openethereum/ethcore/light/src/net/status.rs
David 9caa868603
Make HashDB generic (#8739)
The `patricia_trie` crate is generic over the hasher (by way of HashDB) and node encoding scheme. Adds a new `patricia_trie_ethereum` crate with concrete impls for Keccak/RLP.
2018-07-02 18:50:05 +02:00

576 lines
16 KiB
Rust

// Copyright 2015-2018 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
//! Peer status and capabilities.
use ethereum_types::{H256, U256};
use rlp::{DecoderError, Encodable, Decodable, RlpStream, Rlp};
use super::request_credits::FlowParams;
// recognized handshake/announcement keys.
// unknown keys are to be skipped, known keys have a defined order.
// their string values are defined in the LES spec.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Ord, PartialOrd)]
enum Key {
ProtocolVersion,
NetworkId,
HeadTD,
HeadHash,
HeadNum,
GenesisHash,
ServeHeaders,
ServeChainSince,
ServeStateSince,
TxRelay,
BufferLimit,
BufferCostTable,
BufferRechargeRate,
}
impl Key {
// get the string value of this key.
fn as_str(&self) -> &'static str {
match *self {
Key::ProtocolVersion => "protocolVersion",
Key::NetworkId => "networkId",
Key::HeadTD => "headTd",
Key::HeadHash => "headHash",
Key::HeadNum => "headNum",
Key::GenesisHash => "genesisHash",
Key::ServeHeaders => "serveHeaders",
Key::ServeChainSince => "serveChainSince",
Key::ServeStateSince => "serveStateSince",
Key::TxRelay => "txRelay",
Key::BufferLimit => "flowControl/BL",
Key::BufferCostTable => "flowControl/MRC",
Key::BufferRechargeRate => "flowControl/MRR",
}
}
// try to parse the key value from a string.
fn from_str(s: &str) -> Option<Self> {
match s {
"protocolVersion" => Some(Key::ProtocolVersion),
"networkId" => Some(Key::NetworkId),
"headTd" => Some(Key::HeadTD),
"headHash" => Some(Key::HeadHash),
"headNum" => Some(Key::HeadNum),
"genesisHash" => Some(Key::GenesisHash),
"serveHeaders" => Some(Key::ServeHeaders),
"serveChainSince" => Some(Key::ServeChainSince),
"serveStateSince" => Some(Key::ServeStateSince),
"txRelay" => Some(Key::TxRelay),
"flowControl/BL" => Some(Key::BufferLimit),
"flowControl/MRC" => Some(Key::BufferCostTable),
"flowControl/MRR" => Some(Key::BufferRechargeRate),
_ => None
}
}
}
// helper for decoding key-value pairs in the handshake or an announcement.
struct Parser<'a> {
pos: usize,
rlp: Rlp<'a>,
}
impl<'a> Parser<'a> {
// expect a specific next key, and decode the value.
// error on unexpected key or invalid value.
fn expect<T: Decodable>(&mut self, key: Key) -> Result<T, DecoderError> {
self.expect_raw(key).and_then(|item| item.as_val())
}
// expect a specific next key, and get the value's RLP.
// if the key isn't found, the position isn't advanced.
fn expect_raw(&mut self, key: Key) -> Result<Rlp<'a>, DecoderError> {
trace!(target: "les", "Expecting key {}", key.as_str());
let pre_pos = self.pos;
if let Some((k, val)) = self.get_next()? {
if k == key { return Ok(val) }
}
self.pos = pre_pos;
Err(DecoderError::Custom("Missing expected key"))
}
// get the next key and value RLP.
fn get_next(&mut self) -> Result<Option<(Key, Rlp<'a>)>, DecoderError> {
while self.pos < self.rlp.item_count()? {
let pair = self.rlp.at(self.pos)?;
let k: String = pair.val_at(0)?;
self.pos += 1;
match Key::from_str(&k) {
Some(key) => return Ok(Some((key , pair.at(1)?))),
None => continue,
}
}
Ok(None)
}
}
// Helper for encoding a key-value pair
fn encode_pair<T: Encodable>(key: Key, val: &T) -> Vec<u8> {
let mut s = RlpStream::new_list(2);
s.append(&key.as_str()).append(val);
s.out()
}
// Helper for encoding a flag.
