
network_id: u64,
pending_peers: RwLock<HashMap<PeerId, PendingPeer>>,
peers: RwLock<PeerMap>,
capabilities: RwLock<Capabilities>,
flow_params: RwLock<Arc<FlowParams>>,
handlers: Vec<Arc<Handler>>,
req_id: AtomicUsize,
sample_store: Box<SampleStore>,
load_distribution: LoadDistribution,
}
impl LightProtocol {
/// Create a new instance of the protocol manager.
pub fn new(provider: Arc<Provider>, params: Params) -> Self {
debug!(target: "pip", "Initializing light protocol handler");
let genesis_hash = provider.chain_info().genesis_hash;
let sample_store = params.sample_store.unwrap_or_else(|| Box::new(NullStore));
let load_distribution = LoadDistribution::load(&*sample_store);
let flow_params = FlowParams::from_request_times(
|kind| load_distribution.expected_time(kind),
params.config.load_share,
Duration::from_secs(params.config.max_stored_seconds),
);
LightProtocol {
provider: provider,
config: params.config,
genesis_hash: genesis_hash,
network_id: params.network_id,
pending_peers: RwLock::new(HashMap::new()),
peers: RwLock::new(HashMap::new()),
capabilities: RwLock::new(params.capabilities),
flow_params: RwLock::new(Arc::new(flow_params)),
handlers: Vec::new(),
req_id: AtomicUsize::new(0),
sample_store: sample_store,
load_distribution: load_distribution,
}
}
/// Attempt to get peer status.
pub fn peer_status(&self, peer: &PeerId) -> Option<Status> {
self.peers.read().get(&peer)
.map(|peer| peer.lock().status.clone())
}
/// Get number of (connected, active) peers.
pub fn peer_count(&self) -> (usize, usize) {
let num_pending = self.pending_peers.read().len();
let peers = self.peers.read();
(
num_pending + peers.len(),
peers.values().filter(|p| !p.lock().pending_requests.is_empty()).count(),
)
}
/// Make a request to a peer.
///
/// Fails on: nonexistent peer, network error, peer not server,
/// insufficient credits. Does not check capabilities before sending.
/// On success, returns a request id which can later be coordinated
/// with an event.
pub fn request_from(&self, io: &IoContext, peer_id: &PeerId, requests: Requests) -> Result<ReqId, Error> {
let peers = self.peers.read();
let peer = match peers.get(peer_id) {
Some(peer) => peer,
None => return Err(Error::UnknownPeer),
};
let mut peer = peer.lock();
let peer = &mut *peer;
match peer.remote_flow {
None => Err(Error::NotServer),
Some((ref mut creds, ref params)) => {
// apply recharge to credits if there's no pending requests.
if peer.pending_requests.is_empty() {
params.recharge(creds);
}
// compute and deduct cost.
let pre_creds = creds.current();
let cost = match params.compute_cost_multi(requests.requests()) {
Some(cost) => cost,
None => return Err(Error::NotServer),
};
creds.deduct_cost(cost)?;
trace!(target: "pip", "requesting from peer {}. Cost: {}; Available: {}",
peer_id, cost, pre_creds);
let req_id = ReqId(self.req_id.fetch_add(1, Ordering::SeqCst));
io.send(*peer_id, packet::REQUEST, {
let mut stream = RlpStream::new_list(2);
stream.append(&req_id.0).append_list(&requests.requests());
stream.out()
});
// begin timeout.
peer.pending_requests.insert(req_id, requests, cost, Instant::now());
Ok(req_id)
}
}
}
/// Make an announcement of new chain head and capabilities to all peers.
/// The announcement is expected to be valid.
pub fn make_announcement(&self, io: &IoContext, mut announcement: Announcement) {
let mut reorgs_map = HashMap::new();
let now = Instant::now();
// update stored capabilities
self.capabilities.write().update_from(&announcement);
// calculate reorg info and send packets
for (peer_id, peer_info) in self.peers.read().iter() {
let mut peer_info = peer_info.lock();
// TODO: "urgent" announcements like new blocks?
