openethereum/ethcore/sync/src/blocks.rs
Afri Schoedon 126208cc74
Backports for stable 2.1.7 (#9975)
* version: bump stable to 2.1.7

* Adjust requests costs for light client (#9925)

* PIP Table Cost relative to average peers instead of max peers

* Add tracing in PIP new_cost_table

* Update stat peer_count

* Use number of leeching peers for Light serve costs

* Fix test::light_params_load_share_depends_on_max_peers (wrong type)

* Remove (now) useless test

* Remove `load_share` from LightParams.Config
Prevent div. by 0

* Add LEECHER_COUNT_FACTOR

* PR Grumble: u64 to u32 for f64 casting

* Prevent u32 overflow for avg_peer_count

* Add tests for LightSync::Statistics

* Fix empty steps (#9939)

* Don't send empty step twice or empty step then block.

* Perform basic validation of locally sealed blocks.

* Don't include empty step twice.

* prevent silent errors in daemon mode, closes #9367 (#9946)

* Fix light client informant while syncing (#9932)

* Add `is_idle` to LightSync to check importing status

* Use SyncStateWrapper to make sure is_idle gets updates

* Update is_major_import to use verified queue size as well

* Add comment for `is_idle`

* Add Debug to `SyncStateWrapper`

* `fn get` -> `fn into_inner`

*  ci: rearrange pipeline by logic (#9970)

* ci: rearrange pipeline by logic

* ci: rename docs script

* Add readiness check for docker container (#9804)

* Update Dockerfile

Since parity is built for "mission critical use", I thought other operators may see the need for this.

Adding the `curl` and `jq` commands allows for an extremely simple health check to be usable in container orchestrators.

For example. Here is a health check for a parity docker container running in Kubernetes.

This can be setup as a readiness Probe that would prevent clustered nodes that aren't ready from serving traffic.

```bash
#!/bin/bash

ETH_SYNCING=$(curl -X POST --data '{"jsonrpc":"2.0","method":"eth_syncing","params":[],"id":1}' http://localhost:8545 -H 'Content-Type: application/json')
RESULT=$(echo "$ETH_SYNCING | jq -r .result)

if [ "$RESULT" == "false" ]; then
  echo "Parity is ready to start accepting traffic"
  exit 0
else
  echo "Parity is still syncing the blockchain"
  exit 1
fi
```

* add sync check script

* Fix docker script (#9854)


* Dockerfile: change source path of the newly added check_sync.sh (#9869)

* Do not use the home directory as the working dir in docker (#9834)

* Do not create a home directory.

* Re-add -m flag

* fix docker build (#9971)

* bump smallvec to 0.6 in ethcore-light, ethstore and whisper (#9588)

* bump smallvec to 0.6 in ethcore-light, ethstore and whisper

* bump transaction-pool

* Fix test.

* patch cargo to use tokio-proto from git repo

this makes sure we no longer depend on smallvec 0.2.1 which is
affected by https://github.com/servo/rust-smallvec/issues/96

