openethereum/util/kvdb-rocksdb/src/lib.rs
Marek Kotewicz 73756ce262 simplify compression and move it out of rlp crate (#7957)
* simplify compression and move it out of rlp crate

* removed lazy_static dependency from rlp
2018-02-23 10:12:52 +01:00

861 lines
25 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
#[macro_use]
extern crate log;
extern crate elastic_array;
extern crate interleaved_ordered;
extern crate num_cpus;
extern crate parking_lot;
extern crate regex;
extern crate rocksdb;
extern crate ethereum_types;
extern crate kvdb;
use std::cmp;
use std::collections::HashMap;
use std::marker::PhantomData;
use std::path::{PathBuf, Path};
use std::{fs, io, mem, result};
use parking_lot::{Mutex, MutexGuard, RwLock};
use rocksdb::{
DB, Writable, WriteBatch, WriteOptions, IteratorMode, DBIterator,
Options, BlockBasedOptions, Direction, Cache, Column, ReadOptions
};
use interleaved_ordered::{interleave_ordered, InterleaveOrdered};
use elastic_array::ElasticArray32;
use kvdb::{KeyValueDB, DBTransaction, DBValue, DBOp, Result};
#[cfg(target_os = "linux")]
use regex::Regex;
#[cfg(target_os = "linux")]
use std::process::Command;
#[cfg(target_os = "linux")]
use std::fs::File;
const DB_DEFAULT_MEMORY_BUDGET_MB: usize = 128;
enum KeyState {
Insert(DBValue),
Delete,
}
/// Compaction profile for the database settings
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct CompactionProfile {
/// L0-L1 target file size
pub initial_file_size: u64,
/// block size
pub block_size: usize,
/// rate limiter for background flushes and compactions, bytes/sec, if any
pub write_rate_limit: Option<u64>,
}
impl Default for CompactionProfile {
/// Default profile suitable for most storage
fn default() -> CompactionProfile {
CompactionProfile::ssd()
}
}
/// Given output of df command return Linux rotational flag file path.
#[cfg(target_os = "linux")]
pub fn rotational_from_df_output(df_out: Vec<u8>) -> Option<PathBuf> {
use std::str;
str::from_utf8(df_out.as_slice())
.ok()
// Get the drive name.
.and_then(|df_str| Regex::new(r"/dev/(sd[:alpha:]{1,2})")
.ok()
.and_then(|re| re.captures(df_str))
.and_then(|captures| captures.get(1)))
// Generate path e.g. /sys/block/sda/queue/rotational
.map(|drive_path| {
let mut p = PathBuf::from("/sys/block");
p.push(drive_path.as_str());
p.push("queue/rotational");
p
})
}
impl CompactionProfile {
/// Attempt to determine the best profile automatically, only Linux for now.
#[cfg(target_os = "linux")]
pub fn auto(db_path: &Path) -> CompactionProfile {
use std::io::Read;
let hdd_check_file = db_path
.to_str()
.and_then(|path_str| Command::new("df").arg(path_str).output().ok())
.and_then(|df_res| match df_res.status.success() {
true => Some(df_res.stdout),
false => None,
})
.and_then(rotational_from_df_output);
// Read out the file and match compaction profile.
if let Some(hdd_check) = hdd_check_file {
if let Ok(mut file) = File::open(hdd_check.as_path()) {
let mut buffer = [0; 1];
if file.read_exact(&mut buffer).is_ok() {
// 0 means not rotational.
if buffer == [48] { return Self::ssd(); }
// 1 means rotational.
if buffer == [49] { return Self::hdd(); }
}
}
}
// Fallback if drive type was not determined.
Self::default()
}
/// Just default for other platforms.
