openethereum/util/src/trie/triedb.rs

450 lines
13 KiB
Rust

// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.
// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity. If not, see <http://www.gnu.org/licenses/>.
use std::fmt;
use common::*;
use hashdb::*;
use nibbleslice::*;
use rlp::*;
use super::node::{Node, OwnedNode};
use super::lookup::Lookup;
use super::{Trie, TrieItem, TrieError, TrieIterator, Query};
/// A `Trie` implementation using a generic `HashDB` backing database.
///
/// Use it as a `Trie` trait object. You can use `db()` to get the backing database object.
/// Use `get` and `contains` to query values associated with keys in the trie.
///
/// # Example
/// ```
/// extern crate ethcore_util as util;
///
/// use util::trie::*;
/// use util::hashdb::*;
/// use util::memorydb::*;
/// use util::hash::*;
///
/// fn main() {
/// let mut memdb = MemoryDB::new();
/// let mut root = H256::new();
/// TrieDBMut::new(&mut memdb, &mut root).insert(b"foo", b"bar").unwrap();
/// let t = TrieDB::new(&memdb, &root).unwrap();
/// assert!(t.contains(b"foo").unwrap());
/// assert_eq!(t.get(b"foo").unwrap().unwrap(), DBValue::from_slice(b"bar"));
/// }
/// ```
pub struct TrieDB<'db> {
db: &'db HashDB,
root: &'db H256,
/// The number of hashes performed so far in operations on this trie.
pub hash_count: usize,
}
#[cfg_attr(feature="dev", allow(wrong_self_convention))]
impl<'db> TrieDB<'db> {
/// Create a new trie with the backing database `db` and `root`
/// Returns an error if `root` does not exist
pub fn new(db: &'db HashDB, root: &'db H256) -> super::Result<Self> {
if !db.contains(root) {
Err(Box::new(TrieError::InvalidStateRoot(*root)))
} else {
Ok(TrieDB {
db: db,
root: root,
hash_count: 0
})
}
}
/// Get the backing database.
pub fn db(&'db self) -> &'db HashDB {
self.db
}
/// Get the data of the root node.
fn root_data(&self) -> super::Result<DBValue> {
self.db.get(self.root).ok_or_else(|| Box::new(TrieError::InvalidStateRoot(*self.root)))
}
/// Indentation helper for `format_all`.
fn fmt_indent(&self, f: &mut fmt::Formatter, size: usize) -> fmt::Result {
for _ in 0..size {
write!(f, " ")?;
}
Ok(())
}
/// Recursion helper for implementation of formatting trait.
fn fmt_all(&self, node: Node, f: &mut fmt::Formatter, deepness: usize) -> fmt::Result {
match node {
Node::Leaf(slice, value) => writeln!(f, "'{:?}: {:?}.", slice, value.pretty())?,
Node::Extension(ref slice, ref item) => {
write!(f, "'{:?} ", slice)?;
if let Ok(node) = self.get_raw_or_lookup(&*item) {
self.fmt_all(Node::decoded(&node), f, deepness)?;
}
},
Node::Branch(ref nodes, ref value) => {
writeln!(f, "")?;
if let Some(ref v) = *value {
self.fmt_indent(f, deepness + 1)?;
writeln!(f, "=: {:?}", v.pretty())?
}
for i in 0..16 {
let node = self.get_raw_or_lookup(&*nodes[i]);
match node.as_ref().map(|n| Node::decoded(&*n)) {
Ok(Node::Empty) => {},
Ok(n) => {
self.fmt_indent(f, deepness + 1)?;
write!(f, "'{:x} ", i)?;
self.fmt_all(n, f, deepness + 1)?;
}
Err(e) => {
write!(f, "ERROR: {}", e)?;
}
}
}
},
// empty
Node::Empty => {
writeln!(f, "<empty>")?;
}
};
Ok(())
}
/// Given some node-describing data `node`, return the actual node RLP.
/// This could be a simple identity operation in the case that the node is sufficiently small, but
/// may require a database lookup.