* use patched version of untrusted 0.5.1

* ci: allow audit to fail
2018-11-28 13:14:55 +01:00

708 lines
21 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use std::collections::{HashSet, HashMap, hash_map};
use hash::{keccak, KECCAK_NULL_RLP, KECCAK_EMPTY_LIST_RLP};
use heapsize::HeapSizeOf;
use ethereum_types::H256;
use triehash_ethereum::ordered_trie_root;
use bytes::Bytes;
use rlp::{Rlp, RlpStream, DecoderError};
use network;
use ethcore::header::Header as BlockHeader;
use ethcore::verification::queue::kind::blocks::Unverified;
use transaction::UnverifiedTransaction;
known_heap_size!(0, HeaderId);
#[derive(PartialEq, Debug, Clone)]
pub struct SyncHeader {
pub bytes: Bytes,
pub header: BlockHeader,
}
impl HeapSizeOf for SyncHeader {
fn heap_size_of_children(&self) -> usize {
self.bytes.heap_size_of_children()
+ self.header.heap_size_of_children()
}
}
impl SyncHeader {
pub fn from_rlp(bytes: Bytes) -> Result<Self, DecoderError> {
let result = SyncHeader {
header: ::rlp::decode(&bytes)?,
bytes,
};
Ok(result)
}
}
pub struct SyncBody {
pub transactions_bytes: Bytes,
pub transactions: Vec<UnverifiedTransaction>,
pub uncles_bytes: Bytes,
pub uncles: Vec<BlockHeader>,
}
impl SyncBody {
pub fn from_rlp(bytes: &[u8]) -> Result<Self, DecoderError> {
let rlp = Rlp::new(bytes);
let transactions_rlp = rlp.at(0)?;
let uncles_rlp = rlp.at(1)?;
let result = SyncBody {
transactions_bytes: transactions_rlp.as_raw().to_vec(),
transactions: transactions_rlp.as_list()?,
uncles_bytes: uncles_rlp.as_raw().to_vec(),
uncles: uncles_rlp.as_list()?,
};
Ok(result)
}
fn empty_body() -> Self {
SyncBody {
transactions_bytes: ::rlp::EMPTY_LIST_RLP.to_vec(),
transactions: Vec::with_capacity(0),
uncles_bytes: ::rlp::EMPTY_LIST_RLP.to_vec(),
uncles: Vec::with_capacity(0),
}
}
}
impl HeapSizeOf for SyncBody {
fn heap_size_of_children(&self) -> usize {
self.transactions_bytes.heap_size_of_children()
+ self.transactions.heap_size_of_children()
+ self.uncles_bytes.heap_size_of_children()
+ self.uncles.heap_size_of_children()
}
}
/// Block data with optional body.
struct SyncBlock {
header: SyncHeader,
body: Option<SyncBody>,
receipts: Option<Bytes>,
receipts_root: H256,
}
impl HeapSizeOf for SyncBlock {
fn heap_size_of_children(&self) -> usize {
self.header.heap_size_of_children() + self.body.heap_size_of_children()
}
}
fn unverified_from_sync(header: SyncHeader, body: Option<SyncBody>) -> Unverified {
let mut stream = RlpStream::new_list(3);
stream.append_raw(&header.bytes, 1);
let body = body.unwrap_or_else(SyncBody::empty_body);
stream.append_raw(&body.transactions_bytes, 1);
stream.append_raw(&body.uncles_bytes, 1);
Unverified {
header: header.header,
transactions: body.transactions,
uncles: body.uncles,
bytes: stream.out().to_vec(),
}
}
/// Block with optional receipt
pub struct BlockAndReceipts {
/// Block data.
pub block: Unverified,
/// Block receipts RLP list.
pub receipts: Option<Bytes>,
}
/// Used to identify header by transactions and uncles hashes
#[derive(Eq, PartialEq, Hash)]
struct HeaderId {
transactions_root: H256,
uncles: H256
}
/// A collection of blocks and subchain pointers being downloaded. This keeps track of
/// which headers/bodies need to be downloaded, which are being downloaded and also holds
/// the downloaded blocks.
#[derive(Default)]
pub struct BlockCollection {
/// Does this collection need block receipts.
need_receipts: bool,
/// Heads of subchains to download
heads: Vec<H256>,
/// Downloaded blocks.
blocks: HashMap<H256, SyncBlock>,
/// Downloaded blocks by parent.
parents: HashMap<H256, H256>,
/// Used to map body to header.
header_ids: HashMap<HeaderId, H256>,
/// Used to map receipts root to headers.
receipt_ids: HashMap<H256, Vec<H256>>,
/// First block in `blocks`.
head: Option<H256>,
/// Set of block header hashes being downloaded
downloading_headers: HashSet<H256>,
/// Set of block bodies being downloaded identified by block hash.
