252 lines
7.0 KiB
Rust
252 lines
7.0 KiB
Rust
// Copyright 2015, 2016 Parity Technologies (UK) Ltd.
|
|
// This file is part of Parity.
|
|
|
|
// Parity is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// Parity is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
|
extern crate siphasher;
|
|
|
|
use std::cmp;
|
|
use std::mem;
|
|
use std::f64;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::collections::HashSet;
|
|
use siphasher::sip::SipHasher;
|
|
|
|
// TODO [ToDr] Both hashers are exactly the same - no point to keep two.
|
|
const NUMBER_OF_HASHERS: usize = 2;
|
|
|
|
/// BitVec structure with journalling
|
|
/// Every time any of the blocks is getting set it's index is tracked
|
|
/// and can be then drained by `drain` method
|
|
struct BitVecJournal {
|
|
elems: Vec<u64>,
|
|
journal: HashSet<usize>,
|
|
}
|
|
|
|
impl BitVecJournal {
|
|
pub fn new(size: usize) -> BitVecJournal {
|
|
let extra = if size % 8 > 0 { 1 } else { 0 };
|
|
BitVecJournal {
|
|
elems: vec![0u64; size / 8 + extra],
|
|
journal: HashSet::new(),
|
|
}
|
|
}
|
|
|
|
pub fn from_parts(parts: &[u64]) -> BitVecJournal {
|
|
BitVecJournal {
|
|
elems: parts.to_vec(),
|
|
journal: HashSet::new(),
|
|
}
|
|
}
|
|
|
|
pub fn set(&mut self, index: usize) {
|
|
let e_index = index / 64;
|
|
let bit_index = index % 64;
|
|
let val = self.elems.get_mut(e_index).unwrap();
|
|
*val |= 1u64 << bit_index;
|
|
self.journal.insert(e_index);
|
|
}
|
|
|
|
pub fn get(&self, index: usize) -> bool {
|
|
let e_index = index / 64;
|
|
let bit_index = index % 64;
|
|
self.elems[e_index] & (1 << bit_index) != 0
|
|
}
|
|
|
|
pub fn drain(&mut self) -> Vec<(usize, u64)> {
|
|
let journal = mem::replace(&mut self.journal, HashSet::new()).into_iter();
|
|
journal.map(|idx| (idx, self.elems[idx])).collect::<Vec<(usize, u64)>>()
|
|
}
|
|
|
|
pub fn saturation(&self) -> f64 {
|
|
self.elems.iter().fold(0u64, |acc, e| acc + e.count_ones() as u64) as f64 / (self.elems.len() * 64) as f64
|
|
}
|
|
}
|
|
|
|
/// Bloom filter structure
|
|
pub struct Bloom {
|
|
bitmap: BitVecJournal,
|
|
bitmap_bits: u64,
|
|
k_num: u32,
|
|
// TODO [ToDr] Both hashers are exactly the same - no point to keep two.
|
|
sips: [SipHasher; NUMBER_OF_HASHERS],
|
|
}
|
|
|
|
impl Bloom {
|
|
/// Create a new bloom filter structure.
|
|
/// bitmap_size is the size in bytes (not bits) that will be allocated in memory
|
|
/// items_count is an estimation of the maximum number of items to store.
|
|
pub fn new(bitmap_size: usize, items_count: usize) -> Bloom {
|
|
assert!(bitmap_size > 0 && items_count > 0);
|
|
let bitmap_bits = (bitmap_size as u64) * 8u64;
|
|
let k_num = Bloom::optimal_k_num(bitmap_bits, items_count);
|
|
let bitmap = BitVecJournal::new(bitmap_bits as usize);
|
|
let sips = [SipHasher::new(), SipHasher::new()];
|
|
Bloom {
|
|
bitmap: bitmap,
|
|
bitmap_bits: bitmap_bits,
|
|
k_num: k_num,
|
|
sips: sips,
|
|
}
|
|
}
|
|
|
|
/// Initializes bloom filter from saved state
|
|
pub fn from_parts(parts: &[u64], k_num: u32) -> Bloom {
|
|
let bitmap_size = parts.len() * 8;
|
|
let bitmap_bits = (bitmap_size as u64) * 8u64;
|
|
let bitmap = BitVecJournal::from_parts(parts);
|
|
let sips = [SipHasher::new(), SipHasher::new()];
|
|
Bloom {
|
|
bitmap: bitmap,
|
|
bitmap_bits: bitmap_bits,
|
|
k_num: k_num,
|
|
sips: sips,
|
|
}
|
|
}
|
|
|
|
/// Create a new bloom filter structure.
|
|
/// items_count is an estimation of the maximum number of items to store.
|
|
/// fp_p is the wanted rate of false positives, in ]0.0, 1.0[
|
|
pub fn new_for_fp_rate(items_count: usize, fp_p: f64) -> Bloom {
|
|
let bitmap_size = Bloom::compute_bitmap_size(items_count, fp_p);
|
|
Bloom::new(bitmap_size, items_count)
|
|
}
|
|
|
|
/// Compute a recommended bitmap size for items_count items
|
|
/// and a fp_p rate of false positives.
