openethereum/ethcore/light/src/cht.rs
Marek Kotewicz e95b093483 dissolve util (#7460)
* ethereum-types refactor in progress

* ethereum-types refactor in progress

* ethereum-types refactor in progress

* ethereum-types refactor in progress

* ethereum-types refactor finished

* removed obsolete util/src/lib.rs

* removed commented out code
2018-01-10 15:35:18 +03:00

208 lines
6.3 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//! Canonical hash trie definitions and helper functions.
//!
//! Each CHT is a trie mapping block numbers to canonical hashes and total difficulty.
//! One is generated for every `SIZE` blocks, allowing us to discard those blocks in
//! favor of the trie root. When the "ancient" blocks need to be accessed, we simply
//! request an inclusion proof of a specific block number against the trie with the
//! root has. A correct proof implies that the claimed block is identical to the one
//! we discarded.
use ethcore::ids::BlockId;
use ethereum_types::{H256, U256};
use hashdb::HashDB;
use memorydb::MemoryDB;
use bytes::Bytes;
use trie::{self, TrieMut, TrieDBMut, Trie, TrieDB, Recorder};
use rlp::{RlpStream, UntrustedRlp};
// encode a key.
macro_rules! key {
($num: expr) => { ::rlp::encode(&$num) }
}
macro_rules! val {
($hash: expr, $td: expr) => {{
let mut stream = RlpStream::new_list(2);
stream.append(&$hash).append(&$td);
stream.drain()
}}
}
/// The size of each CHT.
pub const SIZE: u64 = 2048;
/// A canonical hash trie. This is generic over any database it can query.
/// See module docs for more details.
#[derive(Debug, Clone)]
pub struct CHT<DB: HashDB> {
db: DB,
root: H256, // the root of this CHT.
number: u64,
}
impl<DB: HashDB> CHT<DB> {
/// Query the root of the CHT.
pub fn root(&self) -> H256 { self.root }
/// Query the number of the CHT.
pub fn number(&self) -> u64 { self.number }
/// Generate an inclusion proof for the entry at a specific block.
/// Nodes before level `from_level` will be omitted.
/// Returns an error on an incomplete trie, and `Ok(None)` on an unprovable request.
pub fn prove(&self, num: u64, from_level: u32) -> trie::Result<Option<Vec<Bytes>>> {
if block_to_cht_number(num) != Some(self.number) { return Ok(None) }
let mut recorder = Recorder::with_depth(from_level);
let t = TrieDB::new(&self.db, &self.root)?;
t.get_with(&key!(num), &mut recorder)?;
Ok(Some(recorder.drain().into_iter().map(|x| x.data).collect()))
}
}
/// Block information necessary to build a CHT.
pub struct BlockInfo {
/// The block's hash.
pub hash: H256,
/// The block's parent's hash.
pub parent_hash: H256,
/// The block's total difficulty.
pub total_difficulty: U256,
}
/// Build an in-memory CHT from a closure which provides necessary information
/// about blocks. If the fetcher ever fails to provide the info, the CHT
/// will not be generated.
pub fn build<F>(cht_num: u64, mut fetcher: F) -> Option<CHT<MemoryDB>>
where F: FnMut(BlockId) -> Option<BlockInfo>
{
let mut db = MemoryDB::new();
// start from the last block by number and work backwards.
let last_num = start_number(cht_num + 1) - 1;
let mut id = BlockId::Number(last_num);
let mut root = H256::default();
{
let mut t = TrieDBMut::new(&mut db, &mut root);
for blk_num in (0..SIZE).map(|n| last_num - n) {
let info = match fetcher(id) {
Some(info) => info,
None => return None,
};
id = BlockId::Hash(info.parent_hash);
t.insert(&key!(blk_num), &val!(info.hash, info.total_difficulty))
.expect("fresh in-memory database is infallible; qed");
}
}
Some(CHT {
db: db,
root: root,
number: cht_num,
})
}
/// Compute a CHT root from an iterator of (hash, td) pairs. Fails if shorter than
/// SIZE items. The items are assumed to proceed sequentially from `start_number(cht_num)`.
/// Discards the trie's nodes.
pub fn compute_root<I>(cht_num: u64, iterable: I) -> Option<H256>
where I: IntoIterator<Item=(H256, U256)>
{
let mut v = Vec::with_capacity(SIZE as usize);
let start_num = start_number(cht_num) as usize;
for (i, (h, td)) in iterable.into_iter().take(SIZE as usize).enumerate() {
v.push((key!(i + start_num).into_vec(), val!(h, td).into_vec()))
}
if v.len() == SIZE as usize {
Some(::triehash::trie_root(v))
} else {
None
}
}
/// Check a proof for a CHT.
/// Given a set of a trie nodes, a number to query, and a trie root,
/// verify the given trie branch and extract the canonical hash and total difficulty.
// TODO: better support for partially-checked queries.
pub fn check_proof(proof: &[Bytes], num: u64, root: H256) -> Option<(H256, U256)> {
let mut db = MemoryDB::new();
for node in proof { db.insert(&node[..]); }
let res = match TrieDB::new(&db, &root) {
Err(_) => return None,
Ok(trie) => trie.get_with(&key!(num), |val: &[u8]| {
let rlp = UntrustedRlp::new(val);
rlp.val_at::<H256>(0)
.and_then(|h| rlp.val_at::<U256>(1).map(|td| (h, td)))
.ok()
})
};
match res {
Ok(Some(Some((hash, td)))) => Some((hash, td)),
_ => None,
}
}
/// Convert a block number to a CHT number.
/// Returns `None` for `block_num` == 0, `Some` otherwise.
pub fn block_to_cht_number(block_num: u64) -> Option<u64> {
match block_num {
0 => None,
n => Some((n - 1) / SIZE),
}
}
/// Get the starting block of a given CHT.
/// CHT 0 includes block 1...SIZE,
/// CHT 1 includes block SIZE + 1 ... 2*SIZE
/// More generally: CHT N includes block (1 + N*SIZE)...((N+1)*SIZE).
/// This is because the genesis hash is assumed to be known
/// and including it would be redundant.
pub fn start_number(cht_num: u64) -> u64 {
(cht_num * SIZE) + 1
}
#[cfg(test)]
mod tests {
#[test]
fn size_is_lt_usize() {
// to ensure safe casting on the target platform.
assert!(::cht::SIZE < usize::max_value() as u64)
}
#[test]
fn block_to_cht_number() {
assert!(::cht::block_to_cht_number(0).is_none());
assert_eq!(::cht::block_to_cht_number(1).unwrap(), 0);
assert_eq!(::cht::block_to_cht_number(::cht::SIZE + 1).unwrap(), 1);
assert_eq!(::cht::block_to_cht_number(::cht::SIZE).unwrap(), 0);
}
#[test]
fn start_number() {
assert_eq!(::cht::start_number(0), 1);
assert_eq!(::cht::start_number(1), ::cht::SIZE + 1);
assert_eq!(::cht::start_number(2), ::cht::SIZE * 2 + 1);
}
}