downloading_bodies: HashSet<H256>,
/// Set of block receipts being downloaded identified by receipt root.
downloading_receipts: HashSet<H256>,
}
impl BlockCollection {
/// Create a new instance.
pub fn new(download_receipts: bool) -> BlockCollection {
BlockCollection {
need_receipts: download_receipts,
blocks: HashMap::new(),
header_ids: HashMap::new(),
receipt_ids: HashMap::new(),
heads: Vec::new(),
parents: HashMap::new(),
head: None,
downloading_headers: HashSet::new(),
downloading_bodies: HashSet::new(),
downloading_receipts: HashSet::new(),
}
}
/// Clear everything.
pub fn clear(&mut self) {
self.blocks.clear();
self.parents.clear();
self.header_ids.clear();
self.receipt_ids.clear();
self.heads.clear();
self.head = None;
self.downloading_headers.clear();
self.downloading_bodies.clear();
self.downloading_receipts.clear();
}
/// Reset collection for a new sync round with given subchain block hashes.
pub fn reset_to(&mut self, hashes: Vec<H256>) {
self.clear();
self.heads = hashes;
}
/// Insert a set of headers into collection and advance subchain head pointers.
pub fn insert_headers(&mut self, headers: Vec<SyncHeader>) {
for h in headers {
if let Err(e) = self.insert_header(h) {
trace!(target: "sync", "Ignored invalid header: {:?}", e);
}
}
self.update_heads();
}
/// Insert a collection of block bodies for previously downloaded headers.
pub fn insert_bodies(&mut self, bodies: Vec<SyncBody>) -> Vec<H256> {
bodies.into_iter()
.filter_map(|b| {
self.insert_body(b)
.map_err(|e| trace!(target: "sync", "Ignored invalid body: {:?}", e))
.ok()
})
.collect()
}
/// Insert a collection of block receipts for previously downloaded headers.
pub fn insert_receipts(&mut self, receipts: Vec<Bytes>) -> Vec<Vec<H256>> {
if !self.need_receipts {
return Vec::new();
}
receipts.into_iter()
.filter_map(|r| {
self.insert_receipt(r)
.map_err(|e| trace!(target: "sync", "Ignored invalid receipt: {:?}", e))
.ok()
})
.collect()
}
/// Returns a set of block hashes that require a body download. The returned set is marked as being downloaded.
pub fn needed_bodies(&mut self, count: usize, _ignore_downloading: bool) -> Vec<H256> {
if self.head.is_none() {
return Vec::new();
}
let mut needed_bodies: Vec<H256> = Vec::new();
let mut head = self.head;
while head.is_some() && needed_bodies.len() < count {
head = self.parents.get(&head.unwrap()).cloned();
if let Some(head) = head {
match self.blocks.get(&head) {
Some(block) if block.body.is_none() && !self.downloading_bodies.contains(&head) => {
self.downloading_bodies.insert(head.clone());
needed_bodies.push(head.clone());
}
_ => (),
}
}
}
for h in self.header_ids.values() {
if needed_bodies.len() >= count {
break;
}
if !self.downloading_bodies.contains(h) {
needed_bodies.push(h.clone());
self.downloading_bodies.insert(h.clone());
}
}
needed_bodies
}
/// Returns a set of block hashes that require a receipt download. The returned set is marked as being downloaded.
pub fn needed_receipts(&mut self, count: usize, _ignore_downloading: bool) -> Vec<H256> {
if self.head.is_none() || !self.need_receipts {
return Vec::new();
}
let mut needed_receipts: Vec<H256> = Vec::new();
let mut head = self.head;
while head.is_some() && needed_receipts.len() < count {
head = self.parents.get(&head.unwrap()).cloned();
if let Some(head) = head {
match self.blocks.get(&head) {
Some(block) => {
if block.receipts.is_none() && !self.downloading_receipts.contains(&block.receipts_root) {
self.downloading_receipts.insert(block.receipts_root);
needed_receipts.push(head.clone());
}
}
_ => (),
}
}
}
// If there are multiple blocks per receipt, only request one of them.
for (root, h) in self.receipt_ids.iter().map(|(root, hashes)| (root, hashes[0])) {
if needed_receipts.len() >= count {
break;
}
if !self.downloading_receipts.contains(root) {
needed_receipts.push(h.clone());
self.downloading_receipts.insert(*root);
}
}
needed_receipts
}