#[cfg(not(target_os = "linux"))]
pub fn auto(_db_path: &Path) -> CompactionProfile {
Self::default()
}
/// Default profile suitable for SSD storage
pub fn ssd() -> CompactionProfile {
CompactionProfile {
initial_file_size: 64 * 1024 * 1024,
block_size: 16 * 1024,
write_rate_limit: None,
}
}
/// Slow HDD compaction profile
pub fn hdd() -> CompactionProfile {
CompactionProfile {
initial_file_size: 256 * 1024 * 1024,
block_size: 64 * 1024,
write_rate_limit: Some(16 * 1024 * 1024),
}
}
}
/// Database configuration
#[derive(Clone)]
pub struct DatabaseConfig {
/// Max number of open files.
pub max_open_files: i32,
/// Memory budget (in MiB) used for setting block cache size, write buffer size.
pub memory_budget: Option<usize>,
/// Compaction profile
pub compaction: CompactionProfile,
/// Set number of columns
pub columns: Option<u32>,
/// Should we keep WAL enabled?
pub wal: bool,
}
impl DatabaseConfig {
/// Create new `DatabaseConfig` with default parameters and specified set of columns.
/// Note that cache sizes must be explicitly set.
pub fn with_columns(columns: Option<u32>) -> Self {
let mut config = Self::default();
config.columns = columns;
config
}
pub fn memory_budget(&self) -> usize {
self.memory_budget.unwrap_or(DB_DEFAULT_MEMORY_BUDGET_MB) * 1024 * 1024
}
pub fn memory_budget_per_col(&self) -> usize {
self.memory_budget() / self.columns.unwrap_or(1) as usize
}
}
impl Default for DatabaseConfig {
fn default() -> DatabaseConfig {
DatabaseConfig {
max_open_files: 512,
memory_budget: None,
compaction: CompactionProfile::default(),
columns: None,
wal: true,
}
}
}
/// Database iterator (for flushed data only)
// The compromise of holding only a virtual borrow vs. holding a lock on the
// inner DB (to prevent closing via restoration) may be re-evaluated in the future.
//
pub struct DatabaseIterator<'a> {
iter: InterleaveOrdered<::std::vec::IntoIter<(Box<[u8]>, Box<[u8]>)>, DBIterator>,
_marker: PhantomData<&'a Database>,
}
impl<'a> Iterator for DatabaseIterator<'a> {
type Item = (Box<[u8]>, Box<[u8]>);
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
struct DBAndColumns {
db: DB,
cfs: Vec<Column>,
}
// get column family configuration from database config.
fn col_config(config: &DatabaseConfig, block_opts: &BlockBasedOptions) -> Result<Options> {
let mut opts = Options::new();
opts.set_parsed_options("level_compaction_dynamic_level_bytes=true")?;
opts.set_block_based_table_factory(block_opts);
opts.set_parsed_options(
&format!("block_based_table_factory={{{};{}}}",
"cache_index_and_filter_blocks=true",
"pin_l0_filter_and_index_blocks_in_cache=true"))?;
opts.optimize_level_style_compaction(config.memory_budget_per_col() as i32);
opts.set_target_file_size_base(config.compaction.initial_file_size);
opts.set_parsed_options("compression_per_level=")?;
Ok(opts)
}
/// Key-Value database.
pub struct Database {
db: RwLock<Option<DBAndColumns>>,
config: DatabaseConfig,
write_opts: WriteOptions,
read_opts: ReadOptions,
block_opts: BlockBasedOptions,
path: String,
// Dirty values added with `write_buffered`. Cleaned on `flush`.
overlay: RwLock<Vec<HashMap<ElasticArray32<u8>, KeyState>>>,
// Values currently being flushed. Cleared when `flush` completes.
flushing: RwLock<Vec<HashMap<ElasticArray32<u8>, KeyState>>>,
// Prevents concurrent flushes.
