openethereum/dapps/node-health/src/time.rs
Niklas Adolfsson 98b7c07171 Update license header and scripts (#8666)
* Update `add_license` script

* run script

* add `remove duplicate lines script` and run it

* Revert changes `English spaces`

* strip whitespaces

* Revert `GPL` in files with `apache/mit license`

* don't append `gpl license` in files with other lic

* Don't append `gpl header` in files with other lic.

* re-ran script

* include c and cpp files too

* remove duplicate header

* rebase nit
2018-06-04 10:19:50 +02:00

358 lines
9.7 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Periodically checks node's time drift using [SNTP](https://tools.ietf.org/html/rfc1769).
//!
//! An NTP packet is sent to the server with a local timestamp, the server then completes the packet, yielding the
//! following timestamps:
//!
//! Timestamp Name ID When Generated
//! ------------------------------------------------------------
//! Originate Timestamp T1 time request sent by client
//! Receive Timestamp T2 time request received at server
//! Transmit Timestamp T3 time reply sent by server
//! Destination Timestamp T4 time reply received at client
//!
//! The drift is defined as:
//!
//! drift = ((T2 - T1) + (T3 - T4)) / 2.
//!
use std::io;
use std::{fmt, mem, time};
use std::collections::VecDeque;
use std::sync::atomic::{self, AtomicUsize};
use std::sync::Arc;
use futures::{self, Future};
use futures::future::{self, IntoFuture};
use futures_cpupool::{CpuPool, CpuFuture};
use ntp;
use parking_lot::RwLock;
use time_crate::{Duration, Timespec};
/// Time checker error.
#[derive(Debug, Clone, PartialEq)]
pub enum Error {
/// No servers are currently available for a query.
NoServersAvailable,
/// There was an error when trying to reach the NTP server.
Ntp(String),
/// IO error when reading NTP response.
Io(String),
}
impl fmt::Display for Error {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
use self::Error::*;
match *self {
NoServersAvailable => write!(fmt, "No NTP servers available"),
Ntp(ref err) => write!(fmt, "NTP error: {}", err),
Io(ref err) => write!(fmt, "Connection Error: {}", err),
}
}
}
impl From<io::Error> for Error {
fn from(err: io::Error) -> Self { Error::Io(format!("{}", err)) }
}
impl From<ntp::errors::Error> for Error {
fn from(err: ntp::errors::Error) -> Self { Error::Ntp(format!("{}", err)) }
}
/// NTP time drift checker.
pub trait Ntp {
/// Returned Future.
type Future: IntoFuture<Item=Duration, Error=Error>;
/// Returns the current time drift.
fn drift(&self) -> Self::Future;
}
const SERVER_MAX_POLL_INTERVAL_SECS: u64 = 60;
#[derive(Debug)]
struct Server {
pub address: String,
next_call: RwLock<time::Instant>,
failures: AtomicUsize,
}
impl Server {
pub fn is_available(&self) -> bool {
*self.next_call.read() < time::Instant::now()
}
pub fn report_success(&self) {
self.failures.store(0, atomic::Ordering::SeqCst);
self.update_next_call(1)
}
pub fn report_failure(&self) {
let errors = self.failures.fetch_add(1, atomic::Ordering::SeqCst);
self.update_next_call(1 << errors)
}
fn update_next_call(&self, delay: usize) {
*self.next_call.write() = time::Instant::now() + time::Duration::from_secs(delay as u64 * SERVER_MAX_POLL_INTERVAL_SECS);
}
}
impl<T: AsRef<str>> From<T> for Server {
fn from(t: T) -> Self {
Server {
address: t.as_ref().to_owned(),
next_call: RwLock::new(time::Instant::now()),
failures: Default::default(),
}
}
}
/// NTP client using the SNTP algorithm for calculating drift.
#[derive(Clone)]
pub struct SimpleNtp {
addresses: Vec<Arc<Server>>,
pool: CpuPool,
}
impl fmt::Debug for SimpleNtp {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f
.debug_struct("SimpleNtp")
.field("addresses", &self.addresses)
.finish()
}
}
impl SimpleNtp {
fn new<T: AsRef<str>>(addresses: &[T], pool: CpuPool) -> SimpleNtp {
SimpleNtp {
addresses: addresses.iter().map(Server::from).map(Arc::new).collect(),
pool: pool,
}
}
}
impl Ntp for SimpleNtp {
type Future = future::Either<
CpuFuture<Duration, Error>,
future::FutureResult<Duration, Error>,
>;
fn drift(&self) -> Self::Future {
use self::future::Either::{A, B};
let server = self.addresses.iter().find(|server| server.is_available());
server.map(|server| {
let server = server.clone();
A(self.pool.spawn_fn(move || {
debug!(target: "dapps", "Fetching time from {}.", server.address);
match ntp::request(&server.address) {
Ok(packet) => {
let dest_time = ::time_crate::now_utc().to_timespec();
let orig_time = Timespec::from(packet.orig_time);
let recv_time = Timespec::from(packet.recv_time);
let transmit_time = Timespec::from(packet.transmit_time);