/// Returns a set of block hashes that require a header download. The returned set is marked as being downloaded.
pub fn needed_headers(&mut self, count: usize, ignore_downloading: bool) -> Option<(H256, usize)> {
// find subchain to download
let mut download = None;
{
for h in &self.heads {
if ignore_downloading || !self.downloading_headers.contains(h) {
self.downloading_headers.insert(h.clone());
download = Some(h.clone());
break;
}
}
}
download.map(|h| (h, count))
}
/// Unmark header as being downloaded.
pub fn clear_header_download(&mut self, hash: &H256) {
self.downloading_headers.remove(hash);
}
/// Unmark block body as being downloaded.
pub fn clear_body_download(&mut self, hashes: &[H256]) {
for h in hashes {
self.downloading_bodies.remove(h);
}
}
/// Unmark block receipt as being downloaded.
pub fn clear_receipt_download(&mut self, hashes: &[H256]) {
for h in hashes {
if let Some(ref block) = self.blocks.get(h) {
self.downloading_receipts.remove(&block.receipts_root);
}
}
}
/// Get a valid chain of blocks ordered in ascending order and ready for importing into blockchain.
pub fn drain(&mut self) -> Vec<BlockAndReceipts> {
if self.blocks.is_empty() || self.head.is_none() {
return Vec::new();
}
let mut drained = Vec::new();
let mut hashes = Vec::new();
{
let mut blocks = Vec::new();
let mut head = self.head;
while let Some(h) = head {
head = self.parents.get(&h).cloned();
if let Some(head) = head {
match self.blocks.remove(&head) {
Some(block) => {
if block.body.is_some() && (!self.need_receipts || block.receipts.is_some()) {
blocks.push(block);
hashes.push(head);
self.head = Some(head);
} else {
self.blocks.insert(head, block);
break;
}
},
_ => {
break;
},
}
}
}
for block in blocks.into_iter() {
let unverified = unverified_from_sync(block.header, block.body);
drained.push(BlockAndReceipts {
block: unverified,
receipts: block.receipts.clone(),
});
}
}
trace!(target: "sync", "Drained {} blocks, new head :{:?}", drained.len(), self.head);
drained
}
/// Check if the collection is empty. We consider the syncing round complete once
/// there is no block data left and only a single or none head pointer remains.
pub fn is_empty(&self) -> bool {
self.heads.len() == 0 || (self.heads.len() == 1 && self.head.map_or(false, |h| h == self.heads[0]))
}
/// Check if collection contains a block header.
pub fn contains(&self, hash: &H256) -> bool {
self.blocks.contains_key(hash)
}
/// Check the number of heads
pub fn heads_len(&self) -> usize {
self.heads.len()
}
/// Return used heap size.
pub fn heap_size(&self) -> usize {
self.heads.heap_size_of_children()
+ self.blocks.heap_size_of_children()
+ self.parents.heap_size_of_children()
+ self.header_ids.heap_size_of_children()
+ self.downloading_headers.heap_size_of_children()
+ self.downloading_bodies.heap_size_of_children()
}
/// Check if given block hash is marked as being downloaded.
pub fn is_downloading(&self, hash: &H256) -> bool {
self.downloading_headers.contains(hash) || self.downloading_bodies.contains(hash)
}
fn insert_body(&mut self, body: SyncBody) -> Result<H256, network::Error> {
let header_id = {
let tx_root = ordered_trie_root(Rlp::new(&body.transactions_bytes).iter().map(|r| r.as_raw()));
let uncles = keccak(&body.uncles_bytes);
HeaderId {
transactions_root: tx_root,
uncles: uncles
}
};
match self.header_ids.remove(&header_id) {
Some(h) => {
self.downloading_bodies.remove(&h);
match self.blocks.get_mut(&h) {
Some(ref mut block) => {
trace!(target: "sync", "Got body {}", h);
block.body = Some(body);
Ok(h)
},
None => {
warn!("Got body with no header {}", h);
Err(network::ErrorKind::BadProtocol.into())
}
}
}
None => {
trace!(target: "sync", "Ignored unknown/stale block body. tx_root = {:?}, uncles = {:?}", header_id.transactions_root, header_id.uncles);
Err(network::ErrorKind::BadProtocol.into())
}
}
}
fn insert_receipt(&mut self, r: Bytes) -> Result<Vec<H256>, network::Error> {
let receipt_root = {
let receipts = Rlp::new(&r);