// Value indicates if a flush is in progress.
flushing_lock: Mutex<bool>,
}
#[inline]
fn check_for_corruption<T, P: AsRef<Path>>(path: P, res: result::Result<T, String>) -> result::Result<T, String> {
if let Err(ref s) = res {
if s.starts_with("Corruption:") {
warn!("DB corrupted: {}. Repair will be triggered on next restart", s);
let _ = fs::File::create(path.as_ref().join(Database::CORRUPTION_FILE_NAME));
}
}
res
}
fn is_corrupted(s: &str) -> bool {
s.starts_with("Corruption:") || s.starts_with("Invalid argument: You have to open all column families")
}
impl Database {
const CORRUPTION_FILE_NAME: &'static str = "CORRUPTED";
/// Open database with default settings.
pub fn open_default(path: &str) -> Result<Database> {
Database::open(&DatabaseConfig::default(), path)
}
/// Open database file. Creates if it does not exist.
pub fn open(config: &DatabaseConfig, path: &str) -> Result<Database> {
let mut opts = Options::new();
if let Some(rate_limit) = config.compaction.write_rate_limit {
opts.set_parsed_options(&format!("rate_limiter_bytes_per_sec={}", rate_limit))?;
}
opts.set_use_fsync(false);
opts.create_if_missing(true);
opts.set_max_open_files(config.max_open_files);
opts.set_parsed_options("keep_log_file_num=1")?;
opts.set_parsed_options("bytes_per_sync=1048576")?;
opts.set_db_write_buffer_size(config.memory_budget_per_col() / 2);
opts.increase_parallelism(cmp::max(1, ::num_cpus::get() as i32 / 2));
let mut block_opts = BlockBasedOptions::new();
{
block_opts.set_block_size(config.compaction.block_size);
let cache_size = cmp::max(8, config.memory_budget() / 3);
let cache = Cache::new(cache_size);
block_opts.set_cache(cache);
}
// attempt database repair if it has been previously marked as corrupted
let db_corrupted = Path::new(path).join(Database::CORRUPTION_FILE_NAME);
if db_corrupted.exists() {
warn!("DB has been previously marked as corrupted, attempting repair");
DB::repair(&opts, path)?;
fs::remove_file(db_corrupted)?;
}
let columns = config.columns.unwrap_or(0) as usize;
let mut cf_options = Vec::with_capacity(columns);
let cfnames: Vec<_> = (0..columns).map(|c| format!("col{}", c)).collect();
let cfnames: Vec<&str> = cfnames.iter().map(|n| n as &str).collect();
for _ in 0 .. config.columns.unwrap_or(0) {
cf_options.push(col_config(&config, &block_opts)?);
}
let mut write_opts = WriteOptions::new();
if !config.wal {
write_opts.disable_wal(true);
}
let mut read_opts = ReadOptions::new();
read_opts.set_verify_checksums(false);
let mut cfs: Vec<Column> = Vec::new();
let db = match config.columns {
Some(_) => {
match DB::open_cf(&opts, path, &cfnames, &cf_options) {
Ok(db) => {
cfs = cfnames.iter().map(|n| db.cf_handle(n)
.expect("rocksdb opens a cf_handle for each cfname; qed")).collect();
Ok(db)
}
Err(_) => {
// retry and create CFs
match DB::open_cf(&opts, path, &[], &[]) {
Ok(mut db) => {
cfs = cfnames.iter().enumerate().map(|(i, n)| db.create_cf(n, &cf_options[i])).collect::<::std::result::Result<_, _>>()?;
Ok(db)
},
err => err,
}
}
}
},
None => DB::open(&opts, path)
};
let db = match db {
Ok(db) => db,
Err(ref s) if is_corrupted(s) => {
warn!("DB corrupted: {}, attempting repair", s);
DB::repair(&opts, path)?;
match cfnames.is_empty() {
true => DB::open(&opts, path)?,
false => {
let db = DB::open_cf(&opts, path, &cfnames, &cf_options)?;
cfs = cfnames.iter().map(|n| db.cf_handle(n)
.expect("rocksdb opens a cf_handle for each cfname; qed")).collect();
db
},
}
},
Err(s) => { return Err(s.into()); }
};
let num_cols = cfs.len();
Ok(Database {
db: RwLock::new(Some(DBAndColumns{ db: db, cfs: cfs })),
config: config.clone(),
write_opts: write_opts,
overlay: RwLock::new((0..(num_cols + 1)).map(|_| HashMap::new()).collect()),
flushing: RwLock::new((0..(num_cols + 1)).map(|_| HashMap::new()).collect()),
flushing_lock: Mutex::new(false),
path: path.to_owned(),
read_opts: read_opts,
block_opts: block_opts,
})
}
/// Helper to create new transaction for this database.