fn encode_flag(key: Key) -> Vec<u8> {
let mut s = RlpStream::new_list(2);
s.append(&key.as_str()).append_empty_data();
s.out()
}
/// A peer status message.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Status {
/// Protocol version.
pub protocol_version: u32,
/// Network id of this peer.
pub network_id: u64,
/// Total difficulty of the head of the chain.
pub head_td: U256,
/// Hash of the best block.
pub head_hash: H256,
/// Number of the best block.
pub head_num: u64,
/// Genesis hash
pub genesis_hash: H256,
/// Last announced chain head and reorg depth to common ancestor.
pub last_head: Option<(H256, u64)>,
}
impl Status {
/// Update the status from an announcement.
pub fn update_from(&mut self, announcement: &Announcement) {
self.last_head = Some((self.head_hash, announcement.reorg_depth));
self.head_td = announcement.head_td;
self.head_hash = announcement.head_hash;
self.head_num = announcement.head_num;
}
}
/// Peer capabilities.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Capabilities {
/// Whether this peer can serve headers
pub serve_headers: bool,
/// Earliest block number it can serve block/receipt requests for.
/// `None` means no requests will be servable.
pub serve_chain_since: Option<u64>,
/// Earliest block number it can serve state requests for.
/// `None` means no requests will be servable.
pub serve_state_since: Option<u64>,
/// Whether it can relay transactions to the eth network.
pub tx_relay: bool,
}
impl Default for Capabilities {
fn default() -> Self {
Capabilities {
serve_headers: true,
serve_chain_since: None,
serve_state_since: None,
tx_relay: false,
}
}
}
impl Capabilities {
/// Update the capabilities from an announcement.
pub fn update_from(&mut self, announcement: &Announcement) {
self.serve_headers = self.serve_headers || announcement.serve_headers;
self.serve_state_since = self.serve_state_since.or(announcement.serve_state_since);
self.serve_chain_since = self.serve_chain_since.or(announcement.serve_chain_since);
self.tx_relay = self.tx_relay || announcement.tx_relay;
}
}
/// Attempt to parse a handshake message into its three parts:
/// - chain status
/// - serving capabilities
/// - request credit parameters
pub fn parse_handshake(rlp: Rlp) -> Result<(Status, Capabilities, Option<FlowParams>), DecoderError> {
let mut parser = Parser {
pos: 0,
rlp: rlp,
};
let status = Status {
protocol_version: parser.expect(Key::ProtocolVersion)?,
network_id: parser.expect(Key::NetworkId)?,
head_td: parser.expect(Key::HeadTD)?,
head_hash: parser.expect(Key::HeadHash)?,
head_num: parser.expect(Key::HeadNum)?,
genesis_hash: parser.expect(Key::GenesisHash)?,
last_head: None,
};
let capabilities = Capabilities {
serve_headers: parser.expect_raw(Key::ServeHeaders).is_ok(),
serve_chain_since: parser.expect(Key::ServeChainSince).ok(),
serve_state_since: parser.expect(Key::ServeStateSince).ok(),
tx_relay: parser.expect_raw(Key::TxRelay).is_ok(),
};
let flow_params = match (
parser.expect(Key::BufferLimit),
parser.expect(Key::BufferCostTable),
parser.expect(Key::BufferRechargeRate)
) {
(Ok(bl), Ok(bct), Ok(brr)) => Some(FlowParams::new(bl, bct, brr)),
_ => None,
};
Ok((status, capabilities, flow_params))
}
/// Write a handshake, given status, capabilities, and flow parameters.
pub fn write_handshake(status: &Status, capabilities: &Capabilities, flow_params: Option<&FlowParams>) -> Vec<u8> {
let mut pairs = Vec::new();
pairs.push(encode_pair(Key::ProtocolVersion, &status.protocol_version));
pairs.push(encode_pair(Key::NetworkId, &(status.network_id as u64)));
pairs.push(encode_pair(Key::HeadTD, &status.head_td));
pairs.push(encode_pair(Key::HeadHash, &status.head_hash));
pairs.push(encode_pair(Key::HeadNum, &status.head_num));
pairs.push(encode_pair(Key::GenesisHash, &status.genesis_hash));
if capabilities.serve_headers {
pairs.push(encode_flag(Key::ServeHeaders));
}
if let Some(ref serve_chain_since) = capabilities.serve_chain_since {
pairs.push(encode_pair(Key::ServeChainSince, serve_chain_since));
}
if let Some(ref serve_state_since) = capabilities.serve_state_since {
pairs.push(encode_pair(Key::ServeStateSince, serve_state_since));
}
if capabilities.tx_relay {
pairs.push(encode_flag(Key::TxRelay));
}
if let Some(flow_params) = flow_params {
pairs.push(encode_pair(Key::BufferLimit, flow_params.limit()));
pairs.push(encode_pair(Key::BufferCostTable, flow_params.cost_table()));
pairs.push(encode_pair(Key::BufferRechargeRate, flow_params.recharge_rate()));
}
let mut stream = RlpStream::new_list(pairs.len());
for pair in pairs {
stream.append_raw(&pair, 1);
}
stream.out()
}
/// An announcement of new chain head or capabilities made by a peer.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Announcement {
/// Hash of the best block.