|
|
/// fp_p obviously has to be within the ]0.0, 1.0[ range.
|
|
pub fn compute_bitmap_size(items_count: usize, fp_p: f64) -> usize {
|
|
assert!(items_count > 0);
|
|
assert!(fp_p > 0.0 && fp_p < 1.0);
|
|
let log2 = f64::consts::LN_2;
|
|
let log2_2 = log2 * log2;
|
|
((items_count as f64) * f64::ln(fp_p) / (-8.0 * log2_2)).ceil() as usize
|
|
}
|
|
|
|
/// Records the presence of an item.
|
|
pub fn set<T>(&mut self, item: T)
|
|
where T: Hash
|
|
{
|
|
let mut hashes = [0u64, 0u64];
|
|
for k_i in 0..self.k_num {
|
|
let bit_offset = (self.bloom_hash(&mut hashes, &item, k_i) % self.bitmap_bits) as usize;
|
|
self.bitmap.set(bit_offset);
|
|
}
|
|
}
|
|
|
|
/// Check if an item is present in the set.
|
|
/// There can be false positives, but no false negatives.
|
|
pub fn check<T>(&self, item: T) -> bool
|
|
where T: Hash
|
|
{
|
|
let mut hashes = [0u64, 0u64];
|
|
for k_i in 0..self.k_num {
|
|
let bit_offset = (self.bloom_hash(&mut hashes, &item, k_i) % self.bitmap_bits) as usize;
|
|
if !self.bitmap.get(bit_offset) {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
|
|
/// Return the number of bits in the filter
|
|
pub fn number_of_bits(&self) -> u64 {
|
|
self.bitmap_bits
|
|
}
|
|
|
|
/// Return the number of hash functions used for `check` and `set`
|
|
pub fn number_of_hash_functions(&self) -> u32 {
|
|
self.k_num
|
|
}
|
|
|
|
fn optimal_k_num(bitmap_bits: u64, items_count: usize) -> u32 {
|
|
let m = bitmap_bits as f64;
|
|
let n = items_count as f64;
|
|
let k_num = (m / n * f64::ln(2.0f64)).ceil() as u32;
|
|
cmp::max(k_num, 1)
|
|
}
|
|
|
|
fn bloom_hash<T>(&self, hashes: &mut [u64; NUMBER_OF_HASHERS], item: &T, k_i: u32) -> u64
|
|
where T: Hash
|
|
{
|
|
if k_i < NUMBER_OF_HASHERS as u32 {
|
|
let mut sip = self.sips[k_i as usize].clone();
|
|
item.hash(&mut sip);
|
|
let hash = sip.finish();
|
|
hashes[k_i as usize] = hash;
|
|
hash
|
|
} else {
|
|
hashes[0].wrapping_add((k_i as u64).wrapping_mul(hashes[1]) % 0xffffffffffffffc5)
|
|
}
|
|
}
|
|
|
|
/// Drains the bloom journal returning the updated bloom part
|
|
pub fn drain_journal(&mut self) -> BloomJournal {
|
|
BloomJournal {
|
|
entries: self.bitmap.drain(),
|
|
hash_functions: self.k_num,
|
|
}
|
|
}
|
|
|
|
/// Returns the ratio of set bits in the bloom filter to the total bits
|
|
pub fn saturation(&self) -> f64 {
|
|
self.bitmap.saturation()
|
|
}
|
|
}
|
|
|
|
/// Bloom journal
|
|
/// Returns the tuple of (bloom part index, bloom part value) where each one is representing
|
|
/// an index of bloom parts that was updated since the last drain
|
|
pub struct BloomJournal {
|
|
pub hash_functions: u32,
|
|
pub entries: Vec<(usize, u64)>,
|
|
}
|
|
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::Bloom;
|
|
|
|
#[test]
|
|
fn get_set() {
|
|
let mut bloom = Bloom::new(10, 80);
|
|
let key = vec![115u8, 99];
|
|
assert!(!bloom.check(&key));
|
|
bloom.set(&key);
|
|
assert!(bloom.check(&key));
|
|
}
|
|
|
|
#[test]
|
|
fn journalling() {
|
|
let initial = vec![0u64; 8];
|
|
let mut bloom = Bloom::from_parts(&initial, 3);
|
|
bloom.set(&vec![5u8, 4]);
|
|
let drain = bloom.drain_journal();
|
|
|
|
assert_eq!(2, drain.entries.len())
|
|
}
|
|
|
|
#[test]
|
|
fn saturation() {
|
|
let initial = vec![0u64; 8];
|
|
let mut bloom = Bloom::from_parts(&initial, 3);
|
|
bloom.set(&vec![5u8, 4]);
|
|
|
|
let full = bloom.saturation();
|
|
// 2/8/64 = 0.00390625
|
|
assert!(full >= 0.0039f64 && full <= 0.004f64);
|
|
}
|
|
}
|