fn get_raw_or_lookup(&'db self, node: &'db [u8]) -> super::Result<DBValue> {
// check if its sha3 + len
let r = Rlp::new(node);
match r.is_data() && r.size() == 32 {
true => {
let key = r.as_val::<H256>();
self.db.get(&key).ok_or_else(|| Box::new(TrieError::IncompleteDatabase(key)))
}
false => Ok(DBValue::from_slice(node))
}
}
}
impl<'db> Trie for TrieDB<'db> {
fn iter<'a>(&'a self) -> super::Result<Box<TrieIterator<Item = TrieItem> + 'a>> {
TrieDBIterator::new(self).map(|iter| Box::new(iter) as Box<_>)
}
fn root(&self) -> &H256 { self.root }
fn get_with<'a, 'key, Q: Query>(&'a self, key: &'key [u8], query: Q) -> super::Result<Option<Q::Item>>
where 'a: 'key
{
Lookup {
db: self.db,
query: query,
hash: self.root.clone(),
}.look_up(NibbleSlice::new(key))
}
}
impl<'db> fmt::Debug for TrieDB<'db> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "c={:?} [", self.hash_count)?;
let root_rlp = self.db.get(self.root).expect("Trie root not found!");
self.fmt_all(Node::decoded(&root_rlp), f, 0)?;
writeln!(f, "]")
}
}
#[derive(Clone, Eq, PartialEq)]
enum Status {
Entering,
At,
AtChild(usize),
Exiting,
}
#[derive(Clone, Eq, PartialEq)]
struct Crumb {
node: OwnedNode,
status: Status,
}
impl Crumb {
/// Move on to next status in the node's sequence.
fn increment(&mut self) {
self.status = match (&self.status, &self.node) {
(_, &OwnedNode::Empty) => Status::Exiting,
(&Status::Entering, _) => Status::At,
(&Status::At, &OwnedNode::Branch(_, _)) => Status::AtChild(0),
(&Status::AtChild(x), &OwnedNode::Branch(_, _)) if x < 15 => Status::AtChild(x + 1),
_ => Status::Exiting,
}
}
}
/// Iterator for going through all values in the trie.
#[derive(Clone)]
pub struct TrieDBIterator<'a> {
db: &'a TrieDB<'a>,
trail: Vec<Crumb>,
key_nibbles: Bytes,
}
impl<'a> TrieDBIterator<'a> {
/// Create a new iterator.
pub fn new(db: &'a TrieDB) -> super::Result<TrieDBIterator<'a>> {
let mut r = TrieDBIterator {
db: db,
trail: vec![],
key_nibbles: Vec::new(),
};
db.root_data().and_then(|root| r.descend(&root))?;
Ok(r)
}
fn seek_descend<'key>(&mut self, node_data: DBValue, key: &NibbleSlice<'key>) -> super::Result<()> {
let node = Node::decoded(&node_data);
match node {
Node::Leaf(ref slice, _) => {
if slice == key {
self.trail.push(Crumb {
status: Status::At,
node: node.clone().into(),
});
} else {
self.trail.push(Crumb {
status: Status::Exiting,
node: node.clone().into(),
});
}
self.key_nibbles.extend(slice.iter());
Ok(())
},
Node::Extension(ref slice, ref item) => {
if key.starts_with(slice) {
self.trail.push(Crumb {
status: Status::At,
node: node.clone().into(),
});
self.key_nibbles.extend(slice.iter());
let data = self.db.get_raw_or_lookup(&*item)?;
self.seek_descend(data, &key.mid(slice.len()))
} else {
self.descend(&node_data)?;
Ok(())
}
},
Node::Branch(ref nodes, _) => match key.is_empty() {
true => {
self.trail.push(Crumb {
status: Status::At,
node: node.clone().into(),
});
Ok(())
},
false => {
let i = key.at(0);
self.trail.push(Crumb {
status: Status::AtChild(i as usize),
node: node.clone().into(),
});
self.key_nibbles.push(i);
let child = self.db.get_raw_or_lookup(&*nodes[i as usize])?;
self.seek_descend(child, &key.mid(1))
}
},
_ => Ok(())
}
}
/// Descend into a payload.
fn descend(&mut self, d: &[u8]) -> super::Result<()> {
self.trail.push(Crumb {
status: Status::Entering,
node: Node::decoded(&self.db.get_raw_or_lookup(d)?).into(),
});
match &self.trail.last().expect("just pushed item; qed").node {
&OwnedNode::Leaf(ref n, _) | &OwnedNode::Extension(ref n, _) => {
self.key_nibbles.extend((0..n.len()).map(|i| n.at(i)));
},
_ => {}
}
Ok(())
}
/// The present key.
fn key(&self) -> Bytes {
// collapse the key_nibbles down to bytes.