// the timer approach will skip 1 (possibly 2) in rare occasions.
if peer_info.sent_head == announcement.head_hash ||
peer_info.status.head_num >= announcement.head_num ||
now - peer_info.last_update < UPDATE_INTERVAL {
continue
}
peer_info.last_update = now;
let reorg_depth = reorgs_map.entry(peer_info.sent_head)
.or_insert_with(|| {
match self.provider.reorg_depth(&announcement.head_hash, &peer_info.sent_head) {
Some(depth) => depth,
None => {
// both values will always originate locally -- this means something
// has gone really wrong
debug!(target: "pip", "couldn't compute reorganization depth between {:?} and {:?}",
&announcement.head_hash, &peer_info.sent_head);
0
}
}
});
peer_info.sent_head = announcement.head_hash;
announcement.reorg_depth = *reorg_depth;
io.send(*peer_id, packet::ANNOUNCE, status::write_announcement(&announcement));
}
}
/// Add an event handler.
///
/// These are intended to be added when the protocol structure
/// is initialized as a means of customizing its behavior,
/// and dispatching requests immediately upon events.
pub fn add_handler(&mut self, handler: Arc<Handler>) {
self.handlers.push(handler);
}
/// Signal to handlers that network activity is being aborted
/// and clear peer data.
pub fn abort(&self) {
for handler in &self.handlers {
handler.on_abort();
}
// acquire in order and hold.
let mut pending_peers = self.pending_peers.write();
let mut peers = self.peers.write();
pending_peers.clear();
peers.clear();
}
// Does the common pre-verification of responses before the response itself
// is actually decoded:
// - check whether peer exists
// - check whether request was made
// - check whether request kinds match
fn pre_verify_response(&self, peer: &PeerId, raw: &Rlp) -> Result<IdGuard, Error> {
let req_id = ReqId(raw.val_at(0)?);
let cur_credits: U256 = raw.val_at(1)?;
trace!(target: "pip", "pre-verifying response for {} from peer {}", req_id, peer);
let peers = self.peers.read();
let res = match peers.get(peer) {
Some(peer_info) => {
let mut peer_info = peer_info.lock();
let peer_info: &mut Peer = &mut *peer_info;
let req_info = peer_info.pending_requests.remove(&req_id, Instant::now());
let last_batched = peer_info.pending_requests.is_empty();
let flow_info = peer_info.remote_flow.as_mut();
match (req_info, flow_info) {
(Some(_), Some(flow_info)) => {
let &mut (ref mut c, ref mut flow) = flow_info;
// only update if the cumulative cost of the request set is zero.
// and this response wasn't from before request costs were updated.
if !peer_info.skip_update && last_batched {
let actual_credits = ::std::cmp::min(cur_credits, *flow.limit());
c.update_to(actual_credits);
}
if last_batched { peer_info.skip_update = false }
Ok(())
}
(None, _) => Err(Error::UnsolicitedResponse),
(_, None) => Err(Error::NotServer), // really should be impossible.
}
}
None => Err(Error::UnknownPeer), // probably only occurs in a race of some kind.
};
res.map(|_| IdGuard::new(peers, *peer, req_id))
}
/// Handle a packet using the given io context.
/// Packet data is _untrusted_, which means that invalid data won't lead to
/// issues.
pub fn handle_packet(&self, io: &IoContext, peer: &PeerId, packet_id: u8, data: &[u8]) {
let rlp = Rlp::new(data);
trace!(target: "pip", "Incoming packet {} from peer {}", packet_id, peer);
// handle the packet
let res = match packet_id {
packet::STATUS => self.status(peer, io, rlp),
packet::ANNOUNCE => self.announcement(peer, io, rlp),
packet::REQUEST => self.request(peer, io, rlp),
packet::RESPONSE => self.response(peer, io, rlp),
packet::UPDATE_CREDITS => self.update_credits(peer, io, rlp),
packet::ACKNOWLEDGE_UPDATE => self.acknowledge_update(peer, io, rlp),
packet::SEND_TRANSACTIONS => self.relay_transactions(peer, io, rlp),
other => {
Err(Error::UnrecognizedPacket(other))
}
};
if let Err(e) = res {
punish(*peer, io, e);
}
}
// check timeouts and punish peers.