pub fn transaction(&self) -> DBTransaction {
DBTransaction::new()
}
fn to_overlay_column(col: Option<u32>) -> usize {
col.map_or(0, |c| (c + 1) as usize)
}
/// Commit transaction to database.
pub fn write_buffered(&self, tr: DBTransaction) {
let mut overlay = self.overlay.write();
let ops = tr.ops;
for op in ops {
match op {
DBOp::Insert { col, key, value } => {
let c = Self::to_overlay_column(col);
overlay[c].insert(key, KeyState::Insert(value));
},
DBOp::Delete { col, key } => {
let c = Self::to_overlay_column(col);
overlay[c].insert(key, KeyState::Delete);
},
}
};
}
/// Commit buffered changes to database. Must be called under `flush_lock`
fn write_flushing_with_lock(&self, _lock: &mut MutexGuard<bool>) -> Result<()> {
match *self.db.read() {
Some(DBAndColumns { ref db, ref cfs }) => {
let batch = WriteBatch::new();
mem::swap(&mut *self.overlay.write(), &mut *self.flushing.write());
{
for (c, column) in self.flushing.read().iter().enumerate() {
for (ref key, ref state) in column.iter() {
match **state {
KeyState::Delete => {
if c > 0 {
batch.delete_cf(cfs[c - 1], &key)?;
} else {
batch.delete(&key)?;
}
},
KeyState::Insert(ref value) => {
if c > 0 {
batch.put_cf(cfs[c - 1], &key, value)?;
} else {
batch.put(&key, &value)?;
}
},
}
}
}
}
check_for_corruption(
&self.path,
db.write_opt(batch, &self.write_opts))?;
for column in self.flushing.write().iter_mut() {
column.clear();
column.shrink_to_fit();
}
Ok(())
},
None => Err("Database is closed".into())
}
}
/// Commit buffered changes to database.
pub fn flush(&self) -> Result<()> {
let mut lock = self.flushing_lock.lock();
// If RocksDB batch allocation fails the thread gets terminated and the lock is released.
// The value inside the lock is used to detect that.
if *lock {
// This can only happen if another flushing thread is terminated unexpectedly.
return Err("Database write failure. Running low on memory perhaps?".into());
}
*lock = true;
let result = self.write_flushing_with_lock(&mut lock);
*lock = false;
result
}
/// Commit transaction to database.
pub fn write(&self, tr: DBTransaction) -> Result<()> {
match *self.db.read() {
Some(DBAndColumns { ref db, ref cfs }) => {
let batch = WriteBatch::new();
let ops = tr.ops;
for op in ops {
// remove any buffered operation for this key
self.overlay.write()[Self::to_overlay_column(op.col())].remove(op.key());
match op {
DBOp::Insert { col, key, value } => {
col.map_or_else(|| batch.put(&key, &value), |c| batch.put_cf(cfs[c as usize], &key, &value))?
},
DBOp::Delete { col, key } => {
col.map_or_else(|| batch.delete(&key), |c| batch.delete_cf(cfs[c as usize], &key))?
},
}
}
check_for_corruption(
&self.path,
db.write_opt(batch, &self.write_opts)).map_err(Into::into)
},
None => Err("Database is closed".into())
}
}
/// Get value by key.
pub fn get(&self, col: Option<u32>, key: &[u8]) -> Result<Option<DBValue>> {
match *self.db.read() {
Some(DBAndColumns { ref db, ref cfs }) => {
let overlay = &self.overlay.read()[Self::to_overlay_column(col)];
match overlay.get(key) {
Some(&KeyState::Insert(ref value)) => Ok(Some(value.clone())),
Some(&KeyState::Delete) => Ok(None),
None => {
let flushing = &self.flushing.read()[Self::to_overlay_column(col)];
match flushing.get(key) {
Some(&KeyState::Insert(ref value)) => Ok(Some(value.clone())),
Some(&KeyState::Delete) => Ok(None),
None => {
col.map_or_else(
|| db.get_opt(key, &self.read_opts).map(|r| r.map(|v| DBValue::from_slice(&v))),
|c| db.get_cf_opt(cfs[c as usize], key, &self.read_opts).map(|r| r.map(|v| DBValue::from_slice(&v))))
.map_err(Into::into)
},
}
},
}
},
None => Ok(None),
}
}
/// Get value by partial key. Prefix size should match configured prefix size. Only searches flushed values.