let drift = ((recv_time - orig_time) + (transmit_time - dest_time)) / 2;
server.report_success();
Ok(drift)
},
Err(err) => {
server.report_failure();
Err(err.into())
},
}
}))
}).unwrap_or_else(|| B(future::err(Error::NoServersAvailable)))
}
}
// NOTE In a positive scenario first results will be seen after:
// MAX_RESULTS * UPDATE_TIMEOUT_INCOMPLETE_SECS seconds.
const MAX_RESULTS: usize = 4;
const UPDATE_TIMEOUT_OK_SECS: u64 = 6 * 60 * 60;
const UPDATE_TIMEOUT_WARN_SECS: u64 = 15 * 60;
const UPDATE_TIMEOUT_ERR_SECS: u64 = 60;
const UPDATE_TIMEOUT_INCOMPLETE_SECS: u64 = 10;
/// Maximal valid time drift.
pub const MAX_DRIFT: i64 = 10_000;
type BoxFuture<A, B> = Box<Future<Item = A, Error = B> + Send>;
#[derive(Debug, Clone)]
/// A time checker.
pub struct TimeChecker<N: Ntp = SimpleNtp> {
ntp: N,
last_result: Arc<RwLock<(time::Instant, VecDeque<Result<i64, Error>>)>>,
}
impl TimeChecker<SimpleNtp> {
/// Creates new time checker given the NTP server address.
pub fn new<T: AsRef<str>>(ntp_addresses: &[T], pool: CpuPool) -> Self {
let last_result = Arc::new(RwLock::new(
// Assume everything is ok at the very beginning.
(time::Instant::now(), vec![Ok(0)].into())
));
let ntp = SimpleNtp::new(ntp_addresses, pool);
TimeChecker {
ntp,
last_result,
}
}
}
impl<N: Ntp> TimeChecker<N> where <N::Future as IntoFuture>::Future: Send + 'static {
/// Updates the time
pub fn update(&self) -> BoxFuture<i64, Error> {
trace!(target: "dapps", "Updating time from NTP.");
let last_result = self.last_result.clone();
Box::new(self.ntp.drift().into_future().then(move |res| {
let res = res.map(|d| d.num_milliseconds());
if let Err(Error::NoServersAvailable) = res {
debug!(target: "dapps", "No NTP servers available. Selecting an older result.");
return select_result(last_result.read().1.iter());
}
// Update the results.
let mut results = mem::replace(&mut last_result.write().1, VecDeque::new());
let has_all_results = results.len() >= MAX_RESULTS;
let valid_till = time::Instant::now() + time::Duration::from_secs(
match res {
Ok(time) if has_all_results && time < MAX_DRIFT => UPDATE_TIMEOUT_OK_SECS,
Ok(_) if has_all_results => UPDATE_TIMEOUT_WARN_SECS,
Err(_) if has_all_results => UPDATE_TIMEOUT_ERR_SECS,
_ => UPDATE_TIMEOUT_INCOMPLETE_SECS,
}
);
trace!(target: "dapps", "New time drift received: {:?}", res);
// Push the result.
results.push_back(res);
while results.len() > MAX_RESULTS {
results.pop_front();
}
// Select a response and update last result.
let res = select_result(results.iter());
*last_result.write() = (valid_till, results);
res
}))
}
/// Returns a current time drift or error if last request to NTP server failed.
pub fn time_drift(&self) -> BoxFuture<i64, Error> {
// return cached result
{
let res = self.last_result.read();
if res.0 > time::Instant::now() {
return Box::new(futures::done(select_result(res.1.iter())));
}
}
// or update and return result
self.update()
}
}
fn select_result<'a, T: Iterator<Item=&'a Result<i64, Error>>>(results: T) -> Result<i64, Error> {
let mut min = None;
for res in results {
min = Some(match (min.take(), res) {
(Some(Ok(min)), &Ok(ref new)) => Ok(::std::cmp::min(min, *new)),
(Some(Ok(old)), &Err(_)) => Ok(old),
(_, ref new) => (*new).clone(),
})
}
min.unwrap_or_else(|| Err(Error::Ntp("NTP server unavailable.".into())))
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use std::cell::{Cell, RefCell};
use std::time::Instant;
use time::Duration;
use futures::{future, Future};
use super::{Ntp, TimeChecker, Error};
use parking_lot::RwLock;
#[derive(Clone)]
struct FakeNtp(RefCell<Vec<Duration>>, Cell<u64>);
impl FakeNtp {
fn new() -> FakeNtp {
FakeNtp(
RefCell::new(vec![Duration::milliseconds(150)]),
Cell::new(0))
}
}
impl Ntp for FakeNtp {
type Future = future::FutureResult<Duration, Error>;
fn drift(&self) -> Self::Future {
self.1.set(self.1.get() + 1);
future::ok(self.0.borrow_mut().pop().expect("Unexpected call to drift()."))
}
}
fn time_checker() -> TimeChecker<FakeNtp> {
let last_result = Arc::new(RwLock::new(
(Instant::now(), vec![Err(Error::Ntp("NTP server unavailable".into()))].into())
));
TimeChecker {
ntp: FakeNtp::new(),
last_result: last_result,
}
}
#[test]
fn should_fetch_time_on_start() {
// given
let time = time_checker();
// when
let diff = time.time_drift().wait().unwrap();
// then
assert_eq!(diff, 150);
assert_eq!(time.ntp.1.get(), 1);
}
#[test]
fn should_not_fetch_twice_if_timeout_has_not_passed() {
// given
let time = time_checker();
// when
let diff1 = time.time_drift().wait().unwrap();
let diff2 = time.time_drift().wait().unwrap();
// then
assert_eq!(diff1, 150);
assert_eq!(diff2, 150);
assert_eq!(time.ntp.1.get(), 1);
}
}