openethereum/secret-store/src/key_server.rs
Svyatoslav Nikolsky 9de1afeeb6
SecretStore: non-blocking wait of session completion (#10303)
* make SS sessions return future

* fix grumbles

* do not create unused Condvar in production mode
2019-06-06 13:35:06 +03:00

714 lines
25 KiB
Rust

// Copyright 2015-2019 Parity Technologies (UK) Ltd.
// This file is part of Parity Ethereum.
// Parity Ethereum is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Ethereum is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Ethereum. If not, see <http://www.gnu.org/licenses/>.
use std::collections::BTreeSet;
use std::sync::Arc;
use futures::{future::{err, result}, Future};
use parking_lot::Mutex;
use crypto::DEFAULT_MAC;
use ethkey::{crypto, public_to_address};
use parity_runtime::Executor;
use super::acl_storage::AclStorage;
use super::key_storage::KeyStorage;
use super::key_server_set::KeyServerSet;
use key_server_cluster::{math, new_network_cluster, ClusterSession, WaitableSession};
use traits::{AdminSessionsServer, ServerKeyGenerator, DocumentKeyServer, MessageSigner, KeyServer, NodeKeyPair};
use types::{Error, Public, RequestSignature, Requester, ServerKeyId, EncryptedDocumentKey, EncryptedDocumentKeyShadow,
ClusterConfiguration, MessageHash, EncryptedMessageSignature, NodeId};
use key_server_cluster::{ClusterClient, ClusterConfiguration as NetClusterConfiguration, NetConnectionsManagerConfig};
/// Secret store key server implementation
pub struct KeyServerImpl {
data: Arc<Mutex<KeyServerCore>>,
}
/// Secret store key server data.
pub struct KeyServerCore {
cluster: Arc<ClusterClient>,
}
impl KeyServerImpl {
/// Create new key server instance
pub fn new(config: &ClusterConfiguration, key_server_set: Arc<KeyServerSet>, self_key_pair: Arc<NodeKeyPair>,
acl_storage: Arc<AclStorage>, key_storage: Arc<KeyStorage>, executor: Executor) -> Result<Self, Error>
{
Ok(KeyServerImpl {
data: Arc::new(Mutex::new(KeyServerCore::new(config, key_server_set, self_key_pair, acl_storage, key_storage, executor)?)),
})
}
/// Get cluster client reference.
pub fn cluster(&self) -> Arc<ClusterClient> {
self.data.lock().cluster.clone()
}
}
impl KeyServer for KeyServerImpl {}
impl AdminSessionsServer for KeyServerImpl {
fn change_servers_set(
&self,
old_set_signature: RequestSignature,
new_set_signature: RequestSignature,
new_servers_set: BTreeSet<NodeId>,
) -> Box<Future<Item=(), Error=Error> + Send> {
return_session(self.data.lock().cluster
.new_servers_set_change_session(None, None, new_servers_set, old_set_signature, new_set_signature))
}
}
impl ServerKeyGenerator for KeyServerImpl {
fn generate_key(
&self,
key_id: ServerKeyId,
author: Requester,
threshold: usize,
) -> Box<Future<Item=Public, Error=Error> + Send> {
// recover requestor' address key from signature
let address = author.address(&key_id).map_err(Error::InsufficientRequesterData);
// generate server key
return_session(address.and_then(|address| self.data.lock().cluster
.new_generation_session(key_id, None, address, threshold)))
}
fn restore_key_public(
&self,
key_id: ServerKeyId,
author: Requester,
) -> Box<Future<Item=Public, Error=Error> + Send> {
// recover requestor' public key from signature
let session_and_address = author
.address(&key_id)
.map_err(Error::InsufficientRequesterData)
.and_then(|address| self.data.lock().cluster.new_key_version_negotiation_session(key_id)
.map(|session| (session, address)));
let (session, address) = match session_and_address {
Ok((session, address)) => (session, address),
Err(error) => return Box::new(err(error)),
};
// negotiate key version && retrieve common key data
let core_session = session.session.clone();
Box::new(session.into_wait_future()
.and_then(move |_| core_session.common_key_data()
.map(|key_share| (key_share, address)))
.and_then(|(key_share, address)| if key_share.author == address {
Ok(key_share.public)
} else {
Err(Error::AccessDenied)
}))
}
}
impl DocumentKeyServer for KeyServerImpl {