fn timeout_check(&self, io: &IoContext) {
let now = Instant::now();
// handshake timeout
{
let mut pending = self.pending_peers.write();
let slowpokes: Vec<_> = pending.iter()
.filter(|&(_, ref peer)| {
peer.last_update + timeout::HANDSHAKE <= now
})
.map(|(&p, _)| p)
.collect();
for slowpoke in slowpokes {
debug!(target: "pip", "Peer {} handshake timed out", slowpoke);
pending.remove(&slowpoke);
io.disconnect_peer(slowpoke);
}
}
// request and update ack timeouts
let ack_duration = timeout::ACKNOWLEDGE_UPDATE;
{
for (peer_id, peer) in self.peers.read().iter() {
let peer = peer.lock();
if peer.pending_requests.check_timeout(now) {
debug!(target: "pip", "Peer {} request timeout", peer_id);
io.disconnect_peer(*peer_id);
}
if let Some((ref start, _)) = peer.awaiting_acknowledge {
if *start + ack_duration <= now {
debug!(target: "pip", "Peer {} update acknowledgement timeout", peer_id);
io.disconnect_peer(*peer_id);
}
}
}
}
}
// propagate transactions to relay peers.
// if we aren't on the mainnet, we just propagate to all relay peers
fn propagate_transactions(&self, io: &IoContext) {
if self.capabilities.read().tx_relay { return }
let ready_transactions = self.provider.ready_transactions();
if ready_transactions.is_empty() { return }
trace!(target: "pip", "propagate transactions: {} ready", ready_transactions.len());
let all_transaction_hashes: HashSet<_> = ready_transactions.iter().map(|tx| tx.hash()).collect();
let mut buf = Vec::new();
let peers = self.peers.read();
for (peer_id, peer_info) in peers.iter() {
let mut peer_info = peer_info.lock();
if !peer_info.capabilities.tx_relay { continue }
let prop_filter = &mut peer_info.propagated_transactions;
*prop_filter = &*prop_filter & &all_transaction_hashes;
// fill the buffer with all non-propagated transactions.
let to_propagate = ready_transactions.iter()
.filter(|tx| prop_filter.insert(tx.hash()))
.map(|tx| &tx.transaction);
buf.extend(to_propagate);
// propagate to the given peer.
if buf.is_empty() { continue }
io.send(*peer_id, packet::SEND_TRANSACTIONS, {
let mut stream = RlpStream::new_list(buf.len());
for pending_tx in buf.drain(..) {
stream.append(pending_tx);
}
stream.out()
})
}
}
/// called when a peer connects.
pub fn on_connect(&self, peer: &PeerId, io: &IoContext) {
let proto_version = match io.protocol_version(*peer).ok_or(Error::WrongNetwork) {
Ok(pv) => pv,
Err(e) => { punish(*peer, io, e); return }
};
if PROTOCOL_VERSIONS.iter().find(|x| x.0 == proto_version).is_none() {
punish(*peer, io, Error::UnsupportedProtocolVersion(proto_version));
return;
}
let chain_info = self.provider.chain_info();
let status = Status {
head_td: chain_info.total_difficulty,
head_hash: chain_info.best_block_hash,
head_num: chain_info.best_block_number,
genesis_hash: chain_info.genesis_hash,
protocol_version: proto_version as u32, // match peer proto version
network_id: self.network_id,
last_head: None,
};
let capabilities = self.capabilities.read().clone();
let local_flow = self.flow_params.read();
let status_packet = status::write_handshake(&status, &capabilities, Some(&**local_flow));
self.pending_peers.write().insert(*peer, PendingPeer {
sent_head: chain_info.best_block_hash,
last_update: Instant::now(),
});
trace!(target: "pip", "Sending status to peer {}", peer);
io.send(*peer, packet::STATUS, status_packet);
}
/// called when a peer disconnects.
pub fn on_disconnect(&self, peer: PeerId, io: &IoContext) {
trace!(target: "pip", "Peer {} disconnecting", peer);
self.pending_peers.write().remove(&peer);
let unfulfilled = match self.peers.write().remove(&peer) {
None => return,
Some(peer_info) => {
let peer_info = peer_info.into_inner();
let mut unfulfilled: Vec<_> = peer_info.pending_requests.collect_ids();
unfulfilled.extend(peer_info.failed_requests);
unfulfilled
}
};
for handler in &self.handlers {
handler.on_disconnect(&Ctx {
peer: peer,
io: io,
proto: self,
}, &unfulfilled)
}
}
/// Execute the given closure with a basic context derived from the I/O context.