pub head_hash: H256,
/// Number of the best block.
pub head_num: u64,
/// Head total difficulty
pub head_td: U256,
/// reorg depth to common ancestor of last announced head.
pub reorg_depth: u64,
/// optional new header-serving capability. false means "no change"
pub serve_headers: bool,
/// optional new state-serving capability
pub serve_state_since: Option<u64>,
/// optional new chain-serving capability
pub serve_chain_since: Option<u64>,
/// optional new transaction-relay capability. false means "no change"
pub tx_relay: bool,
// TODO: changes in request credits.
}
/// Parse an announcement.
pub fn parse_announcement(rlp: Rlp) -> Result<Announcement, DecoderError> {
let mut last_key = None;
let mut announcement = Announcement {
head_hash: rlp.val_at(0)?,
head_num: rlp.val_at(1)?,
head_td: rlp.val_at(2)?,
reorg_depth: rlp.val_at(3)?,
serve_headers: false,
serve_state_since: None,
serve_chain_since: None,
tx_relay: false,
};
let mut parser = Parser {
pos: 4,
rlp: rlp,
};
while let Some((key, item)) = parser.get_next()? {
if Some(key) <= last_key { return Err(DecoderError::Custom("Invalid announcement key ordering")) }
last_key = Some(key);
match key {
Key::ServeHeaders => announcement.serve_headers = true,
Key::ServeStateSince => announcement.serve_state_since = Some(item.as_val()?),
Key::ServeChainSince => announcement.serve_chain_since = Some(item.as_val()?),
Key::TxRelay => announcement.tx_relay = true,
_ => return Err(DecoderError::Custom("Nonsensical key in announcement")),
}
}
Ok(announcement)
}
/// Write an announcement out.
pub fn write_announcement(announcement: &Announcement) -> Vec<u8> {
let mut pairs = Vec::new();
if announcement.serve_headers {
pairs.push(encode_flag(Key::ServeHeaders));
}
if let Some(ref serve_chain_since) = announcement.serve_chain_since {
pairs.push(encode_pair(Key::ServeChainSince, serve_chain_since));
}
if let Some(ref serve_state_since) = announcement.serve_state_since {
pairs.push(encode_pair(Key::ServeStateSince, serve_state_since));
}
if announcement.tx_relay {
pairs.push(encode_flag(Key::TxRelay));
}
let mut stream = RlpStream::new_list(4 + pairs.len());
stream
.append(&announcement.head_hash)
.append(&announcement.head_num)
.append(&announcement.head_td)
.append(&announcement.reorg_depth);
for item in pairs {
stream.append_raw(&item, 1);
}
stream.out()
}
#[cfg(test)]
mod tests {
use super::*;
use super::super::request_credits::FlowParams;
use ethereum_types::{U256, H256};
use rlp::{RlpStream, Rlp};
#[test]
fn full_handshake() {
let status = Status {
protocol_version: 1,
network_id: 1,
head_td: U256::default(),
head_hash: H256::default(),
head_num: 10,
genesis_hash: H256::zero(),
last_head: None,
};
let capabilities = Capabilities {
serve_headers: true,
serve_chain_since: Some(5),
serve_state_since: Some(8),
tx_relay: true,
};
let flow_params = FlowParams::new(
1_000_000.into(),
Default::default(),
1000.into(),
);
let handshake = write_handshake(&status, &capabilities, Some(&flow_params));
let (read_status, read_capabilities, read_flow)
= parse_handshake(Rlp::new(&handshake)).unwrap();
assert_eq!(read_status, status);
assert_eq!(read_capabilities, capabilities);
assert_eq!(read_flow.unwrap(), flow_params);
}
#[test]
fn partial_handshake() {
let status = Status {
protocol_version: 1,
network_id: 1,
head_td: U256::default(),
head_hash: H256::default(),
head_num: 10,
genesis_hash: H256::zero(),
last_head: None,