// TODO: support prefix seek for unflushed data
pub fn get_by_prefix(&self, col: Option<u32>, prefix: &[u8]) -> Option<Box<[u8]>> {
self.iter_from_prefix(col, prefix).and_then(|mut iter| {
match iter.next() {
// TODO: use prefix_same_as_start read option (not availabele in C API currently)
Some((k, v)) => if k[0 .. prefix.len()] == prefix[..] { Some(v) } else { None },
_ => None
}
})
}
/// Get database iterator for flushed data.
pub fn iter(&self, col: Option<u32>) -> Option<DatabaseIterator> {
match *self.db.read() {
Some(DBAndColumns { ref db, ref cfs }) => {
let overlay = &self.overlay.read()[Self::to_overlay_column(col)];
let mut overlay_data = overlay.iter()
.filter_map(|(k, v)| match *v {
KeyState::Insert(ref value) =>
Some((k.clone().into_vec().into_boxed_slice(), value.clone().into_vec().into_boxed_slice())),
KeyState::Delete => None,
}).collect::<Vec<_>>();
overlay_data.sort();
let iter = col.map_or_else(
|| db.iterator_opt(IteratorMode::Start, &self.read_opts),
|c| db.iterator_cf_opt(cfs[c as usize], IteratorMode::Start, &self.read_opts)
.expect("iterator params are valid; qed")
);
Some(DatabaseIterator {
iter: interleave_ordered(overlay_data, iter),
_marker: PhantomData,
})
},
None => None,
}
}
fn iter_from_prefix(&self, col: Option<u32>, prefix: &[u8]) -> Option<DatabaseIterator> {
match *self.db.read() {
Some(DBAndColumns { ref db, ref cfs }) => {
let iter = col.map_or_else(|| db.iterator_opt(IteratorMode::From(prefix, Direction::Forward), &self.read_opts),
|c| db.iterator_cf_opt(cfs[c as usize], IteratorMode::From(prefix, Direction::Forward), &self.read_opts)
.expect("iterator params are valid; qed"));
Some(DatabaseIterator {
iter: interleave_ordered(Vec::new(), iter),
_marker: PhantomData,
})
},
None => None,
}
}
/// Close the database
fn close(&self) {
*self.db.write() = None;
self.overlay.write().clear();
self.flushing.write().clear();
}
/// Restore the database from a copy at given path.
pub fn restore(&self, new_db: &str) -> Result<()> {
self.close();
let mut backup_db = PathBuf::from(&self.path);
backup_db.pop();
backup_db.push("backup_db");
let existed = match fs::rename(&self.path, &backup_db) {
Ok(_) => true,
Err(e) => if let io::ErrorKind::NotFound = e.kind() {
false
} else {
return Err(e.into());
}
};
match fs::rename(&new_db, &self.path) {
Ok(_) => {
// clean up the backup.
if existed {
fs::remove_dir_all(&backup_db)?;
}
}
Err(e) => {
// restore the backup.
if existed {
fs::rename(&backup_db, &self.path)?;
}
return Err(e.into())
}
}
// reopen the database and steal handles into self
let db = Self::open(&self.config, &self.path)?;
*self.db.write() = mem::replace(&mut *db.db.write(), None);
*self.overlay.write() = mem::replace(&mut *db.overlay.write(), Vec::new());
*self.flushing.write() = mem::replace(&mut *db.flushing.write(), Vec::new());
Ok(())
}
/// The number of non-default column families.
pub fn num_columns(&self) -> u32 {
self.db.read().as_ref()
.and_then(|db| if db.cfs.is_empty() { None } else { Some(db.cfs.len()) } )
.map(|n| n as u32)
.unwrap_or(0)
}
/// Drop a column family.