pub fn with_context<F, T>(&self, io: &IoContext, f: F) -> T
where F: FnOnce(&BasicContext) -> T
{
f(&TickCtx {
io: io,
proto: self,
})
}
fn tick_handlers(&self, io: &IoContext) {
for handler in &self.handlers {
handler.tick(&TickCtx {
io: io,
proto: self,
})
}
}
fn begin_new_cost_period(&self, io: &IoContext) {
self.load_distribution.end_period(&*self.sample_store);
let new_params = Arc::new(FlowParams::from_request_times(
|kind| self.load_distribution.expected_time(kind),
self.config.load_share,
Duration::from_secs(self.config.max_stored_seconds),
));
*self.flow_params.write() = new_params.clone();
let peers = self.peers.read();
let now = Instant::now();
let packet_body = {
let mut stream = RlpStream::new_list(3);
stream.append(new_params.limit())
.append(new_params.recharge_rate())
.append(new_params.cost_table());
stream.out()
};
for (peer_id, peer_info) in peers.iter() {
let mut peer_info = peer_info.lock();
io.send(*peer_id, packet::UPDATE_CREDITS, packet_body.clone());
peer_info.awaiting_acknowledge = Some((now.clone(), new_params.clone()));
}
}
}
impl LightProtocol {
// Handle status message from peer.
fn status(&self, peer: &PeerId, io: &IoContext, data: Rlp) -> Result<(), Error> {
let pending = match self.pending_peers.write().remove(peer) {
Some(pending) => pending,
None => {
return Err(Error::UnexpectedHandshake);
}
};
let (status, capabilities, flow_params) = status::parse_handshake(data)?;
trace!(target: "pip", "Connected peer with chain head {:?}", (status.head_hash, status.head_num));
if (status.network_id, status.genesis_hash) != (self.network_id, self.genesis_hash) {
trace!(target: "pip", "peer {} wrong network: network_id is {} vs our {}, gh is {} vs our {}",
peer, status.network_id, self.network_id, status.genesis_hash, self.genesis_hash);
return Err(Error::WrongNetwork);
}
if Some(status.protocol_version as u8) != io.protocol_version(*peer) {
return Err(Error::BadProtocolVersion);
}
let remote_flow = flow_params.map(|params| (params.create_credits(), params));
let local_flow = self.flow_params.read().clone();
self.peers.write().insert(*peer, Mutex::new(Peer {
local_credits: local_flow.create_credits(),
status: status.clone(),
capabilities: capabilities.clone(),
remote_flow: remote_flow,
sent_head: pending.sent_head,
last_update: pending.last_update,
pending_requests: RequestSet::default(),
failed_requests: Vec::new(),
propagated_transactions: HashSet::new(),
skip_update: false,
local_flow: local_flow,
awaiting_acknowledge: None,
}));
let any_kept = self.handlers.iter().map(
|handler| handler.on_connect(
&Ctx {
peer: *peer,
io: io,
proto: self,
},
&status,
&capabilities
)
).fold(PeerStatus::Kept, PeerStatus::bitor);
if any_kept == PeerStatus::Unkept {
Err(Error::RejectedByHandlers)
} else {
Ok(())
}
}
// Handle an announcement.
fn announcement(&self, peer: &PeerId, io: &IoContext, data: Rlp) -> Result<(), Error> {
if !self.peers.read().contains_key(peer) {
debug!(target: "pip", "Ignoring announcement from unknown peer");
return Ok(())
}
let announcement = status::parse_announcement(data)?;
// scope to ensure locks are dropped before moving into handler-space.
{
let peers = self.peers.read();
let peer_info = match peers.get(peer) {
Some(info) => info,
None => return Ok(()),
};
let mut peer_info = peer_info.lock();
// update status.