ordered_trie_root(receipts.iter().map(|r| r.as_raw()))
};
self.downloading_receipts.remove(&receipt_root);
match self.receipt_ids.entry(receipt_root) {
hash_map::Entry::Occupied(entry) => {
let block_hashes = entry.remove();
for h in block_hashes.iter() {
match self.blocks.get_mut(&h) {
Some(ref mut block) => {
trace!(target: "sync", "Got receipt {}", h);
block.receipts = Some(r.clone());
},
None => {
warn!("Got receipt with no header {}", h);
return Err(network::ErrorKind::BadProtocol.into())
}
}
}
Ok(block_hashes.to_vec())
},
hash_map::Entry::Vacant(_) => {
trace!(target: "sync", "Ignored unknown/stale block receipt {:?}", receipt_root);
Err(network::ErrorKind::BadProtocol.into())
}
}
}
fn insert_header(&mut self, info: SyncHeader) -> Result<H256, DecoderError> {
let hash = info.header.hash();
if self.blocks.contains_key(&hash) {
return Ok(hash);
}
match self.head {
None if hash == self.heads[0] => {
trace!(target: "sync", "New head {}", hash);
self.head = Some(info.header.parent_hash().clone());
},
_ => ()
}
let header_id = HeaderId {
transactions_root: *info.header.transactions_root(),
uncles: *info.header.uncles_hash(),
};
let body = if header_id.transactions_root == KECCAK_NULL_RLP && header_id.uncles == KECCAK_EMPTY_LIST_RLP {
// empty body, just mark as downloaded
Some(SyncBody::empty_body())
} else {
trace!(
"Queueing body tx_root = {:?}, uncles = {:?}, block = {:?}, number = {}",
header_id.transactions_root,
header_id.uncles,
hash,
info.header.number()
);
self.header_ids.insert(header_id, hash);
None
};
let (receipts, receipts_root) = if self.need_receipts {
let receipt_root = *info.header.receipts_root();
if receipt_root == KECCAK_NULL_RLP {
let receipts_stream = RlpStream::new_list(0);
(Some(receipts_stream.out()), receipt_root)
} else {
self.receipt_ids.entry(receipt_root).or_insert_with(Vec::new).push(hash);
(None, receipt_root)
}
} else {
(None, H256::new())
};
self.parents.insert(*info.header.parent_hash(), hash);
let block = SyncBlock {
header: info,
body,
receipts,
receipts_root,
};
self.blocks.insert(hash, block);
trace!(target: "sync", "New header: {:x}", hash);
Ok(hash)
}
// update subchain headers
fn update_heads(&mut self) {
let mut new_heads = Vec::new();
let old_subchains: HashSet<_> = { self.heads.iter().cloned().collect() };
for s in self.heads.drain(..) {
let mut h = s.clone();
if !self.blocks.contains_key(&h) {
new_heads.push(h);
continue;
}
loop {
match self.parents.get(&h) {
Some(next) => {
h = next.clone();
if old_subchains.contains(&h) {
trace!(target: "sync", "Completed subchain {:?}", s);
break; // reached head of the other subchain, merge by not adding
}
},
_ => {
new_heads.push(h);
break;
}
}
}
}
self.heads = new_heads;
}
}
#[cfg(test)]
mod test {
use super::{BlockCollection, SyncHeader};
use ethcore::client::{TestBlockChainClient, EachBlockWith, BlockId, BlockChainClient};
use ethcore::header::BlockNumber;
use ethcore::verification::queue::kind::blocks::Unverified;
use rlp::*;
fn is_empty(bc: &BlockCollection) -> bool {
bc.heads.is_empty() &&
bc.blocks.is_empty() &&
bc.parents.is_empty() &&
bc.header_ids.is_empty() &&
bc.head.is_none() &&
bc.downloading_headers.is_empty() &&
bc.downloading_bodies.is_empty()
}
#[test]
fn create_clear() {
let mut bc = BlockCollection::new(false);
assert!(is_empty(&bc));
let client = TestBlockChainClient::new();
client.add_blocks(100, EachBlockWith::Nothing);
let hashes = (0 .. 100).map(|i| (&client as &BlockChainClient).block_hash(BlockId::Number(i)).unwrap()).collect();
bc.reset_to(hashes);
assert!(!is_empty(&bc));
bc.clear();
assert!(is_empty(&bc));
}
#[test]
fn insert_headers() {
let mut bc = BlockCollection::new(false);
assert!(is_empty(&bc));
let client = TestBlockChainClient::new();
let nblocks = 200;
client.add_blocks(nblocks, EachBlockWith::Nothing);
let blocks: Vec<_> = (0..nblocks)
.map(|i| (&client as &BlockChainClient).block(BlockId::Number(i as BlockNumber)).unwrap().into_inner())