pub fn drop_column(&self) -> Result<()> {
match *self.db.write() {
Some(DBAndColumns { ref mut db, ref mut cfs }) => {
if let Some(col) = cfs.pop() {
let name = format!("col{}", cfs.len());
drop(col);
db.drop_cf(&name)?;
}
Ok(())
},
None => Ok(()),
}
}
/// Add a column family.
pub fn add_column(&self) -> Result<()> {
match *self.db.write() {
Some(DBAndColumns { ref mut db, ref mut cfs }) => {
let col = cfs.len() as u32;
let name = format!("col{}", col);
cfs.push(db.create_cf(&name, &col_config(&self.config, &self.block_opts)?)?);
Ok(())
},
None => Ok(()),
}
}
}
// duplicate declaration of methods here to avoid trait import in certain existing cases
// at time of addition.
impl KeyValueDB for Database {
fn get(&self, col: Option<u32>, key: &[u8]) -> Result<Option<DBValue>> {
Database::get(self, col, key)
}
fn get_by_prefix(&self, col: Option<u32>, prefix: &[u8]) -> Option<Box<[u8]>> {
Database::get_by_prefix(self, col, prefix)
}
fn write_buffered(&self, transaction: DBTransaction) {
Database::write_buffered(self, transaction)
}
fn write(&self, transaction: DBTransaction) -> Result<()> {
Database::write(self, transaction)
}
fn flush(&self) -> Result<()> {
Database::flush(self)
}
fn iter<'a>(&'a self, col: Option<u32>) -> Box<Iterator<Item=(Box<[u8]>, Box<[u8]>)> + 'a> {
let unboxed = Database::iter(self, col);
Box::new(unboxed.into_iter().flat_map(|inner| inner))
}
fn iter_from_prefix<'a>(&'a self, col: Option<u32>, prefix: &'a [u8])
-> Box<Iterator<Item=(Box<[u8]>, Box<[u8]>)> + 'a>
{
let unboxed = Database::iter_from_prefix(self, col, prefix);
Box::new(unboxed.into_iter().flat_map(|inner| inner))
}
fn restore(&self, new_db: &str) -> Result<()> {
Database::restore(self, new_db)
}
}
impl Drop for Database {
fn drop(&mut self) {
// write all buffered changes if we can.
let _ = self.flush();
}
}
#[cfg(test)]
mod tests {
extern crate tempdir;
use std::str::FromStr;
use self::tempdir::TempDir;
use ethereum_types::H256;
use super::*;
fn test_db(config: &DatabaseConfig) {
let tempdir = TempDir::new("").unwrap();
let db = Database::open(config, tempdir.path().to_str().unwrap()).unwrap();
let key1 = H256::from_str("02c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let key2 = H256::from_str("03c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let key3 = H256::from_str("01c69be41d0b7e40352fc85be1cd65eb03d40ef8427a0ca4596b1ead9a00e9fc").unwrap();
let mut batch = db.transaction();
batch.put(None, &key1, b"cat");
batch.put(None, &key2, b"dog");
db.write(batch).unwrap();
assert_eq!(&*db.get(None, &key1).unwrap().unwrap(), b"cat");
let contents: Vec<_> = db.iter(None).into_iter().flat_map(|inner| inner).collect();
assert_eq!(contents.len(), 2);
assert_eq!(&*contents[0].0, &*key1);
assert_eq!(&*contents[0].1, b"cat");
assert_eq!(&*contents[1].0, &*key2);
assert_eq!(&*contents[1].1, b"dog");
let mut batch = db.transaction();
batch.delete(None, &key1);
db.write(batch).unwrap();
assert!(db.get(None, &key1).unwrap().is_none());
let mut batch = db.transaction();
batch.put(None, &key1, b"cat");
db.write(batch).unwrap();
let mut transaction = db.transaction();
transaction.put(None, &key3, b"elephant");
transaction.delete(None, &key1);
db.write(transaction).unwrap();
assert!(db.get(None, &key1).unwrap().is_none());
assert_eq!(&*db.get(None, &key3).unwrap().unwrap(), b"elephant");
assert_eq!(&*db.get_by_prefix(None, &key3).unwrap(), b"elephant");
assert_eq!(&*db.get_by_prefix(None, &key2).unwrap(), b"dog");
let mut transaction = db.transaction();
transaction.put(None, &key1, b"horse");
transaction.delete(None, &key3);
db.write_buffered(transaction);
assert!(db.get(None, &key3).unwrap().is_none());
assert_eq!(&*db.get(None, &key1).unwrap().unwrap(), b"horse");
db.flush().unwrap();
assert!(db.get(None, &key3).unwrap().is_none());
assert_eq!(&*db.get(None, &key1).unwrap().unwrap(), b"horse");
}
#[test]
fn kvdb() {
let tempdir = TempDir::new("").unwrap();
let _ = Database::open_default(tempdir.path().to_str().unwrap()).unwrap();
test_db(&DatabaseConfig::default());
}
#[test]
#[cfg(target_os = "linux")]
fn df_to_rotational() {
use std::path::PathBuf;
// Example df output.