fn store_document_key(
&self,
key_id: ServerKeyId,
author: Requester,
common_point: Public,
encrypted_document_key: Public,
) -> Box<Future<Item=(), Error=Error> + Send> {
// store encrypted key
return_session(self.data.lock().cluster.new_encryption_session(key_id,
author.clone(), common_point, encrypted_document_key))
}
fn generate_document_key(
&self,
key_id: ServerKeyId,
author: Requester,
threshold: usize,
) -> Box<Future<Item=EncryptedDocumentKey, Error=Error> + Send> {
// recover requestor' public key from signature
let public = result(author.public(&key_id).map_err(Error::InsufficientRequesterData));
// generate server key
let data = self.data.clone();
let server_key = public.and_then(move |public| {
let data = data.lock();
let session = data.cluster.new_generation_session(key_id, None, public_to_address(&public), threshold);
result(session.map(|session| (public, session)))
})
.and_then(|(public, session)| session.into_wait_future().map(move |server_key| (public, server_key)));
// generate random document key
let document_key = server_key.and_then(|(public, server_key)|
result(math::generate_random_point()
.and_then(|document_key| math::encrypt_secret(&document_key, &server_key)
.map(|encrypted_document_key| (public, document_key, encrypted_document_key))))
);
// store document key in the storage
let data = self.data.clone();
let stored_document_key = document_key.and_then(move |(public, document_key, encrypted_document_key)| {
let data = data.lock();
let session = data.cluster.new_encryption_session(key_id,
author.clone(), encrypted_document_key.common_point, encrypted_document_key.encrypted_point);
result(session.map(|session| (public, document_key, session)))
})
.and_then(|(public, document_key, session)| session.into_wait_future().map(move |_| (public, document_key)));
// encrypt document key with requestor public key
let encrypted_document_key = stored_document_key
.and_then(|(public, document_key)| crypto::ecies::encrypt(&public, &DEFAULT_MAC, document_key.as_bytes())
.map_err(|err| Error::Internal(format!("Error encrypting document key: {}", err))));
Box::new(encrypted_document_key)
}
fn restore_document_key(
&self,
key_id: ServerKeyId,
requester: Requester,
) -> Box<Future<Item=EncryptedDocumentKey, Error=Error> + Send> {
// recover requestor' public key from signature
let public = result(requester.public(&key_id).map_err(Error::InsufficientRequesterData));
// decrypt document key
let data = self.data.clone();
let stored_document_key = public.and_then(move |public| {
let data = data.lock();
let session = data.cluster.new_decryption_session(key_id, None, requester.clone(), None, false, false);
result(session.map(|session| (public, session)))
})
.and_then(|(public, session)| session.into_wait_future().map(move |document_key| (public, document_key)));
// encrypt document key with requestor public key
let encrypted_document_key = stored_document_key
.and_then(|(public, document_key)|
crypto::ecies::encrypt(&public, &DEFAULT_MAC, document_key.decrypted_secret.as_bytes())
.map_err(|err| Error::Internal(format!("Error encrypting document key: {}", err))));
Box::new(encrypted_document_key)
}
fn restore_document_key_shadow(
&self,
key_id: ServerKeyId,
requester: Requester,
) -> Box<Future<Item=EncryptedDocumentKeyShadow, Error=Error> + Send> {
return_session(self.data.lock().cluster.new_decryption_session(key_id,
None, requester.clone(), None, true, false))
}
}
impl MessageSigner for KeyServerImpl {
fn sign_message_schnorr(
&self,
key_id: ServerKeyId,
requester: Requester,
message: MessageHash,
) -> Box<Future<Item=EncryptedMessageSignature, Error=Error> + Send> {
// recover requestor' public key from signature
let public = result(requester.public(&key_id).map_err(Error::InsufficientRequesterData));
// sign message
let data = self.data.clone();
let signature = public.and_then(move |public| {
let data = data.lock();