self.key_nibbles.iter().step(2).zip(self.key_nibbles.iter().skip(1).step(2)).map(|(h, l)| h * 16 + l).collect()
}
}
impl<'a> TrieIterator for TrieDBIterator<'a> {
/// Position the iterator on the first element with key >= `key`
fn seek(&mut self, key: &[u8]) -> super::Result<()> {
self.trail.clear();
self.key_nibbles.clear();
let root_rlp = self.db.root_data()?;
self.seek_descend(root_rlp, &NibbleSlice::new(key))
}
}
impl<'a> Iterator for TrieDBIterator<'a> {
type Item = TrieItem<'a>;
fn next(&mut self) -> Option<Self::Item> {
loop {
let b = match self.trail.last_mut() {
Some(mut b) => { b.increment(); b.clone() },
None => return None,
};
match (b.status, b.node) {
(Status::Exiting, n) => {
match n {
OwnedNode::Leaf(n, _) | OwnedNode::Extension(n, _) => {
let l = self.key_nibbles.len();
self.key_nibbles.truncate(l - n.len());
},
OwnedNode::Branch(_, _) => { self.key_nibbles.pop(); },
_ => {}
}
self.trail.pop();
// continue
},
(Status::At, OwnedNode::Leaf(_, v)) | (Status::At, OwnedNode::Branch(_, Some(v))) => {
return Some(Ok((self.key(), v)));
},
(Status::At, OwnedNode::Extension(_, d)) => {
if let Err(e) = self.descend(&*d) {
return Some(Err(e));
}
// continue
},
(Status::At, OwnedNode::Branch(_, _)) => {},
(Status::AtChild(i), OwnedNode::Branch(ref children, _)) if children[i].len() > 0 => {
match i {
0 => self.key_nibbles.push(0),
i => *self.key_nibbles.last_mut()
.expect("pushed as 0; moves sequentially; removed afterwards; qed") = i as u8,
}
if let Err(e) = self.descend(&*children[i]) {
return Some(Err(e));
}
// continue
},
(Status::AtChild(i), OwnedNode::Branch(_, _)) => {
if i == 0 {
self.key_nibbles.push(0);
}
// continue
},
_ => panic!() // Should never see Entering or AtChild without a Branch here.
}
}
}
}
#[test]
fn iterator() {
use memorydb::*;
use super::TrieMut;
use super::triedbmut::*;
let d = vec![ DBValue::from_slice(b"A"), DBValue::from_slice(b"AA"), DBValue::from_slice(b"AB"), DBValue::from_slice(b"B") ];
let mut memdb = MemoryDB::new();
let mut root = H256::new();
{
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for x in &d {
t.insert(x, x).unwrap();
}
}
let t = TrieDB::new(&memdb, &root).unwrap();
assert_eq!(d.iter().map(|i| i.clone().into_vec()).collect::<Vec<_>>(), t.iter().unwrap().map(|x| x.unwrap().0).collect::<Vec<_>>());
assert_eq!(d, t.iter().unwrap().map(|x| x.unwrap().1).collect::<Vec<_>>());
}
#[test]
fn iterator_seek() {
use memorydb::*;
use super::TrieMut;
use super::triedbmut::*;
let d = vec![ DBValue::from_slice(b"A"), DBValue::from_slice(b"AA"), DBValue::from_slice(b"AB"), DBValue::from_slice(b"B") ];
let mut memdb = MemoryDB::new();
let mut root = H256::new();
{
let mut t = TrieDBMut::new(&mut memdb, &mut root);
for x in &d {
t.insert(x, x).unwrap();
}
}
let t = TrieDB::new(&memdb, &root).unwrap();
let mut iter = t.iter().unwrap();
assert_eq!(iter.next(), Some(Ok((b"A".to_vec(), DBValue::from_slice(b"A")))));
iter.seek(b"!").unwrap();
assert_eq!(d, iter.map(|x| x.unwrap().1).collect::<Vec<_>>());
let mut iter = t.iter().unwrap();
iter.seek(b"A").unwrap();
assert_eq!(&d[1..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
let mut iter = t.iter().unwrap();
iter.seek(b"AA").unwrap();
assert_eq!(&d[2..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
let mut iter = t.iter().unwrap();
iter.seek(b"A!").unwrap();
assert_eq!(&d[1..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
let mut iter = t.iter().unwrap();
iter.seek(b"AB").unwrap();
assert_eq!(&d[3..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
let mut iter = t.iter().unwrap();
iter.seek(b"AB!").unwrap();
assert_eq!(&d[3..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
let mut iter = t.iter().unwrap();
iter.seek(b"B").unwrap();
assert_eq!(&d[4..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
let mut iter = t.iter().unwrap();
iter.seek(b"C").unwrap();
assert_eq!(&d[4..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
}
#[test]
fn get_len() {
use memorydb::*;
use super::TrieMut;
use super::triedbmut::*;
let mut memdb = MemoryDB::new();
let mut root = H256::new();
{
let mut t = TrieDBMut::new(&mut memdb, &mut root);
t.insert(b"A", b"ABC").unwrap();
t.insert(b"B", b"ABCBA").unwrap();
}
let t = TrieDB::new(&memdb, &root).unwrap();
assert_eq!(t.get_with(b"A", |x: &[u8]| x.len()), Ok(Some(3)));
assert_eq!(t.get_with(b"B", |x: &[u8]| x.len()), Ok(Some(5)));
assert_eq!(t.get_with(b"C", |x: &[u8]| x.len()), Ok(None));
}