{
// TODO: punish peer if they've moved backwards.
let status = &mut peer_info.status;
let last_head = status.head_hash;
status.head_hash = announcement.head_hash;
status.head_td = announcement.head_td;
status.head_num = announcement.head_num;
status.last_head = Some((last_head, announcement.reorg_depth));
}
// update capabilities.
peer_info.capabilities.update_from(&announcement);
}
for handler in &self.handlers {
handler.on_announcement(&Ctx {
peer: *peer,
io: io,
proto: self,
}, &announcement);
}
Ok(())
}
// Receive requests from a peer.
fn request(&self, peer_id: &PeerId, io: &IoContext, raw: Rlp) -> Result<(), Error> {
// the maximum amount of requests we'll fill in a single packet.
const MAX_REQUESTS: usize = 256;
use ::request::Builder;
use ::request::CompleteRequest;
let peers = self.peers.read();
let peer = match peers.get(peer_id) {
Some(peer) => peer,
None => {
debug!(target: "pip", "Ignoring request from unknown peer");
return Ok(())
}
};
let mut peer = peer.lock();
let peer: &mut Peer = &mut *peer;
let req_id: u64 = raw.val_at(0)?;
let mut request_builder = Builder::default();
trace!(target: "pip", "Received requests (id: {}) from peer {}", req_id, peer_id);
// deserialize requests, check costs and request validity.
peer.local_flow.recharge(&mut peer.local_credits);
peer.local_credits.deduct_cost(peer.local_flow.base_cost())?;
for request_rlp in raw.at(1)?.iter().take(MAX_REQUESTS) {
let request: Request = request_rlp.as_val()?;
let cost = peer.local_flow.compute_cost(&request).ok_or(Error::NotServer)?;
peer.local_credits.deduct_cost(cost)?;
request_builder.push(request).map_err(|_| Error::BadBackReference)?;
}
let requests = request_builder.build();
let num_requests = requests.requests().len();
trace!(target: "pip", "Beginning to respond to requests (id: {}) from peer {}", req_id, peer_id);
// respond to all requests until one fails.
let responses = requests.respond_to_all(|complete_req| {
let _timer = self.load_distribution.begin_timer(&complete_req);
match complete_req {
CompleteRequest::Headers(req) => self.provider.block_headers(req).map(Response::Headers),
CompleteRequest::HeaderProof(req) => self.provider.header_proof(req).map(Response::HeaderProof),
CompleteRequest::TransactionIndex(req) => self.provider.transaction_index(req).map(Response::TransactionIndex),
CompleteRequest::Body(req) => self.provider.block_body(req).map(Response::Body),
CompleteRequest::Receipts(req) => self.provider.block_receipts(req).map(Response::Receipts),
CompleteRequest::Account(req) => self.provider.account_proof(req).map(Response::Account),
CompleteRequest::Storage(req) => self.provider.storage_proof(req).map(Response::Storage),
CompleteRequest::Code(req) => self.provider.contract_code(req).map(Response::Code),
CompleteRequest::Execution(req) => self.provider.transaction_proof(req).map(Response::Execution),
CompleteRequest::Signal(req) => self.provider.epoch_signal(req).map(Response::Signal),
}
});
trace!(target: "pip", "Responded to {}/{} requests in packet {}", responses.len(), num_requests, req_id);
trace!(target: "pip", "Peer {} has {} credits remaining.", peer_id, peer.local_credits.current());
io.respond(packet::RESPONSE, {
let mut stream = RlpStream::new_list(3);
let cur_credits = peer.local_credits.current();
stream.append(&req_id).append(&cur_credits).append_list(&responses);
stream.out()
});
Ok(())
}
// handle a packet with responses.
fn response(&self, peer: &PeerId, io: &IoContext, raw: Rlp) -> Result<(), Error> {
let (req_id, responses) = {
let id_guard = self.pre_verify_response(peer, &raw)?;
let responses: Vec<Response> = raw.list_at(2)?;
(id_guard.defuse(), responses)
};
for handler in &self.handlers {
handler.on_responses(&Ctx {
io: io,
proto: self,
peer: *peer,
}, req_id, &responses);
}
Ok(())
}
// handle an update of request credits parameters.
fn update_credits(&self, peer_id: &PeerId, io: &IoContext, raw: Rlp) -> Result<(), Error> {
let peers = self.peers.read();
let peer = peers.get(peer_id).ok_or(Error::UnknownPeer)?;
let mut peer = peer.lock();
trace!(target: "pip", "Received an update to request credit params from peer {}", peer_id);
{
let &mut (ref mut credits, ref mut old_params) = peer.remote_flow.as_mut().ok_or(Error::NotServer)?;
old_params.recharge(credits);
let new_params = FlowParams::new(
raw.val_at(0)?, // limit
raw.val_at(2)?, // cost table
raw.val_at(1)?, // recharge.