let session = data.cluster.new_schnorr_signing_session(key_id, requester.clone().into(), None, message);
result(session.map(|session| (public, session)))
})
.and_then(|(public, session)| session.into_wait_future().map(move |signature| (public, signature)));
// compose two message signature components into single one
let combined_signature = signature.map(|(public, signature)| {
let mut combined_signature = [0; 64];
combined_signature[..32].clone_from_slice(signature.0.as_bytes());
combined_signature[32..].clone_from_slice(signature.1.as_bytes());
(public, combined_signature)
});
// encrypt signature with requestor public key
let encrypted_signature = combined_signature
.and_then(|(public, combined_signature)| crypto::ecies::encrypt(&public, &DEFAULT_MAC, &combined_signature)
.map_err(|err| Error::Internal(format!("Error encrypting message signature: {}", err))));
Box::new(encrypted_signature)
}
fn sign_message_ecdsa(
&self,
key_id: ServerKeyId,
requester: Requester,
message: MessageHash,
) -> Box<Future<Item=EncryptedMessageSignature, Error=Error> + Send> {
// recover requestor' public key from signature
let public = result(requester.public(&key_id).map_err(Error::InsufficientRequesterData));
// sign message
let data = self.data.clone();
let signature = public.and_then(move |public| {
let data = data.lock();
let session = data.cluster.new_ecdsa_signing_session(key_id, requester.clone().into(), None, message);
result(session.map(|session| (public, session)))
})
.and_then(|(public, session)| session.into_wait_future().map(move |signature| (public, signature)));
// encrypt combined signature with requestor public key
let encrypted_signature = signature
.and_then(|(public, signature)| crypto::ecies::encrypt(&public, &DEFAULT_MAC, &*signature)
.map_err(|err| Error::Internal(format!("Error encrypting message signature: {}", err))));
Box::new(encrypted_signature)
}
}
impl KeyServerCore {
pub fn new(config: &ClusterConfiguration, key_server_set: Arc<KeyServerSet>, self_key_pair: Arc<NodeKeyPair>,
acl_storage: Arc<AclStorage>, key_storage: Arc<KeyStorage>, executor: Executor) -> Result<Self, Error>
{
let cconfig = NetClusterConfiguration {
self_key_pair: self_key_pair.clone(),
key_server_set: key_server_set,
acl_storage: acl_storage,
key_storage: key_storage,
admin_public: config.admin_public,
preserve_sessions: false,
};
let net_config = NetConnectionsManagerConfig {
listen_address: (config.listener_address.address.clone(), config.listener_address.port),
allow_connecting_to_higher_nodes: config.allow_connecting_to_higher_nodes,
auto_migrate_enabled: config.auto_migrate_enabled,
};
let core = new_network_cluster(executor, cconfig, net_config)?;
let cluster = core.client();
core.run()?;
Ok(KeyServerCore {
cluster,
})
}
}
fn return_session<S: ClusterSession>(
session: Result<WaitableSession<S>, Error>,
) -> Box<Future<Item=S::SuccessfulResult, Error=Error> + Send> {
match session {
Ok(session) => Box::new(session.into_wait_future()),
Err(error) => Box::new(err(error))
}
}
#[cfg(test)]
pub mod tests {
use std::collections::BTreeSet;
use std::time;
use std::sync::Arc;
use std::net::SocketAddr;
use std::collections::BTreeMap;
use futures::Future;
use crypto::DEFAULT_MAC;
use ethkey::{self, crypto, Secret, Random, Generator, verify_public};
use acl_storage::DummyAclStorage;
use key_storage::KeyStorage;
use key_storage::tests::DummyKeyStorage;
use node_key_pair::PlainNodeKeyPair;
use key_server_set::tests::MapKeyServerSet;
use key_server_cluster::math;
use ethereum_types::{H256, H520};
use parity_runtime::Runtime;
use types::{Error, Public, ClusterConfiguration, NodeAddress, RequestSignature, ServerKeyId,
EncryptedDocumentKey, EncryptedDocumentKeyShadow, MessageHash, EncryptedMessageSignature,
Requester, NodeId};
use traits::{AdminSessionsServer, ServerKeyGenerator, DocumentKeyServer, MessageSigner, KeyServer};
use super::KeyServerImpl;
#[derive(Default)]
pub struct DummyKeyServer;
impl KeyServer for DummyKeyServer {}