.collect();
let headers: Vec<_> = blocks.iter().map(|b| SyncHeader::from_rlp(Rlp::new(b).at(0).unwrap().as_raw().to_vec()).unwrap()).collect();
let hashes: Vec<_> = headers.iter().map(|h| h.header.hash()).collect();
let heads: Vec<_> = hashes.iter().enumerate().filter_map(|(i, h)| if i % 20 == 0 { Some(*h) } else { None }).collect();
bc.reset_to(heads);
assert!(!bc.is_empty());
assert_eq!(hashes[0], bc.heads[0]);
assert!(bc.needed_bodies(1, false).is_empty());
assert!(!bc.contains(&hashes[0]));
assert!(!bc.is_downloading(&hashes[0]));
let (h, n) = bc.needed_headers(6, false).unwrap();
assert!(bc.is_downloading(&hashes[0]));
assert_eq!(hashes[0], h);
assert_eq!(n, 6);
assert_eq!(bc.downloading_headers.len(), 1);
assert!(bc.drain().is_empty());
bc.insert_headers(headers[0..6].into_iter().map(Clone::clone).collect());
assert_eq!(hashes[5], bc.heads[0]);
for h in &hashes[0..6] {
bc.clear_header_download(h)
}
assert_eq!(bc.downloading_headers.len(), 0);
assert!(!bc.is_downloading(&hashes[0]));
assert!(bc.contains(&hashes[0]));
assert_eq!(
bc.drain().into_iter().map(|b| b.block).collect::<Vec<_>>(),
blocks[0..6].iter().map(|b| Unverified::from_rlp(b.to_vec()).unwrap()).collect::<Vec<_>>()
);
assert!(!bc.contains(&hashes[0]));
assert_eq!(hashes[5], bc.head.unwrap());
let (h, _) = bc.needed_headers(6, false).unwrap();
assert_eq!(hashes[5], h);
let (h, _) = bc.needed_headers(6, false).unwrap();
assert_eq!(hashes[20], h);
bc.insert_headers(headers[10..16].into_iter().map(Clone::clone).collect());
assert!(bc.drain().is_empty());
bc.insert_headers(headers[5..10].into_iter().map(Clone::clone).collect());
assert_eq!(
bc.drain().into_iter().map(|b| b.block).collect::<Vec<_>>(),
blocks[6..16].iter().map(|b| Unverified::from_rlp(b.to_vec()).unwrap()).collect::<Vec<_>>()
);
assert_eq!(hashes[15], bc.heads[0]);
bc.insert_headers(headers[15..].into_iter().map(Clone::clone).collect());
bc.drain();
assert!(bc.is_empty());
}
#[test]
fn insert_headers_with_gap() {
let mut bc = BlockCollection::new(false);
assert!(is_empty(&bc));
let client = TestBlockChainClient::new();
let nblocks = 200;
client.add_blocks(nblocks, EachBlockWith::Nothing);
let blocks: Vec<_> = (0..nblocks)
.map(|i| (&client as &BlockChainClient).block(BlockId::Number(i as BlockNumber)).unwrap().into_inner())
.collect();
let headers: Vec<_> = blocks.iter().map(|b| SyncHeader::from_rlp(Rlp::new(b).at(0).unwrap().as_raw().to_vec()).unwrap()).collect();
let hashes: Vec<_> = headers.iter().map(|h| h.header.hash()).collect();
let heads: Vec<_> = hashes.iter().enumerate().filter_map(|(i, h)| if i % 20 == 0 { Some(*h) } else { None }).collect();
bc.reset_to(heads);
bc.insert_headers(headers[2..22].into_iter().map(Clone::clone).collect());
assert_eq!(hashes[0], bc.heads[0]);
assert_eq!(hashes[21], bc.heads[1]);
assert!(bc.head.is_none());
bc.insert_headers(headers[0..2].into_iter().map(Clone::clone).collect());
assert!(bc.head.is_some());
assert_eq!(hashes[21], bc.heads[0]);
}
#[test]
fn insert_headers_no_gap() {
let mut bc = BlockCollection::new(false);
assert!(is_empty(&bc));
let client = TestBlockChainClient::new();
let nblocks = 200;
client.add_blocks(nblocks, EachBlockWith::Nothing);
let blocks: Vec<_> = (0..nblocks)
.map(|i| (&client as &BlockChainClient).block(BlockId::Number(i as BlockNumber)).unwrap().into_inner())
.collect();
let headers: Vec<_> = blocks.iter().map(|b| SyncHeader::from_rlp(Rlp::new(b).at(0).unwrap().as_raw().to_vec()).unwrap()).collect();
let hashes: Vec<_> = headers.iter().map(|h| h.header.hash()).collect();
let heads: Vec<_> = hashes.iter().enumerate().filter_map(|(i, h)| if i % 20 == 0 { Some(*h) } else { None }).collect();
bc.reset_to(heads);
bc.insert_headers(headers[1..2].into_iter().map(Clone::clone).collect());
assert!(bc.drain().is_empty());
bc.insert_headers(headers[0..1].into_iter().map(Clone::clone).collect());
assert_eq!(bc.drain().len(), 2);
}
}