let example_df = vec![70, 105, 108, 101, 115, 121, 115, 116, 101, 109, 32, 32, 32, 32, 32, 49, 75, 45, 98, 108, 111, 99, 107, 115, 32, 32, 32, 32, 32, 85, 115, 101, 100, 32, 65, 118, 97, 105, 108, 97, 98, 108, 101, 32, 85, 115, 101, 37, 32, 77, 111, 117, 110, 116, 101, 100, 32, 111, 110, 10, 47, 100, 101, 118, 47, 115, 100, 97, 49, 32, 32, 32, 32, 32, 32, 32, 54, 49, 52, 48, 57, 51, 48, 48, 32, 51, 56, 56, 50, 50, 50, 51, 54, 32, 32, 49, 57, 52, 52, 52, 54, 49, 54, 32, 32, 54, 55, 37, 32, 47, 10];
let expected_output = Some(PathBuf::from("/sys/block/sda/queue/rotational"));
assert_eq!(rotational_from_df_output(example_df), expected_output);
}
#[test]
fn add_columns() {
let config = DatabaseConfig::default();
let config_5 = DatabaseConfig::with_columns(Some(5));
let tempdir = TempDir::new("").unwrap();
// open empty, add 5.
{
let db = Database::open(&config, tempdir.path().to_str().unwrap()).unwrap();
assert_eq!(db.num_columns(), 0);
for i in 0..5 {
db.add_column().unwrap();
assert_eq!(db.num_columns(), i + 1);
}
}
// reopen as 5.
{
let db = Database::open(&config_5, tempdir.path().to_str().unwrap()).unwrap();
assert_eq!(db.num_columns(), 5);
}
}
#[test]
fn drop_columns() {
let config = DatabaseConfig::default();
let config_5 = DatabaseConfig::with_columns(Some(5));
let tempdir = TempDir::new("").unwrap();
// open 5, remove all.
{
let db = Database::open(&config_5, tempdir.path().to_str().unwrap()).unwrap();
assert_eq!(db.num_columns(), 5);
for i in (0..5).rev() {
db.drop_column().unwrap();
assert_eq!(db.num_columns(), i);
}
}
// reopen as 0.
{
let db = Database::open(&config, tempdir.path().to_str().unwrap()).unwrap();
assert_eq!(db.num_columns(), 0);
}
}
#[test]
fn write_clears_buffered_ops() {
let tempdir = TempDir::new("").unwrap();
let config = DatabaseConfig::default();
let db = Database::open(&config, tempdir.path().to_str().unwrap()).unwrap();
let mut batch = db.transaction();
batch.put(None, b"foo", b"bar");
db.write_buffered(batch);
let mut batch = db.transaction();
batch.put(None, b"foo", b"baz");
db.write(batch).unwrap();
assert_eq!(db.get(None, b"foo").unwrap().unwrap().as_ref(), b"baz");
}
}