impl AdminSessionsServer for DummyKeyServer {
fn change_servers_set(
&self,
_old_set_signature: RequestSignature,
_new_set_signature: RequestSignature,
_new_servers_set: BTreeSet<NodeId>,
) -> Box<Future<Item=(), Error=Error> + Send> {
unimplemented!("test-only")
}
}
impl ServerKeyGenerator for DummyKeyServer {
fn generate_key(
&self,
_key_id: ServerKeyId,
_author: Requester,
_threshold: usize,
) -> Box<Future<Item=Public, Error=Error> + Send> {
unimplemented!("test-only")
}
fn restore_key_public(
&self,
_key_id: ServerKeyId,
_author: Requester,
) -> Box<Future<Item=Public, Error=Error> + Send> {
unimplemented!("test-only")
}
}
impl DocumentKeyServer for DummyKeyServer {
fn store_document_key(
&self,
_key_id: ServerKeyId,
_author: Requester,
_common_point: Public,
_encrypted_document_key: Public,
) -> Box<Future<Item=(), Error=Error> + Send> {
unimplemented!("test-only")
}
fn generate_document_key(
&self,
_key_id: ServerKeyId,
_author: Requester,
_threshold: usize,
) -> Box<Future<Item=EncryptedDocumentKey, Error=Error> + Send> {
unimplemented!("test-only")
}
fn restore_document_key(
&self,
_key_id: ServerKeyId,
_requester: Requester,
) -> Box<Future<Item=EncryptedDocumentKey, Error=Error> + Send> {
unimplemented!("test-only")
}
fn restore_document_key_shadow(
&self,
_key_id: ServerKeyId,
_requester: Requester,
) -> Box<Future<Item=EncryptedDocumentKeyShadow, Error=Error> + Send> {
unimplemented!("test-only")
}
}
impl MessageSigner for DummyKeyServer {
fn sign_message_schnorr(
&self,
_key_id: ServerKeyId,
_requester: Requester,
_message: MessageHash,
) -> Box<Future<Item=EncryptedMessageSignature, Error=Error> + Send> {
unimplemented!("test-only")
}
fn sign_message_ecdsa(
&self,
_key_id: ServerKeyId,
_requester: Requester,
_message: MessageHash,
) -> Box<Future<Item=EncryptedMessageSignature, Error=Error> + Send> {
unimplemented!("test-only")
}
}
fn make_key_servers(start_port: u16, num_nodes: usize) -> (Vec<KeyServerImpl>, Vec<Arc<DummyKeyStorage>>, Runtime) {
let key_pairs: Vec<_> = (0..num_nodes).map(|_| Random.generate().unwrap()).collect();
let configs: Vec<_> = (0..num_nodes).map(|i| ClusterConfiguration {
listener_address: NodeAddress {
address: "127.0.0.1".into(),
port: start_port + (i as u16),
},
nodes: key_pairs.iter().enumerate().map(|(j, kp)| (kp.public().clone(),
NodeAddress {
address: "127.0.0.1".into(),
port: start_port + (j as u16),
})).collect(),
key_server_set_contract_address: None,
allow_connecting_to_higher_nodes: false,
admin_public: None,
auto_migrate_enabled: false,
}).collect();
let key_servers_set: BTreeMap<Public, SocketAddr> = configs[0].nodes.iter()
.map(|(k, a)| (k.clone(), format!("{}:{}", a.address, a.port).parse().unwrap()))
.collect();
let key_storages = (0..num_nodes).map(|_| Arc::new(DummyKeyStorage::default())).collect::<Vec<_>>();
let runtime = Runtime::with_thread_count(4);
let key_servers: Vec<_> = configs.into_iter().enumerate().map(|(i, cfg)|
KeyServerImpl::new(&cfg, Arc::new(MapKeyServerSet::new(false, key_servers_set.clone())),
Arc::new(PlainNodeKeyPair::new(key_pairs[i].clone())),
Arc::new(DummyAclStorage::default()),
key_storages[i].clone(), runtime.executor()).unwrap()
).collect();
// wait until connections are established. It is fast => do not bother with events here
let start = time::Instant::now();
let mut tried_reconnections = false;
loop {
if key_servers.iter().all(|ks| ks.cluster().is_fully_connected()) {
break;
}
let old_tried_reconnections = tried_reconnections;
let mut fully_connected = true;
for key_server in &key_servers {
if !key_server.cluster().is_fully_connected() {
fully_connected = false;
if !old_tried_reconnections {
tried_reconnections = true;
key_server.cluster().connect();
}
}
}
if fully_connected {
break;
}
if time::Instant::now() - start > time::Duration::from_millis(3000) {
panic!("connections are not established in 3000ms");
}
}
(key_servers, key_storages, runtime)
}
#[test]