};
let capabilities = Capabilities {
serve_headers: false,
serve_chain_since: Some(5),
serve_state_since: None,
tx_relay: true,
};
let flow_params = FlowParams::new(
1_000_000.into(),
Default::default(),
1000.into(),
);
let handshake = write_handshake(&status, &capabilities, Some(&flow_params));
let (read_status, read_capabilities, read_flow)
= parse_handshake(Rlp::new(&handshake)).unwrap();
assert_eq!(read_status, status);
assert_eq!(read_capabilities, capabilities);
assert_eq!(read_flow.unwrap(), flow_params);
}
#[test]
fn skip_unknown_keys() {
let status = Status {
protocol_version: 1,
network_id: 1,
head_td: U256::default(),
head_hash: H256::default(),
head_num: 10,
genesis_hash: H256::zero(),
last_head: None,
};
let capabilities = Capabilities {
serve_headers: false,
serve_chain_since: Some(5),
serve_state_since: None,
tx_relay: true,
};
let flow_params = FlowParams::new(
1_000_000.into(),
Default::default(),
1000.into(),
);
let handshake = write_handshake(&status, &capabilities, Some(&flow_params));
let interleaved = {
let handshake = Rlp::new(&handshake);
let mut stream = RlpStream::new_list(handshake.item_count().unwrap_or(0) * 3);
for item in handshake.iter() {
stream.append_raw(item.as_raw(), 1);
let (mut s1, mut s2) = (RlpStream::new_list(2), RlpStream::new_list(2));
s1.append(&"foo").append_empty_data();
s2.append(&"bar").append_empty_data();
stream.append_raw(&s1.out(), 1);
stream.append_raw(&s2.out(), 1);
}
stream.out()
};
let (read_status, read_capabilities, read_flow)
= parse_handshake(Rlp::new(&interleaved)).unwrap();
assert_eq!(read_status, status);
assert_eq!(read_capabilities, capabilities);
assert_eq!(read_flow.unwrap(), flow_params);
}
#[test]
fn announcement_roundtrip() {
let announcement = Announcement {
head_hash: H256::random(),
head_num: 100_000,
head_td: 1_000_000.into(),
reorg_depth: 4,
serve_headers: false,
serve_state_since: Some(99_000),
serve_chain_since: Some(1),
tx_relay: true,
};
let serialized = write_announcement(&announcement);
let read = parse_announcement(Rlp::new(&serialized)).unwrap();
assert_eq!(read, announcement);
}
#[test]
fn keys_out_of_order() {
use super::{Key, encode_pair, encode_flag};
let mut stream = RlpStream::new_list(6);
stream
.append(&H256::zero())
.append(&10u64)
.append(&100_000u64)
.append(&2u64)
.append_raw(&encode_pair(Key::ServeStateSince, &44u64), 1)
.append_raw(&encode_flag(Key::ServeHeaders), 1);
let out = stream.drain();
assert!(parse_announcement(Rlp::new(&out)).is_err());
let mut stream = RlpStream::new_list(6);
stream
.append(&H256::zero())
.append(&10u64)
.append(&100_000u64)
.append(&2u64)
.append_raw(&encode_flag(Key::ServeHeaders), 1)
.append_raw(&encode_pair(Key::ServeStateSince, &44u64), 1);
let out = stream.drain();
assert!(parse_announcement(Rlp::new(&out)).is_ok());
}
#[test]
fn optional_flow() {
let status = Status {
protocol_version: 1,
network_id: 1,
head_td: U256::default(),
head_hash: H256::default(),
head_num: 10,
genesis_hash: H256::zero(),
last_head: None,
};
let capabilities = Capabilities {
serve_headers: true,
serve_chain_since: Some(5),
serve_state_since: Some(8),
tx_relay: true,
};
let handshake = write_handshake(&status, &capabilities, None);
let (read_status, read_capabilities, read_flow)
= parse_handshake(Rlp::new(&handshake)).unwrap();
assert_eq!(read_status, status);
assert_eq!(read_capabilities, capabilities);
assert!(read_flow.is_none());
}
}