);
// preserve ratio of current : limit when updating params.
credits.maintain_ratio(*old_params.limit(), *new_params.limit());
*old_params = new_params;
}
// set flag to true when there is an in-flight request
// corresponding to old flow params.
if !peer.pending_requests.is_empty() {
peer.skip_update = true;
}
// let peer know we've acknowledged the update.
io.respond(packet::ACKNOWLEDGE_UPDATE, Vec::new());
Ok(())
}
// handle an acknowledgement of request credits update.
fn acknowledge_update(&self, peer_id: &PeerId, _io: &IoContext, _raw: Rlp) -> Result<(), Error> {
let peers = self.peers.read();
let peer = peers.get(peer_id).ok_or(Error::UnknownPeer)?;
let mut peer = peer.lock();
trace!(target: "pip", "Received an acknowledgement for new request credit params from peer {}", peer_id);
let (_, new_params) = match peer.awaiting_acknowledge.take() {
Some(x) => x,
None => return Err(Error::UnsolicitedResponse),
};
let old_limit = *peer.local_flow.limit();
peer.local_credits.maintain_ratio(old_limit, *new_params.limit());
peer.local_flow = new_params;
Ok(())
}
// Receive a set of transactions to relay.
fn relay_transactions(&self, peer: &PeerId, io: &IoContext, data: Rlp) -> Result<(), Error> {
const MAX_TRANSACTIONS: usize = 256;
let txs: Vec<_> = data.iter()
.take(MAX_TRANSACTIONS)
.map(|x| x.as_val::<UnverifiedTransaction>())
.collect::<Result<_,_>>()?;
debug!(target: "pip", "Received {} transactions to relay from peer {}", txs.len(), peer);
for handler in &self.handlers {
handler.on_transactions(&Ctx {
peer: *peer,
io: io,
proto: self,
}, &txs);
}
Ok(())
}
}
// if something went wrong, figure out how much to punish the peer.
fn punish(peer: PeerId, io: &IoContext, e: Error) {
match e.punishment() {
Punishment::None => {}
Punishment::Disconnect => {
debug!(target: "pip", "Disconnecting peer {}: {}", peer, e);
io.disconnect_peer(peer)
}
Punishment::Disable => {
debug!(target: "pip", "Disabling peer {}: {}", peer, e);
io.disable_peer(peer)
}
}
}
impl NetworkProtocolHandler for LightProtocol {
fn initialize(&self, io: &NetworkContext) {
io.register_timer(TIMEOUT, TIMEOUT_INTERVAL)
.expect("Error registering sync timer.");
io.register_timer(TICK_TIMEOUT, TICK_TIMEOUT_INTERVAL)
.expect("Error registering sync timer.");
io.register_timer(PROPAGATE_TIMEOUT, PROPAGATE_TIMEOUT_INTERVAL)
.expect("Error registering sync timer.");
io.register_timer(RECALCULATE_COSTS_TIMEOUT, RECALCULATE_COSTS_INTERVAL)
.expect("Error registering request timer interval token.");
}
fn read(&self, io: &NetworkContext, peer: &PeerId, packet_id: u8, data: &[u8]) {
self.handle_packet(&io, peer, packet_id, data);
}
fn connected(&self, io: &NetworkContext, peer: &PeerId) {
self.on_connect(peer, &io);
}
fn disconnected(&self, io: &NetworkContext, peer: &PeerId) {
self.on_disconnect(*peer, &io);
}
fn timeout(&self, io: &NetworkContext, timer: TimerToken) {
match timer {
TIMEOUT => self.timeout_check(&io),
TICK_TIMEOUT => self.tick_handlers(&io),
PROPAGATE_TIMEOUT => self.propagate_transactions(&io),
RECALCULATE_COSTS_TIMEOUT => self.begin_new_cost_period(&io),
_ => warn!(target: "pip", "received timeout on unknown token {}", timer),
}
}
}