fn document_key_generation_and_retrievement_works_over_network_with_single_node() {
let _ = ::env_logger::try_init();
let (key_servers, _, runtime) = make_key_servers(6070, 1);
// generate document key
let threshold = 0;
let document = Random.generate().unwrap().secret().clone();
let secret = Random.generate().unwrap().secret().clone();
let signature: Requester = ethkey::sign(&secret, &document).unwrap().into();
let generated_key = key_servers[0].generate_document_key(
*document,
signature.clone(),
threshold,
).wait().unwrap();
let generated_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &generated_key).unwrap();
// now let's try to retrieve key back
for key_server in key_servers.iter() {
let retrieved_key = key_server.restore_document_key(
*document,
signature.clone(),
).wait().unwrap();
let retrieved_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &retrieved_key).unwrap();
assert_eq!(retrieved_key, generated_key);
}
drop(runtime);
}
#[test]
fn document_key_generation_and_retrievement_works_over_network_with_3_nodes() {
let _ = ::env_logger::try_init();
let (key_servers, key_storages, runtime) = make_key_servers(6080, 3);
let test_cases = [0, 1, 2];
for threshold in &test_cases {
// generate document key
let document = Random.generate().unwrap().secret().clone();
let secret = Random.generate().unwrap().secret().clone();
let signature: Requester = ethkey::sign(&secret, &document).unwrap().into();
let generated_key = key_servers[0].generate_document_key(
*document,
signature.clone(),
*threshold,
).wait().unwrap();
let generated_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &generated_key).unwrap();
// now let's try to retrieve key back
for (i, key_server) in key_servers.iter().enumerate() {
let retrieved_key = key_server.restore_document_key(
*document,
signature.clone(),
).wait().unwrap();
let retrieved_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &retrieved_key).unwrap();
assert_eq!(retrieved_key, generated_key);
let key_share = key_storages[i].get(&document).unwrap().unwrap();
assert!(key_share.common_point.is_some());
assert!(key_share.encrypted_point.is_some());
}
}
drop(runtime);
}
#[test]
fn server_key_generation_and_storing_document_key_works_over_network_with_3_nodes() {
let _ = ::env_logger::try_init();
let (key_servers, _, runtime) = make_key_servers(6090, 3);
let test_cases = [0, 1, 2];
for threshold in &test_cases {
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature: Requester = ethkey::sign(&requestor_secret, &server_key_id).unwrap().into();
let server_public = key_servers[0].generate_key(
*server_key_id,
signature.clone(),
*threshold,
).wait().unwrap();
// generate document key (this is done by KS client so that document key is unknown to any KS)
let generated_key = Random.generate().unwrap().public().clone();
let encrypted_document_key = math::encrypt_secret(&generated_key, &server_public).unwrap();
// store document key
key_servers[0].store_document_key(*server_key_id, signature.clone(),
encrypted_document_key.common_point, encrypted_document_key.encrypted_point).wait().unwrap();
// now let's try to retrieve key back
for key_server in key_servers.iter() {
let retrieved_key = key_server.restore_document_key(*server_key_id, signature.clone()).wait().unwrap();
let retrieved_key = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &retrieved_key).unwrap();
let retrieved_key = Public::from_slice(&retrieved_key);
assert_eq!(retrieved_key, generated_key);
}
}
drop(runtime);
}
#[test]
fn server_key_generation_and_message_signing_works_over_network_with_3_nodes() {
let _ = ::env_logger::try_init();
let (key_servers, _, runtime) = make_key_servers(6100, 3);
let test_cases = [0, 1, 2];
for threshold in &test_cases {
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature: Requester = ethkey::sign(&requestor_secret, &server_key_id).unwrap().into();
let server_public = key_servers[0].generate_key(
*server_key_id,
signature.clone(),
*threshold,
).wait().unwrap();
// sign message
let message_hash = H256::from_low_u64_be(42);
let combined_signature = key_servers[0].sign_message_schnorr(
*server_key_id,
signature,
message_hash,
).wait().unwrap();
let combined_signature = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &combined_signature).unwrap();
let signature_c = Secret::from_slice(&combined_signature[..32]).unwrap();
let signature_s = Secret::from_slice(&combined_signature[32..]).unwrap();
// check signature
assert_eq!(math::verify_schnorr_signature(&server_public, &(signature_c, signature_s), &message_hash), Ok(true));
}
drop(runtime);
}
#[test]
fn decryption_session_is_delegated_when_node_does_not_have_key_share() {
let _ = ::env_logger::try_init();
let (key_servers, key_storages, runtime) = make_key_servers(6110, 3);
// generate document key
let threshold = 0;
let document = Random.generate().unwrap().secret().clone();
let secret = Random.generate().unwrap().secret().clone();
let signature: Requester = ethkey::sign(&secret, &document).unwrap().into();
let generated_key = key_servers[0].generate_document_key(
*document,
signature.clone(),
threshold,
).wait().unwrap();
let generated_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &generated_key).unwrap();
// remove key from node0
key_storages[0].remove(&document).unwrap();
// now let's try to retrieve key back by requesting it from node0, so that session must be delegated
let retrieved_key = key_servers[0].restore_document_key(*document, signature).wait().unwrap();
let retrieved_key = crypto::ecies::decrypt(&secret, &DEFAULT_MAC, &retrieved_key).unwrap();
assert_eq!(retrieved_key, generated_key);
drop(runtime);
}
#[test]
fn schnorr_signing_session_is_delegated_when_node_does_not_have_key_share() {
let _ = ::env_logger::try_init();
let (key_servers, key_storages, runtime) = make_key_servers(6114, 3);
let threshold = 1;
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature: Requester = ethkey::sign(&requestor_secret, &server_key_id).unwrap().into();
let server_public = key_servers[0].generate_key(*server_key_id, signature.clone(), threshold).wait().unwrap();
// remove key from node0
key_storages[0].remove(&server_key_id).unwrap();
// sign message
let message_hash = H256::from_low_u64_be(42);
let combined_signature = key_servers[0].sign_message_schnorr(
*server_key_id,
signature,
message_hash,
).wait().unwrap();
let combined_signature = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &combined_signature).unwrap();
let signature_c = Secret::from_slice(&combined_signature[..32]).unwrap();
let signature_s = Secret::from_slice(&combined_signature[32..]).unwrap();
// check signature
assert_eq!(math::verify_schnorr_signature(&server_public, &(signature_c, signature_s), &message_hash), Ok(true));
drop(runtime);
}
#[test]
fn ecdsa_signing_session_is_delegated_when_node_does_not_have_key_share() {
let _ = ::env_logger::try_init();
let (key_servers, key_storages, runtime) = make_key_servers(6117, 4);
let threshold = 1;
// generate server key
let server_key_id = Random.generate().unwrap().secret().clone();
let requestor_secret = Random.generate().unwrap().secret().clone();
let signature = ethkey::sign(&requestor_secret, &server_key_id).unwrap();
let server_public = key_servers[0].generate_key(
*server_key_id,
signature.clone().into(),
threshold,
).wait().unwrap();
// remove key from node0
key_storages[0].remove(&server_key_id).unwrap();
// sign message
let message_hash = H256::random();
let signature = key_servers[0].sign_message_ecdsa(
*server_key_id,
signature.clone().into(),
message_hash,
).wait().unwrap();
let signature = crypto::ecies::decrypt(&requestor_secret, &DEFAULT_MAC, &signature).unwrap();
let signature = H520::from_slice(&signature[0..65]);
// check signature
assert!(verify_public(&server_public, &signature.into(), &message_hash).unwrap());
drop(runtime);
}
#[test]
fn servers_set_change_session_works_over_network() {
// TODO [Test]
}
}